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Two-Dimensional Simulation of Lunar/Planetary Exploration Spacecraft Landing Mechanism Using BESM
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This study discusses a lunar/planetary spacecraft landing mechanism using energy conversion. A part of the authors has already proposed Base-
Extension Separation landing Mechanism (BESM) and its effectiveness was confirmed in one-dimentional simulations and experiments. This study
shows two-dimensional response analysis using BESM. The effectiveness of BESM for falling to slopes is verified.
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Models for simulation
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The V. C. M. is omitted.

Base lands softly.
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30° DEMEAANDBEICENT, HEOEEZHCIENTSE:.

BESM can prevent from tipping for falling to 30" slope.

Ground angle and initial height change.
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® ETHOEHT, REDEBEZIHCIENTEL:.
BESM can prevent from tipping under all conditions.

1 Acceleration becomes high under small ground angle conditions.
Energy reduction becomes large under large ground angle conditions.

Ground stiffness and ground damping change.
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BESM

[1]
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[4]

mb Base mass [kQ] 1.9
M, | Extension mass [kg] 0.1
Width of the base [m] 0.15
Base lower length [m] 0.11
Base upper length [m] 0.04
Gear mass [k(] 0.4
Width of the gear [m] 0.3
Gear lower length [m] 0.216
Gear upper length [m] 0.108
Lower gear mass [kg] 0.05
Width of the lower gear [m] 0.15
Stiffness of springs [N/m] 220
Width between springs [m] 0.15
Stroke length [m] 0.16
Vertical stiffness of ground [N/m] 1667
Vertical damping of ground [N+-s/m] | 556
Parallel damping of ground [N+s/m] | 556
Pargllgl dynamic coefficient 08
of friction of ground [-]
Ground angle [ ] 30
k| Sinoss of e restictiombetueen | o1
c, Damping of the restriction between 100
g | the base and gear [N*s/m]
] Iength between the two couples of 0.08
bg | spring and damper [m]
k| gumessof e esirton btween | 4 1
c. Damping qf the restr?ction between 100
the extension and rail [N+s/m]
ho Initial falling height [m] 0.5
g Acceleration of gravity [m/sz] 9.8

[5]

—HZRIFIFZETOEHT, FEOEEZHCIENTES:.

BESM can prevent from tipping under most of conditions.

Acceleration almost depends on only ground damping.

Efficiency to prevent tipping may relate to efficiency of energy reduction.

has robustness for change of ground conditions and initial height.
Efficiency to prevent from tipping may relate to efficiency of energy reduction.
[0 Acceleration of the base becomes high under conditions that ground angle is small.
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