Entrance examination - Question sheet (Mathematics) Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI

Question 1-1.

Answer the following questions. Write the answer as well as the process of derivation.
(1) Differentiate the following function.

$$
y=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)
$$

(2) Find the partial derivatives of the following function with respect to each of x and y.

$$
\mathrm{z}=\log _{x} \sqrt{y^{2}+1}
$$

(3) Calculate the following definite integral substituting x by $\sinh (t)$, where $\sinh (t)=\frac{1}{2}\left(e^{t}-e^{-t}\right)$.

$$
\int_{0}^{1} \sqrt{1+x^{2}} d x
$$

Question 1-2.

(1) When $y=f(x)$ is differentiable in the period of $[\alpha, \beta]$ and $f^{\prime}(x)$ is a continuous function, show that the area of the curved surface S obtained by revolution of this curve around the x -axis is as follows, where $f(x) \geq 0$.

$$
S=2 \pi \int_{\alpha}^{\beta} f(x) \sqrt{1+\left\{f^{\prime}(x)\right\}^{2}} d x
$$

(2) A cycloid is the curve traced by a point on the rim of a circle when the circle rolls along a straight line without slipping. The parametric representation is $x=$

Application number:

Name:
$r(\theta-\sin \theta)$ and $y=r(1-\cos \theta)$, where the radius of the circle is r and the rotation angle is θ.
Calculate the area of the curved surface obtained by revolution of this curve in the range of $0 \leq \theta \leq 2 \pi$ around the x -axis.

Question 1-3.

Calculate the following double integral converting it to polar coordinates.

$$
\begin{gathered}
\iint_{D} e^{-x^{2}-y^{2}} d x d y \\
D: x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0
\end{gathered}
$$

Question2-1. Show that eigenvalues of the matrix $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$ are 1, ζ, and ζ^{2}, where ζ is a solution of $x^{2}+x+1=0$.

Qusestion2-2. Express the circulant matrix $\mathrm{B}=\left(\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{3} & a_{1} & a_{2} \\ a_{2} & a_{3} & a_{1}\end{array}\right)$ using a unit matrix E as well as A and A^{2} in Question 2-1.

Question 2-3. Assume that the matrix A in Question 2-1 can be diagonalized by a matrix P as follows: $\mathrm{P}^{-1} \mathrm{AP}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \zeta & 0 \\ 0 & 0 & \zeta^{2}\end{array}\right)$
where ζ is defined as Question 2-1 and P^{-1} is the inverse matrix of P .
Express the eigenvalues of the matrix B in Question 2-2 using a_{1}, a_{2}, a_{3}, ζ, and ζ^{2}.

Question 2-4. Let the determinant of the matrix B in Question 2-2 be $|\mathrm{B}|$. When $a_{1}+a_{2}+a_{3} \neq 0$ and $\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}=1$, find all real numbers a_{1}, a_{2}, and a_{3} satisfying $|\mathrm{B}|=0$.

Question 2-5. Specifically calculate the matrix P in Question 2-3, where P is a unitary matrix defined as $\mathrm{P}^{\dagger} \mathrm{P}=\mathrm{E}$. The symbol \dagger on the upper right side represents the complex conjugate transpose of the matrix P.
(* This material is collected after the exam.)

