



○ 森治, 白澤洋次, 三桝裕也, 津田雄一, 佐伯孝尚,
 尾川順子, 加藤秀樹, 川口淳一郎(JAXA),
 船瀬龍(東大), ソーラーセイルWG

### ソーラー電力セイルとは?

ソーラーセイルのセイル(帆)の一部を薄膜太陽電池とすることで、太陽光を 受けて加速するだけでなく、太陽光発電も同時に行う日本独自のアイデア. →「IKAROS」で世界で初めて実証した.

薄膜太陽電池で得た大電力を用いて、高性能イオンエンジンを駆動すれば、 光子加速と合わせたハイブリッド推進が可能となり、次世代の推進機関として 幅広く応用できる.

→「ソーラー電力セイルによる外惑星領域探査計画」を提案する.



# ソーラー電力セイル探査機

- ・大型ソーラーセイル(面積:3000m<sup>2</sup>, IKAROSの15倍)で光子加速するだけでなく, 高比推力イオンエンジン(比推力:6000~10000秒, はやぶさの2~3.3倍)も駆動し, 外惑星領域で大きな増速量(10km/s規模)を達成.
   ⇒通常の化学推進を用いると燃料が莫大になる.
- ・セイル全体に薄膜太陽電池を貼り付け外惑星領域で大電力(7kW@5.2AU)発電. ⇒その他の発電技術(太陽電池パドル,原子力電池)では,実現が困難.
- ・全体重量1.5tonのスピン方式(0.1rpm以上)となる見通し.



ミッションシーケンス



・2023年ごろ:打ち上げ
・2025年ごろ:地球スイングバイ
・2029年ごろ:木星スイングバイ
・2037年ごろ:トロヤ群小惑星到着 (子機の分離・着陸)
・2039年ごろ:トロヤ群小惑星出発
・2047年ごろ:木星スイングバイ
・2049年ごろ:地球帰還

## 本計画で追求する理学成果



- I.クルージングフェーズ
  ①赤外線背景放射の掃天観測
  ②黄道光の立体的観測・分光観測
  ③太陽系ダスト分布のその場計測
  ④小惑星帯フライバイ観測
  ⑤ガンマ線バーストの偏光観測
  ⑥木星磁気圏観測
  I.ランデブーフェーズ
  ⑦トロヤ群小惑星の探査
  ⑧トロヤ群小惑星のサンプル、 小惑星帯以遠のダスト採取
- ※③、⑤はIKAROSオプション機器のALDNとGAPで事前実証 宇宙創成初期に形成された第一世代の星を調べる 小惑星帯・短周期彗星・カイパーベルト帯などからの ダストの生成率や軌道進化に関する理解を深める 探査機一地球間の距離を利用して発生方向を特定 海外の木星探査機との同時観測

太陽系形成論における巨大惑星の軌道移動の解明

# 本計画で実証する新規技術

| 大型膜構造物の展開・展張              | ••••             | 大面積(3000m <sup>2</sup> ), 熱融着膜                      | 柔軟構造物・デオービット  |
|---------------------------|------------------|-----------------------------------------------------|---------------|
| 薄膜太陽電池システム                | ···• <b>&gt;</b> | 軽量・大電力(650W/kg, 7kW@5AU)<br>反り防止(実効面積減少率5%以内@0.5mm) | 電源一般·有人基地技術   |
| 姿勢制御デバイス                  | •••▶             | 燃料フリー姿勢制御, 耐宇宙環境性向上                                 | 姿勢制御技術        |
| 低推力推進系による軌道操作             | ••••             | 光子推進と電気推進のハイブリッド航行                                  | 航法誘導制御技術      |
| 高比推カイオンエンジン               | ···•             | 高比推力(6000~10000秒)<br>長寿命(運転時間40000時間)               | 宇宙推進一般        |
| 低温2液推進機関                  | •••▶             | 低温動作(-50℃)によるヒータ電力節約                                | 宇宙システム・宇宙推進一般 |
| 推進系統合型燃料電池                | ••••             | 低温推進剤による高電力密度燃料電池                                   | 電源一般·有人基地技術   |
| 膜面フェーズドアレーアンテナ            | ••••             | 遠距離高速通信技術                                           | 宇宙通信          |
| USO· <b>ΔVLBI</b> 軌道決定·航法 | ••••             | 遠距離高精度軌道決定技術                                        | 深宇宙航行技術       |
| サンプルその場分析                 | ••••             | その場質量分析                                             | サンプル分析技術      |
| ランデブー・ドッキング               | ••••             | 子機の分離・再結合                                           | 航法誘導制御技術      |
| 超高速リエントリー                 | ••••             | 超高速突入(13~15km/s)                                    | 超高速减速技術 6     |

# 本計画の主な特徴

- ・世界初の光子推進と電気推進のハイブリッド推進
- ・世界最高性能のイオンエンジン
- 世界初の外惑星領域往復
- ・世界最高速度の地球帰還カプセル
- ・世界初の小惑星帯以遠での赤外背景放射観測
- ・世界初のトロヤ群小惑星探査
- ・世界初のトロヤ群小惑星サンプル採取
- ・世界初の小惑星帯以遠のダスト採取

## 年次計画案

### 2020年代初頭の打ち上げを目指す. 2015年度中のミッション提案(MDR実施)に向けて, システム設計・要素技術研究を実施中.

#### く研究・開発>

| 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
|------|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |      |
|      |      | WG活動 |      |      |      |      |      |      |
|      |      |      | プリプロ |      |      |      |      |      |
|      | AMDR |      |      |      |      |      |      |      |
|      |      | AMDR |      |      |      |      |      |      |
|      |      |      |      |      | FM制作 |      |      |      |
|      |      |      |      |      |      |      | 総合試験 |      |
|      |      |      |      |      |      |      |      |      |

#### <打ち上げ・運用>

| 2023                                                                                  | 2024 | 2025 | 2026 | 2027        | 2028        | 2029     |          | 2037 | 2038 |
|---------------------------------------------------------------------------------------|------|------|------|-------------|-------------|----------|----------|------|------|
|                                                                                       |      |      |      |             |             |          |          |      |      |
|                                                                                       |      |      |      |             |             |          |          |      |      |
| <ul> <li>▲打ち上げ</li> <li>▲地球スイ</li> <li>(対象天体</li> <li>ングバイ</li> <li>により前後)</li> </ul> |      |      |      | ▲木星<br>ングバー | スイ<br>イ<br> | ▲/<br>到疗 | 小惑星<br>着 |      |      |
|                                                                                       |      |      |      |             |             |          |          |      |      |

# 計画策定の前提

- ・ソーラー電力セイル技術以外にも、今後の深宇宙探査に必須となる 技術を併せて実証したい、技術的制約を踏まえながら、理学成果も 最大限追求し、太陽系科学、天文学、宇宙物理学の大きな進展に 寄与したい。
- ソーラー電力セイルを用いて初めて実現可能なミッションとしたい.
   トロヤ群小惑星ランデブーのみ(サンプル採取は実施しない)
   米国提案型:化学推進系と太陽電池パネルの組み合わせ
   メインベルトサンプルリターン

はやぶさMK2型:イオンエンジンと太陽電池パネルの組み合わせ

・往路をフルサクセス、復路をエクストラサクセスとしたい. 片道約10年であるため、復路を保証するのは厳しいが、 最新の静止衛星の寿命は15年であり、必ずしも不可ではない.

## ミッション解析状況

- 木星スイングバイ:活用する or 活用しない
   直接軌道でも、年数は変わらない(低推力のため)
   木星スイングバイによって燃料を減らせ、軌道傾斜角も変更可.
   帰還:親機 or 子機(電気推進) or 子機(化学推進)
- 子機は、電気推進だとシステム重量大、化学推進だと燃料重量大 親機のクルージング燃料は往復で200kg以下
  - →復路の燃料はバックアップにもなる.
- •着陸:子機 or 親機
- 親機の場合, 燃料重量大. サンプリング(伸展マスト等)も困難. 子機の場合, サンプルの引き渡しが課題.

ミッション案

- •フルサクセス:子機でサンプリングして,その場分析を行う.
- ・エクストラサクセス:親機にサンプルを渡して,地球に帰還し分析する.

候補天体

#### ·条件

- システム重量:1.5ton(H2A202で打ち上げ)
- イオンエンジン電力:4kW@5.2AU(セイル面積:3000m<sup>2</sup>)
- 打ち上げ:2022年~2024年
- 小惑星直径:80km以上(少なくとも50km以上)
- 小惑星滞在期間:1年以上
- イオンエンジン運転時間:40000時間以内

### •候補天体

- 第一候補: Cebriones (81.84km, L5)
- 他の候補: Thersites, Halaesus(いずれも, 50km以上, L4)
- ※ これらについて, 観測キャンペーンを実施中. 2013年12月~2014年7月

## 軌道例(往路)

### <u> 地球スイングバイ → 木星スイングバイ → 小惑星到着</u>



## 軌道例(復路)

### <u>小惑星出発 → 木星スイングバイ → 地球帰還</u>



子機による着陸

- ・子機は、1x1x1m、200kg程度.
- ・電力を一次電池で供給する.
- ・伝搬遅延が大きいため自律的に障害物回避,着陸,サンプリングを行う。
- ・高度3000km~1kmにおいて,最大100m/sの高速降下を行い,急減速した後, 高度1km~地表において1m/sの低速降下に移行する.



子機によるサンプリング

子機は脚を有さず、RCSにより数sec~数十secの瞬間的なタッチダウンを行う。
 pneumaticドリルとコンベックステープを組み合わせた方法を検討する。
 タッチダウンの瞬間にN<sub>2</sub>を噴射することにより、小惑星表面を掘削し、
 地中のサンプルを質量分析器に導入する。
 親機とランデブーした後、コンベックステープを伸展し、サンプルを帰還カプセルに挿入する。

・バックアップとして弾丸によるサンプリングも検討する.



## その場質量分析システムの概念



まとめ

| 探査機              | 打ち上げ        | メインエンジン                  | 探査対象                                 |
|------------------|-------------|--------------------------|--------------------------------------|
| はやぶさ             | 2003年       | イオンエンジン                  | イトカワ(S型)                             |
| IKAROS           | 2010年       | ソーラーセイル                  | (金星フライバイ)                            |
| はやぶさ2            | 2014年<br>予定 | イオンエンジン                  | 1999 JU3(C型)                         |
| ソーラー電力<br>セイル探査機 | 2022年<br>想定 | 大型ソーラーセイル<br>高比推カイオンエンジン | トロヤ群小惑星(D型)<br>クルージング観測<br>(木星フライバイ) |

はやぶさやIKAROSで実証した技術を発展させて、日本独自の ソーラー電力セイルによる外惑星領域往復探査技術を確立し、 将来の太陽系探査を日本が先導する.

IKAROSミッションシーケンス



冬眠モードへの移行



残推薬がわずかとなったため、2011年12月1日以降ガスジェットによる 姿勢制御を実施せず、フリー運動とした.

太陽角が増大し60deg以上となったことで,必要な電力が確保できなくなった. ↓ 2011年12月末までに冬眠モード(搭載機器シャットダウン)に移行した. 19

探索ミッション(1回目)



#### 冬眠モード移行後のIKAROSの姿勢運動の予測

IKAROSはソーラーセイルによって姿勢・軌道が変化する.

冬眠明けに再び追跡するためには、冬眠中も含めた正確な挙動の予測が必要. これまでのデータを用いて、2012年9月6日にIKAROSの電波の捕捉に成功した. IKAROS冬眠明けからしばらく経過.

- フライトデータと予測値はほぼ一致しているが,若干の誤差がある.
  - これがIKAROS探索に時間を要した一因.
  - この誤差をなくすよう姿勢運動モデルを修正した.

探索ミッション(2回目)



#### 修正モデルを用いたIKAROSの姿勢運動の長期予測

IKAROSは2012年11月までに2回目の冬眠モードに移行した. 上記データを用いて, 2013年6月20日にIKAROSの電波の捕捉に成功した. 2回目の冬眠明け直後.

姿勢運動モデルの修正の効果が確認できた.

### 今後の運用方針

- ・2013年3月にプロジェクト終了確認会を開催し、IKAROSデモンストレーション チームは解散した.今後は、IKAROS運用チーム(ISAS所属)として運用を実施.
- ・姿勢の予測データを踏まえると次回の冬眠明けは、2014年4月ごろ、
   地球最接近は2016年8月ごろ。
- 今後,挑戦したいミッションは以下の通り.
   運用技術の向上

スピンモジュレーションを除去したデータデコード(通信系関係者と共同で実施) セイル・薄膜太陽電池の性能評価

- 2011年秋以降のカメラ画像データ(メモリに保存済み)の取得
- 2011年夏以降の薄膜太陽電池発電データの取得

IKAROSの運動&状態確認

姿勢・軌道, HK(各種温度等)データの取得

### 軌道運動

今後,徐々に地球距離が減少し、テレメトリ取得の可能性が高まる。
 ・地球に最接近するのは、2016年8月となる(最接近距離:1千万km程度)。



太陽·地球固定系

姿勢運動

スピン軸予測 (2011/12/24~2017/10/30)



スピンレート予測 (2011/10/18~2017/10/30)



### 発表リスト

P2-145: ソーラー電力セイルによる木星トロヤ群探査 ミッション検討

P2-146: ソーラー電力セイルによる木星トロヤ群小惑星への着陸探査と試料採取:

科学目標,技術検討,候補天体探索

- P2-147: ソーラー電力セイルによる科学観測 クルージング編
- P2-148: ソーラー電力セイルによる木星トロヤ群探査に向けた大型セイル設計・製作
- P2-149: ソーラー電力セイル用高比推力イオンエンジンの研究開発
- P2-150: ソーラー電力セイルへの適用を目指した推進系統合型燃料電池の評価
- P2-151: ブーム・膜複合宇宙展開構造の研究開発
- P2-152: 次期ソーラー電力セイルに向けた大型膜面の収納・展開・展張法の検討
- P2-153: ソーラー電力セイル用薄膜軽量発電システムの開発III
- P2-154: ソーラー電力セイルによる木星圏サンプルリターン計画にむけた超高速再突入 カプセルの研究開発
- P2-155: ソーラー電力セイル用膜面フェーズドアレーアンテナのためのアクティブ集積 アンテナアレーの試作