Name:

Entrance examination – Question sheet (Mathematics) Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI

Question 1-1 Consider transformation including liner transformation and translation of a point on a two-dimensional plane (x-y plane $[E^2]$ here), i.e.,

$X \mid \rightarrow Ax + m$

where A is a linear transformation matrix and x and m are column vectors expressing coordinates and the amount of translation of the point, respectively. For example, a point $a(a_1, a_2)$ is transformed to $b(b_1, b_2)$ by a linear

transformation matrix, $A = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$, and translation, $m(m_1, m_2)$, it can be expressed using matrices as follows:

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}$$

Also, it can be expressed as follows:

$$\begin{pmatrix} b_1 \\ b_2 \\ 1 \end{pmatrix} = \begin{pmatrix} p & q & m_1 \\ r & s & m_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ 1 \end{pmatrix}$$

The values in the third row of the column vectors are meaningless for coordinate transformation, however, the transformation matrix becomes a square matrix, which enables to express linear transformation and translation as a single matrix and handle it in the same manner as linear transformation. Let the above 3x3 square matrix be A_f .

Show the matrix A_f expressing the following transformation described in (1) to (3).

Also, show that the matrix A_f is invertible according to the instructions in the following questions and find the inverse matrix A_f^{-1} .

- (1) Show the transformation matrix A_f expressing movement of a point $a(a_1, a_2)$ by +2 in the *x*-direction and -3 in the *y*-direction. Show that A_f is invertible when $Ker A_f = \{0\}$. Find the inverse matrix A_f^{-1} .
- (2) Show the transformation matrix A_f expressing counterclockwise rotation of a

(* This material is collected after the exam.)

Application number:	Name:
a(a, a) around the origin	$(0,0)$ by an angle $\theta(r)$

point $a(a_1, a_2)$ around the origin (0,0) by an angle $\theta(rad)$. Show that A_f is invertible when $det|A_f| \neq 0$. Find the inverse matrix A_f^{-1} .

(3) Show the transformation matrix A_f expressing counterclockwise rotation of a point $a(a_1, a_2)$ around the origin (0,0) by an angle $\theta(rad)$ followed by movement by +2 in the *x*-direction and -3 in the *y*-direction. Show that A_f is invertible when rank=3. Find the inverse matrix A_f^{-1} .

Question 1-2 Consider transformation of a square (E(-1, -10), F(-1,4), G(7, -2), H(7, -4)) by rotating it around the center of gravity $G(g_1, g_2)$ by $\pi/4$ (*rad*) clockwise.

- (1) Find the coordinates of the center of gravity (g_1, g_2) of this square. "The center of gravity" is a point where the square balances when it consists of uniform material.
- (2) Find the transformation matrix A_f . When you can find the coordinates of the center of gravity in Question (1), use the coordinates. If not, you can let the coordinate be $G(g_1, g_2)$ for calculation.

Question 1-3 Define the function e^A , which is derived by replacing x (real number) of the exponential function e^x with a square matrix of order n, as follows:

$$e^{\mathbf{A}} = exp(\mathbf{A}) := \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} \ (\mathbf{A} \in \mathbf{R}^{n})$$

where $A^0 = E$ (identity matrix). It means that x is replaced with a matrix A in Maclaurin series expansion of the exponential function. Therefore, e^A is a square matrix of order n.

Maclaurin series expansion is Taylor series expansion at x = 0 shown as follows:

$$f(x) = \sum_{k=0}^{\infty} f^{(k)}(0) \frac{x^k}{k!} = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \cdots$$

For the exponential function e^x ,

$$e^{x} = \sum_{k=0}^{\infty} e^{(k)}(0) \frac{x^{k}}{k!} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots$$

(* This material is collected after the exam.)

Application number:

Name:

(1) Find exp(R) letting R be as follows. Explain the meaning of the derived matrix.

$$\mathbf{R} = \begin{pmatrix} 0 & -x \\ x & 0 \end{pmatrix} \ x \in \mathbf{R}$$

(2) Show that the following equation is valid when the matrix G is a square matrix of order n similarly to the matrix A.

$$exp(G^{-1}AG) = G^{-1}exp(A)G$$

(3) Find exp(A) when the matrix A is as follows:

$$\mathbf{A} = \begin{pmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{pmatrix}$$

Application number:Name:Question 2-1Find the derivative $\frac{df}{dx}$ of the function f(x).

$$(1)f(x) = \frac{(1-4x^2)^2}{1+x^2}$$

(2) $f(x) = x^3 \log(x^2)$
(3) $f(x) = \frac{\sin x}{1+\tan x}$
(4) $f(x) = \cos^{-1}(x\sqrt{1-x^2})$

Question 2-2 Find the indefinite integral $\int f(x) dx$ of the function f(x).

- (1) $f(x) = (x-1)^4$
- (2) $f(x) = \sin^2 x$
- (3) $f(x) = x^2 e^x$

Question 2-3 Solve the following differential equations.

(1)
$$\frac{dy}{dx} = 3x (y - 3)^2$$

(2) $\frac{dy}{dx} = 2y + 1$

(3)
$$\frac{d^2y}{dx^2} - 10\frac{dy}{dx} + 74y = 0$$

Question 2-4 Answer the following questions about the following function:

$$B(v,T) = \frac{2hv^3}{c^2} \cdot \frac{1}{\frac{hv}{e^{\frac{hv}{kT}} - 1}}$$

where *c*, *h*, and *k* are constants.

- (1) Find $\frac{\partial B(v,T)}{\partial T}$.
- (2) Find $\int_0^\infty B(v,T)dv$, where

$$\int_0^\infty \frac{x^3}{e^x - 1} \, dx = \frac{\pi^4}{15}$$

(3) Show $\int_0^\infty \frac{x^3}{e^x - 1} dx = \frac{\pi^4}{15}$, where

(* This material is collected after the exam.)

Application number:	Name:	
	$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$	

(Hint)

Calculate the following function:

$$\sum_{n=1}^{\infty} e^{-nx}$$