Application number:

Name:
Entrance examination - Question sheet (Mathematics) Space and Astronautical Science Program, Graduate Institute for Advanced Studies, SOKENDAI

Question 1-1

(1) Answer the following questions. Write the answer as well as the process of derivation.
i. Find the matrix X that satisfies $A X=B$ using the cofactor method, where the matrices A and B are:

$$
A=\left(\begin{array}{ccc}
0 & 1 & 2 \\
-3 & 1 & -1 \\
1 & 2 & 2
\end{array}\right), \quad B=\left(\begin{array}{cc}
3 & -2 \\
-6 & -8 \\
3 & 1
\end{array}\right)
$$

ii. Find the matrix X that satisfies $A X+B=O$ using raw reduction, where the matrices A and B are:

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)
$$

iii. Find the eigenvalue and the characteristic vector, where the matrix A is:

$$
A=\left(\begin{array}{ccc}
2 & -2 & 2 \\
1 & 1 & 0 \\
1 & 3 & -2
\end{array}\right)
$$

iv. Find the solution of the following equation.

$$
\left(\begin{array}{ccc}
2 & 3 & 1 \\
4 & 1 & -3 \\
-1 & 2 & 2
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
4 \\
-2 \\
2
\end{array}\right)
$$

Use that $A=B C$ holds when the matrices A, B, and C are as follows:

$$
A=\left(\begin{array}{ccc}
2 & 3 & 1 \\
4 & 1 & -3 \\
-1 & 2 & 2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
2 & 0 & 0 \\
4 & -5 & 0 \\
-1 & 3.5 & -1
\end{array}\right), \quad C=\left(\begin{array}{ccc}
1 & 1.5 & 0.5 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

v. Express x_{1} and x_{2} using z_{1} and z_{2} based on the concept of matrices when the following relations exist:

$$
\begin{aligned}
& x_{1}=a_{11} y_{1}+a_{12} y_{2}+a_{13} y_{3} \\
& x_{2}=a_{21} y_{1}+a_{22} y_{2}+a_{23} y_{3} \\
& y_{1}=b_{11} z_{1}+b_{12} z_{2} \\
& y_{2}=b_{21} z_{1}+b_{22} z_{2} \\
& y_{3}=b_{31} z_{1}+b_{32} z_{2}
\end{aligned}
$$

(2) Find the following determinants. Write the answer as well as the process of derivation.
i.

$$
\left|\begin{array}{lll}
a & 0 & c \\
b & c & 0 \\
0 & a & b
\end{array}\right|=
$$

ii.
$\left|\begin{array}{ccccc}8 & 0 & 0 & 0 & 0 \\ 10 & 1 & 0 & 0 & 0 \\ 5 & 9 & 3 & 0 & 0 \\ 2 & 2 & 8 & 7 & 0 \\ 9 & 5 & 13 & 11 & 20\end{array}\right|=$
iii.

$$
\left|\begin{array}{lll}
x^{2} & x & 1 \\
y^{2} & y & 1 \\
z^{2} & z & 1
\end{array}\right|=
$$

iv.
$\left|\begin{array}{lllll}a & b & b & b & b \\ b & a & b & b & b \\ b & b & a & b & b \\ b & b & b & a & b \\ b & b & b & b & a\end{array}\right|=$
(3) Find λ that allows solutions other than $a_{1}=a_{2}=a_{3}=a_{4}=0$ in the following simultaneous equations. Write the answer as well as the process of derivation.

$$
\begin{aligned}
& -a_{1}+a_{2}=0 \\
& -a_{1}+a_{2} \lambda+a_{3}=0 \\
& a_{2}-a_{3} \lambda+a_{4}=0 \\
& a_{3}-a_{4} \lambda=0
\end{aligned}
$$

Question 2-1. Find the derivative $\frac{d f}{d x}$ of the function $f(x)$. Write the answer as well as the process of derivation.
(1) $f(x)=\sqrt{x^{2}-4 x+5}$
(2) $f(x)=\frac{\cos x}{1+\tan x}$
(3) $f(x)=\frac{4 x+1}{(x-1)^{2}}$
(4) $f(x)=(x+3)^{x}$

Question 2-2. Find the indefinite integral $\int f(x) d x$ of the function $f(x)$, where $\log \quad$ is the natural logarithm and C is a constant of integration. Write the answer as well as the process of derivation.
(1) $f(x)=\frac{3 x^{5}}{\left(1+x^{3}\right)^{3}}$
(2) $f(x)=3 x^{2}(\log x)^{2}$
(3) $f(x)=\frac{e^{-x}}{e^{-x}+1+e^{x}}$

Question 2-3. Find the limit $\lim _{\mathrm{n} \rightarrow \infty} a_{n}$.
(1) $a_{n}=\frac{1}{n^{2}}(1+2+\cdots+n)$
(2) $a_{n}=1+\frac{3}{8}+\frac{1}{5}+\cdots+\frac{3}{(n+1)^{2}-1}$
(3) $a_{n}=\int_{2 n}^{3 n} \frac{x+3}{x^{2}+1} d x$

Question 2-4. There is a triangle circumscribed by a circle of radius r.
(1) Express the area of the triangle as a function of r, θ, and φ, where φ and Θ represent angles of two vertices of the triangle.
(2) Describe the features of the triangle when the area is the minimum for a given r.
(* This material is collected after the exam.)

