親機子機分離機構を備えた月惑星探査機着陸機構の2次元シミュレーション Two-Dimensional Simulation of Lunar/Planetary Exploration Spacecraft Landing Mechanism Using BESM

原 進 (名大) 〇石川 凌 (名大) 大槻 真嗣 (JAXA) 渡辺 翼 (名大) 佐伯直亮(名大) Susumu HARA*, Ryo ISHIKAWA*, Masatsugu OTSUKI**, Tsubasa WATANABE* and Naoaki SAEKI* *Nagoya University, **ISAS/JAXA

This study discusses a lunar/planetary spacecraft landing mechanism using energy conversion. A part of the authors has already proposed Base-Extension Separation landing Mechanism (BESM) and its effectiveness was confirmed in one-dimentional simulations and experiments. This study shows two-dimensional response analysis using BESM. The effectiveness of BESM for falling to slopes is verified.

Background

Simulation results

Explorations of the lunar attract attention

Doquiromon	To realize soft landing on severe regions
Requiremen	for example slopes or steps.

Previous methods and their problems

Problems High rebound Impossibility to reuse Complex control

BESM

Base-Extension Separation landing Mechanism

Red: gear Green: base Blue: extension Bold: center of gravity Thin: right tip Dashed: left tip

の着地面への着陸において、親機の転倒を防ぐことができた。 30° BESM can prevent from tipping for falling to 30° slope.

Ground angle and initial height change.

Models for simulation

	m_b	Base mass [kg]	1.9
	m_e	Extension mass [kg]	0.1
	W _b	Width of the base [m]	0.15
	h_b	Base lower length [m]	0.11
	h_{ub}	Base upper length [m]	0.04
	m_{g}	Gear mass [kg]	0.4
	Wg	Width of the gear [m]	0.3
	h_g	Gear lower length [m]	0.216
	h_{ug}	Gear upper length [m]	0.108
/	$m_{\rm lg}$	Lower gear mass [kg]	0.05
	W _{lg}	Width of the lower gear [m]	0.15
	k_{sp}	Stiffness of springs [N/m]	220
	W _{sp}	Width between springs [m]	0.15
	l_{st}	Stroke length [m]	0.16
	k_{v}	Vertical stiffness of ground [N/m]	1667
		Vertical damping of ground [N·s/m]	556
	C _p	Parallel damping of ground [N·s/m]	556
	μ_p	Parallel dynamic coefficient of friction of ground [-]	0.8
	ϕ	Ground angle [°]	-30
	k_{bg}	Stiffness of the restriction between the base and gear [N/m]	1.0×10 ⁴
	C _{bg}	Damping of the restriction between the base and gear [N·s/m]	100
	l_{bg}	length between the two couples of spring and damper [m]	0.08
	k _{re}	Stiffness of the restriction between the extension and rail [N/m]	1.0×10 ⁴
	C _{re}	Damping of the restriction between the extension and rail [N·s/m]	100
	h_0	Initial falling height [m]	0.5
	g	Acceleration of gravity [m/s ²]	9.8
		•	•

- 全ての条件で、親機の転倒を防ぐことができた.
- BESM can prevent from tipping under all conditions.
- Acceleration becomes high under small ground angle conditions.
- Energy reduction becomes large under large ground angle conditions.

Ground stiffness and ground damping change.

- 一部を除くほぼ全ての条件で, 親機の転倒を防ぐことができた.
- BESM can prevent from tipping under most of conditions.
- Acceleration almost depends on only ground damping.
- Efficiency to prevent tipping may relate to efficiency of energy reduction.

Conclusion

BESM has robustness for change of ground conditions and initial height.

- Efficiency to prevent from tipping may relate to efficiency of energy reduction.
- Acceleration of the base becomes high under conditions that ground angle is small.

References

- [1] Saeki, N., Hara, S., Otsuki, M., Watanabe, T., and Yamada, Y., Base-Extension Separation Mechanism for Planetary Exploration Spacecraft Landing, *Proceedings of the 29th International Symposium on Space* Technology and Science (29th ISTS), (2013), 2013-d-27.
- [2] NASA. "NASA Mars Pathfinder Air Bag Landing Tests". NASA Home (on line), available from < http://www.nasa.gov/centers/glenn/about/history/marspbag.html >, (accessed 2013-05-23).
- [3] Rogers, W. F., Apollo Experience Report Lunar Module Landing Gear Subsystem, Technical Report TND-6850, NASA (1972).
- [4] NASA. "NASA The Sky Crane Solution". NASA Home (on line), available from
 - < http://www.nasa.gov/offices/oce/appel/ask/issues/47/47s_sky_crane.htm >, (accessed 2013-05-23).

[5] 横山隆明,月惑星砂地盤への着陸衝撃力算定手法に関する研究,総合研究大学院大学博士論文, (2008), pp. 26-36.