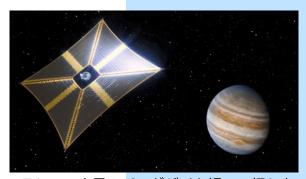
宇宙帆船で太陽系大航海へ乗り出す

ソーラー電力セイルによる外惑星領域探査

ソーラー電力セイルとは?

風を受けて海を走る帆船のように、宇宙空 間で大型の薄い帆(セイル)を展開し、太陽 からの光の粒子を反射する力で推進する方式 を、「ソーラーセイル」といいます。このセ イルに薄膜太陽電池を貼りつけてたくさんの 電力を発電させる方式を、「電力セイル」と

いいます。この2つの 宇宙空間でセイルを広げた セイルを組み合わせる、 日本オリジナルの新し い宇宙船が「ソーラー 電力セイル」です。そ の基本的な技術は, 2010年に打ち上げら れた小型ソーラー電力 セイル実証機「イカロ 2010年6月(分離カメラ) ス」によって実証されました。


電力セイルは、フレーム構造などを持たな い世界最軽量の薄膜発電システムであり、構 造重量の面で大きな利点を有するとともに、 太陽から遠く離れた場所でもその大面積の帆 で探査機に必要な電力を効率よく得ることが できます。光圧を利用するソーラーセイルの 技術とイオンエンジンなどを組み合わせるこ

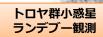
とによって、太陽系大航海へと乗り出す「宇 宙帆船」を実現します。

木星圏探査計画とは?

「イカロス」の成功を受け、ソーラー電力 セイルによる木星トロヤ群小惑星探査計画が 進められています。探査機は、太陽から遠く 離れた外惑星領域でも十分な電力を獲得する ため、数10m級の大きさのソーラー電力セイ ルを展開します。

イオンエンジンや光圧推進を効果的に用い た地球のスイングバイによる加速で木星へと 向かいます。木星へ向かう軌道上で、宇宙赤 外線背景放射の観測、太陽系ダスト分布の観 測、ガンマ線バーストの観測、磁力計による 磁場観測を行います。

そして、木星スイングバイを経て、打ち上 げから約15年後、世界で初めてトロヤ群小 惑星に到達し、ランデブー観測を行います。 その後、子機を着陸させて、小惑星のサンプ ル採取及びその場での質量分析を行います。


どんな新しい技術がある?

ソーラー電力セイルで外惑星領域を航行す るためには、たくさんの技術が必要です。数 10m以上の大きさのセイルを製造する技術、 セイルを収納・展開する手法、軽くて効率よ く発電できる「薄膜発電システム」の開発の ほか、燃料を使わずに自在にセイルの向きや 形状を操る技術などの研究を進めています。

さらに、外惑星領域を直接探査するため、 小惑星へ着陸するための子機の設計や、サン プルをその場で分析する質量分析器、遠方天 体での画像航法技術の検討も進めています。

太陽系大航海時代に向けて

ソーラーセイルは世界中で検討されていま すが、ソーラー電力セイルは日本で独自に進 めています。「イカロス」により世界で初め て、光圧による加速や姿勢制御、電力セイル 技術を実証しました。これらの技術に、「は やぶさ」、「はやぶさ2」で培ってきたイオン エンジン、サンプルリターン技術を組み合わ せることで、外惑星領域の直接探査を達成し、 太陽系大航海時代に向けて世界をリードして いきます。

经过来的的证据

木星トロヤ群

木星スイングバイ

検討中の子機(着陸機)

もっと詳しく知りたい人のために http://www.isas.jaxa.jp/j/enterp/ missions/ikaros/index.shtml

打ち上げ・

セイル展開