Applicant number:

Name:

Entrance examination - Question sheet (Mathematics)
 Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI

Question 1-1

Find the general solution of the following differential equation, where c is an arbitrary constant.

Where: $y^{\prime}=\frac{d y}{d x}$.
(1) $y^{\prime}=\frac{y-1}{x y}$
(2) $x^{2} y^{\prime}-\left(y^{2}+x y\right)=0$
(3) $y^{\prime}-\frac{y}{x}=x^{2}$

Question 1-2

For $u(x, t)$, consider the following partial differential equation, where c is a positive constant.
Answer the following questions:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

(1) Derive the following formula by using the following two independent functions: $\xi=x+c t, \eta=x-c t$.

$$
\frac{\partial^{2} u}{\partial \xi \partial \eta}=0
$$

(2) Show that the general solution of the formula derived in the previous item
(1) is indicated as follows, where ϕ and ψ are arbitrary functions.

$$
\mathrm{u}(x, t)=\phi(x+c t)+\psi(x-c t)
$$

(* This material is collected after the exam.)
(3) For the general solution indicated in the previous item (2), let the initial conditions be as follows:

$$
u(x, 0)=f(x),\left.\quad \frac{\partial u(x, t)}{\partial t}\right|_{t=0}=F(x)
$$

Show that the solution is expressed as follows:

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} F(y) d y
$$

Question 2

(1) Answer the following questions regarding linear independence / dependence of a vector.
(i) Find the value of the real number s when the following two vectors are linearly dependent.

$$
\boldsymbol{a}_{1}=\binom{4}{10-2 s}, \boldsymbol{a}_{2}=\binom{5+s}{12}
$$

(ii) Answer whether the following three vectors are respectively linearly independent or dependent. Also state the reason for your answer. In addition to that, when the three vectors respectively represent a position of a point in the three-dimensional space, briefly indicate the positional relation among those three points.

$$
\boldsymbol{b}_{1}=\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right), \boldsymbol{b}_{2}=\left(\begin{array}{r}
0 \\
5 \\
-2
\end{array}\right), \boldsymbol{b}_{3}=\left(\begin{array}{r}
-15 \\
15 \\
-14
\end{array}\right)
$$

(2) Find the eigenvalue and the characteristic vector of the following matrices.
(i) $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(ii) $\quad B=\left(\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right)$
(3) A secondary square matrix can be diagonalized when it has two characteristic vectors that are linearly independent. Assume that the matrix B in the item (2)(ii) is diagonalized as follow:

$$
C=P^{-1} B P
$$

Find the matrix P and the diagonal matrix C.
(4) The matrix exponential of the matrix D is defined as follows by using the expansion of the exponential function:

$$
e^{D}=\sum_{n=0}^{\infty} \frac{D^{n}}{n!}
$$

Calculate e^{B} for the matrix B in the item (2)(ii) by using the result of the item (3).

