SOLAR-C太陽観測におけるコンタミネーション防護の検討

原 弘久1, 坂東貴政1, 宮崎英治2, 木本雄吾2, 浦山文隆3 1国立天文台, 2JAXA, 3宇宙技術開発

<mark>概要:SOLAR-C開発時に必要とされ、「ひので」(SOLAR-B)開発時には自身の実験を通しては確認していない分子コンタミネ-</mark> 制御項目に、光学面に対する紫外線照射下での汚染物質の付着率上昇と付着物質の黒化というものがある。 軌道上に展開される 宇宙望遠鏡に対して最も明るい紫外線源は太陽であるが、この汚染要因は望遠鏡の開口部を太陽に向ける太陽宇宙望遠鏡だけに 強く現れるものである。 この項目の基礎データを取得し、汚染による光学系の劣化進行度を定置的に評価できるようにするため、 国立天文台内に実験設備を準備して実験を実施している。ここでは、2013年までに得られた実験結果について報告する。また、 コンタミネーションによって劣化した「ひので」可視光望遠鏡のスループットが2011年より改善している点について、衛星軌道上の原子 状酸素起源の浸食効果の役割について調査を進めている。

ひので可視光望遠鏡の感度劣化

ひので可視光望遠鏡のスループット変化を図1に示す。この図から読 み取れることは、

- ①観測初期から長期にわたって感度が劣化していること ②感度劣化は短波長側ほど顕著であること ③2011年より感度が回復している時期があること
- である。①②は感度劣化過程、③は感度回復過程。

- ①-③の要因としては、以下のようにが考えられている。
- ① 分子状コンタミネーションが紫外線照射下で光学面に過剰に 蓄積されて大きな吸収を発生
 - ② 蓄積された汚染物質の吸収係数が短波長側で大
 - ③ 光学面に蓄積された分子状コンタミネーション物質が、太陽
- 活動の上昇により数密度が増加した原子状酸素により浸食 これらの理解のために進めてきた実験と検討内容を報告する。

原子状酸素の浸食による感度劣化の回復 感度の回復

太陽活動の上昇により、一度劣化した光学装置の感度が回復する ことが報告。原子状酸素(AO)の浸食効果と理解(Nimbus 6,7の例:図5)。 A.「ひので」の劣化回復を説明可能か? B.AO浸食効果のない軌道を想定するSOALR-Cでは、汚染制御は

さらに厳しくなるのか? これら2点の疑問について回答を得たい。

参考文献 1. Tribble,

- Tribble, A. C. et al.: Contamination Control Engineering Design Guidelines for the Aerospace Community, NASA CR-4740, 1996.
- Mauldin, L. E., III et al.: Optical Degradation Due to Contamination on the SAGE/SAGE II Spacecraft 2
- Mandun, E. E., Iff et al. Optical Degradation Due to Containination on the SACE/SACE in Spaceciant Instruments, Proc. of SPIE, Vol. 338, 1982, pp.58-64 Arnold, G. S., and Luey, K.: Photochemically Deposited Contaminant Film Effects, SPIE, 2864, 269, 1996 浦山文隆氏か:「ひので」可視光磁場望遠鏡におけるコンタミネーション評価, 日本航空宇宙学会論文集。
- 第56巻、第658号, pp. 543-550, 2008. 田村友範ほか: Solar-B 可視光望遠鏡で使用する複合材料及び接着剤のアウトガス放出に起因する 5
- 6
- 田内友和にが、3011-5 切式上連続に使用する核さ何れない医者用のノフロス(Mullice) コンタミネーションの定量的評価(1)、国立天文合戦(4)49-58,2002 田村友範ほか、SOLAR-B可視光、X線望遠鏡の開発・試験における汚染評価とフライト部品のペーキン グ結果報告、国立天文合戦(8,21-28,2005, 坂東貴政ほか:紫外線照射下での光学面へのアウトガス付着実験、第55回宇宙科学技術連合講演会、
- 2B03, 2011 8 浦山文隆氏か:紫外線照射下での光学面へのアウトガス付着実験(その2) 第57回宇宙科学技術連合講

太陽観測に特徴的な汚染

感度劣化の進行

太陽観測用宇宙望遠鏡に顕著に現れる分子コンタミネーション過程: ・紫外線照射下による分子状汚染物質の光化学反応による蓄積過程 ・紫外線照射下での蓄積物質の黒化過程による吸収係数の増大

上記についてSOLAR-B時期では、海外で調べられた物質特性を参考にしてこの 効果をモデルに組み込んで評価。SOLAR-Cの望遠鏡では、NUV領域の紫外線 領域(~280nm)での観測も視野に入っているため、この効果の影響度をよく理解 しておく必要がある。この過程は非低温面でも発生する。

UV照射下での光学面の汚染実験(試験配置は図2を参照)

アウトガス発生装置 アウトガスサンプル (光学面劣化の候補物質2つ) 真空槽内のアウトガス量の測定: TQCM-B(-80℃) UV光源

: Effusion cell により、サンプルを80℃に加熱 ①低アウトガス シリコーン接着剤(DC6-1104) ②フタル酸ジエチルヘキシル(DEHP) UVに照射される光学面(~30°C): MgF,板、TQCM-A(水晶振動子センサ) 500Wキセノンランプ, 30W重水素ランプ

図2:UV照射下でのコンタミネーション測定装置

実験結果

- ・UV光が照射されないと、 MgF_2 板・TQCM-Aセンサ面上に物質蓄積はなし。
- ・UV光の照射が開始されると TQCM-Aセンサ面上に物質の蓄積が確認。 ・分光光度計によるMgF2の透過率測定から光学面へ付着した物質による
- 透過率劣化が確認。
- ・UV光照射による付着率の増大はDEHPのほうがDC6-1104より遥かに大 (「ひので」可視光望遠鏡の劣化は、DEHPによるとしたほうが理解が容易)。
- ・TQCM-Aセンサ上への付着物質量とMgF,透過率変化より蓄積物質の 吸収係数を算出(図3):汚染数学モデルへの入力データが取得可能に。
- ・物質の付着率はVUVランプのほうが高く、吸収係数はXeランプの照射の ほうが大 (VUVによる光化学反応、NUVによる付着物質の黒化:図4)。

- まとめ ・アウトガスが飛び交う空間に設置された光学面に紫外線照射をしたとき、 光化学反応により光学面が劣化することを確認し定量化して測定。
- ・紫外線照射下で付着したサンプル物質の吸収係数が実測可能となった。
- ・光化学反応はVUV領域で顕著であり、付着アウトガス物質の紫外線による
- 黒化過程での吸収係数の増大はNUV 領域が寄与している。

今後の課題

- ・ひので可視光望遠鏡の劣化を定量的に説明可能かを評価する。
- ・SOLAR-Bで使用した構造材料サンプル程度の量では、低アウトガス材料 のため紫外線照射下での付着率測定は困難。評価方法を検討中。
 - This document is provided by jAXA.