Entrance examination - Question sheet (Mathematics)
 Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI

Question 1-1

Find the indefinite integral of the following function:

$$
\frac{1}{\sqrt{(x-\beta)(\alpha-x)}} \quad(\beta<x<\alpha)
$$

You can use the following parameter: $t=\sqrt{(\alpha-x) /(x-\beta)}$

Question 1-2

Answer the following questions about the following function:

$$
y=x^{2} e^{x}
$$

(1) Find the second derivative.
(2) Find the n-th derivative, where n is a positive integer.

Question 1-3

Solve the following partial differential equation. You can let $u(t, x)=T(t) X(x)$.

$$
\begin{gathered}
\frac{\partial u(t, x)}{\partial t}=\frac{\partial^{2} u(t, x)}{\partial x^{2}}(t \geq 0,0 \leq x \leq 1) \\
u(t=0, x)=\sin ^{2} \pi x
\end{gathered}
$$

where the boundary conditions are as follows:

$$
\frac{\partial u(t, 1)}{\partial x}=0, u(t, x=0)=0
$$

Question 2-1

Answer the following questions. Write the answer as well as the process of derivation.
(1) Answer whether the inverse matrix of the following matrix exists or not. If it exists, show the inverse matrix.

$$
\begin{array}{ll}
\text { i) } & A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \\
\text { ii) } & B=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 0
\end{array}\right)
\end{array}
$$

(2) Solve the following system of equations:

$$
\begin{aligned}
& 2 y+z=4 \\
& x+3 y+2 z=2 \\
& 2 x+3 z=4
\end{aligned}
$$

Question 2-2

Show the conditions where the following set of vectors is linearly independent.

$$
b_{1}=\left(\begin{array}{c}
m-1 \\
1 \\
1
\end{array}\right), \quad b_{2}=\left(\begin{array}{c}
1 \\
m-1 \\
1
\end{array}\right), \quad b_{3}=\left(\begin{array}{c}
1 \\
1 \\
m-1
\end{array}\right)
$$

