

はやぶさ2の科学と技術

はやぶさ2プロジェクトチーム 國中 均 (発表:稲場典康)

I. ミッション概要と対象小惑星

Launch 2014 Earth Swing-by Dec. 2015 Asteroid (1999JU3) Arrival June. 2018

•asteroid remote sensing •small rovers and lander release •multiple samplings e impactor release

crater forming

Earth Return Dec. 2020

Departure Dec. 2019

2

はやぶさ2 探查対象天体: (162173) 1999 JU3

軌道:地球接近小惑星(NEA) スペクトル:C型(含水鉱物・有機物含む) 直径:0.9 km(ほぼ球形) 自転:周期 7.62時間(軸の向きは未確定) 軌道進化:メインベルト内側のv₆共鳴 → NEA

a = 1.19 AU, *T* = 1.30 yr *e* = 0.19, *i* = 5.88°

 $H_v = 19.2, P_v = 0.05$

Viras (2008), Sugita+ (2012), Abe+ (2008) This document is provided by jAXA.

Ⅱ. ミッション要求と成功規準

理学目標1	C型小惑星の物質科学的特性を調べる。特に鉱物・水・有機物の相互
	作用を明らかにする。
	【ミニマム】近傍観測による知見,【フル】回収サンプルの分析
理学目標2	小惑星の再集積過程・内部構造・地下物質の調査により、小惑星の形
	成過程を調べる。
	【ミニマム】近傍観測による知見、【フル】人エクレータ生成による知見
工学目標1	「はやぶさ」で試みた新しい技術について、ロバスト性、確実性、運用
	性を向上させ、技術として成熟させる。
	【ミニマム】小惑星ランデブー,【フル】サンプル採取,ローバー着陸,カプセルリエントリ
工学目標2	衝突体を天体に衝突させる実証を行う。
	【ミニマム】人エクレータ生成、【フル】特定領域にクレータ生成
	【エクストラ】クレータからのサンプル採取

Ⅲ. 理学目標と達成に向けた検討状況

- 1. 天体スケールでの材料物質の非一様性を把握する
 - 原始惑星系円盤内での物質混合過程の理解
 - 表面に「母天体の異なる深さからの破片」が分布?
- 2. 太陽系初期の鉱物・水・有機物相互作用を解明する
 円盤や母天体での水質変成/熱変成を読み出す
 地球にもたらされた生命起源物質の推定
- 3. 惑星の衝突破壊・合体過程を実証的に推定する
 惑星の元となった微惑星のアナログ天体として探査
 大規模衝突実験(SCI)→「微惑星」の力学特性を評価
- 4. 総合的な年代学によって天体履歴を復原する
 - 天体力学/観測統計と放射性年代学の統合
 - メインベルトから地球近傍への小惑星供給過程の定量化

2. 太陽系初期の鉱物-水-有機物相互作用

小惑星で起こる鉱物-水-有機物相互作用(鉱物が場を提供し、水が化学反応を 促進し、有機物が多様化する)によって生命材料物質としての進化を遂げる

15.2

18.5

15.2

3.3

2.4

0.3

-1.0

水

質変成

プ

セ

ス の

程

度

太陽系最古の水質変成 (酸化物-硫化物混合組織)

Sakamoto+ (2007) 炭素質隕石に含まれる nmスケール膜状有機物

Nakamura-Messenger+ (2006)

隕石中アミノ酸(イソバリン) の左手過剰 Lee (%)

C1

CM2

CM2

C2

CR2

CR2

隕石

Orgueil

Murchison

LEW90500

LON94102

QUE99177

EET92042

原始惑星系円盤に観測される 有機分子(中間赤外)

Glavin & Dworkin (2009): Glavin+ (2011)

Yabuta+ (2012)

(H₂O, OH基)

これらの隕石学 から得られつつ ある相互作用を 小惑星試料より 実証する →分析体制整備

This document is provided by jAXA.

3.惑星の衝突破壊・合体の実証的推定

IV. 探査機の開発状況

1. 一次噛合せ試験
■ 2013.1月~6月初め

2. 単体環境試験■ 2013.6月~11月

3. フライトモデル総合試験
■ 2013.10月末開始。実施中

This document is provided by jAXA.

10

衝突装置(SCI)の開発

- 飛翔性能確認試験(H25.10月)
- フライトモデルと同時製造した火薬に振動試験等フライト品と 同等の環境に晒した後、実爆。ライナの形状、速度、軌跡等 の飛翔性を確認。
- 100m先のバックストップ(土砂ターゲット)に打ち込み。

試験場全景

バックストップへの衝突状況

自動化自律化運用検証ツール (運用シナリオエディタ)の整備

- 1. 初号機のタッチダウン運用時の問題点
 - 想定外のイトカワへの「自由落下」(不適切な閾値設定による退避マヌーバの予期せぬ自動中止)
 - 弾丸の不発射(意図せぬ「発射禁止コマンド」の混入)
- 2. 問題の本質
 - 複数機器の協調動作・並列動作の運用シナリオの作成及び検証の困難さ
- 3. はやぶさ2での解決アプローチ
 - 社内の「情報化基盤技術研究」の成果を活用。
 - ■「時間指定コマンド」と、「イベント指定コマンド」混在下での、①状態遷移の可視化、②高速状態遷移シミュレータによる動作検証⇒「運用シナリオエディタ」
- 4. FY24の活動
 - 試作した状態遷移シミュレータにより、小惑星へのタッチダウンシーケンスの手順確認。確認した手順をFM総合試験で実機に対し実行。

アメリカ・ヨーロッパの計画

	探査す	る小	い惑星	の	比較
--	-----	----	-----	---	----

	(162173) 1999 JU3	(101955) Bennu 1999 RQ36	(341843) 2008 EV5
タイプ	С	В	С
大きさ	870 m	500 m	400 m
形状	ほぼ球形	spinning top	oblate spheroid
	2018-06-01		
自転周期	7.6 h	4.3 h	3.7 h
自転軸	?	obliquity : 180°	RA/Dec : 77.6/- 82.3
アルベド	0.05	0.03 – 0.06	0.12
備考		レゴリス多	