P2-50

リスク低減フェーズ#2:SPICAの指向擾乱管理に関わる要素技術試作評価結果

巳谷真司ª, 坂井真一郎^b, 村上尚美ª, 春木美鈴ª, 山脇敏彦ª, 水谷忠均ª, 小松敬治^b, 片坐宏一^b, 塩谷圭吾^b, 川勝康弘^b, 中川貴雄^b, SPICAプリプロジェクトチーム

^a Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
^b Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku Sagamihara, Kanagawa 252-5210, Japan

概要

SPICAは、現在リスク低減フェーズ#2の段階にあり、ミッションの成功に不可欠な要素技術のハードウェア試作を中心とした活動が実施されている。本報告では、擾乱抑制技術 に関するRMP#2活動進捗を述べる。SPICAでは軌道上トラスで望遠鏡と観測機器を支持し、熱と擾乱の両方の侵入を防ぐ設計が取られる。その軌道上トラス機構の重要な部品である FRPバネを試作し評価した。また、台座上の冷凍機擾乱を遮断するアイソレータを試作予定である。広い温度範囲(-65~-10 degC)で6自由度全てにおいて-40 dB(15Hz帯域)低減 するBBM設計が完了した。一方、アイソレータを挿入しても、ジュールトムソン(JT)冷却配管の振動伝達はリスクとなる。したがって、JT冷却配管ダミーを製造し、その伝達率を 評価する。冷凍機ドライバハーネスも同じ理由で評価される。さらに、超高精度(5ミリ秒角)と超低発熱(1 mW)のティップチルトミラー(TTM)のBBMが試作され、低温環境で 評価された。結論として、すべての試作評価は概ね期待通りの成果を示しており、結果を設計解析に反映することで、指向擾乱の不確定性のリスクを減らすことが可能になっている。

<u>RMP#2の中間結果</u>

1. 機器擾乱の測定

1KJTの冷凍機の低周波擾乱を、RMP#1と同様に空気浮上式テーブルを用いて計測し、計測限界スペクトルと同程度の擾乱レベルであることを確認した。また同様にリアクションホイール(RW) Type L-Aと

チューンドドライジャイロ(TDG) Type III-Cの低周波も計測した。

図 空気浮上装置による、1KJT 冷凍機の擾乱計測時の様子

トラス分離機構とアイソレータの設計結果か らFEモデルを反映した。冷凍機台座や配管取 り付け位置等を設計進捗に応じモデル更新し た。その結果、195Hz共振点を避ける台座設 計と、ホイール回転数運用制限が今後必要で あることが分かった。 JT配管、ハーネスの伝達率のFEM反映を今後 実施する。

項目

機能

性能

図 アイソレータ挿入箇所

3. 振動遮断性能の検証

アイソレータの詳細設計を実施し、最新の冷凍機台座構成で6自由

度全てで-40dB (@15Hz)の力伝達低減可能な設計結果を 得た。製造と実証までを含めて3月までに性能実証をする計 画である。

	アイソレータの共振点において、共振倍率 Q<3とする。
昷 度範囲	動作温度範囲; -65~-10℃ 非動作温度範囲; -30~60℃
寸法	冷凍機台座取付け部に適合
質量	アイソレータシステムとして30Kg以下
讨環境性	ロンチロックを使用する

表 アイソレータ仕様

受動式アイソレータとする

要求仕様

機械式冷凍機が発生する擾乱を「6自由度

全てで」15Hzにおいて1/100以下とする。

4. 擾乱管理事例の調査

ひので不明擾乱について、搭載FRIGのホワイトノイズが3倍程度に増えると、軌道上で一 定時期に観測された指向変動(0.1秒角、0.1Hz)が生じることを、簡易解析にて確認した。 実搭載ソフトウェアシミュレータでも概ね傾向を再現できた。

- Transmissibility from center of cooler plate to spacecraft interface
- Diagonal of 6x6 transfer function matrix shown
- Max gain at 15 Hz is 0.0083, Max isolation mode Q is 2.54
- Flex modes of cooler plate are obvious starting at ~ 20 Hz
- 0.5% damping assumed on flex modes

図 カ/カ伝達率解析結果(-45℃ノミナル)

<u>5. 制振機構(TTM)の開発</u>

図 試作評価したTTM駆動機構

(円筒内部

表 極低温試験結果

	項目	要求值	確認値	判定	備考
1	消費電力	1 mW/2軸 @4.5K	4.4mW/1軸 @10K 以下 (8.8mW/2軸)	否	駆動回路調整後の常温測定で の電力値を、極低温での抵抗 測定値で補正した値。
and the	指向角制御精度	0.15 arcsec (3σ 機械角)	1.8 arcsec 以下 (*計測限界)	(合)	要求値は、光学拡大率30倍で 0.005秒角(3σ)相当
	周波数応答	1Hz (目標10Hz)	1Hz	合	
	オフセット角補正 情報精度	1.5 arcsec (3σ 機械角)	1.8 arcsec 以下 (*計測限界)	(合)	要求値は、光学拡大率30倍で の0.05秒角(3σ)相当
A - BAC	動作範囲	0.025deg(p-p)	0.016deg(p-p)	否	要求値は、光学拡大率30倍で の3秒角(3σ)相当
	減速比	N/A	X軸:1/644 Y軸:1/71.8	N/A	動作範囲の勾配 Y軸は非駆動軸であり参考
	動作温度	4K~10K(性能 維持)	同左	合	
	ミラーサイズ	50mm×75mm	同左	合	
	駆動機構部サイズ	5cm×5cm×10c m(目標)	φ 50.12mm×10 4.92	(合)	ミラー含まず
No. and No.	質量	600g(目標)	419.8g	合	314.2g + モータ/1軸分。 ダミーミ ラー含む

MCS WFC-S / SCI共通設計TTMのBBMを製造 し、極低温環境(<10 K)で試験した結果、正常 に機能することが確認できた。しかし、発熱量 が4.4 mW/1軸という結果となった。逸脱の原 因は、駆動機構部の動作のためのモータ角度変 位トルクが想定より一桁多く必要であったこと である。電力低減策をまとめ、今後の優先課題 を明らかにした。

i his accument is provided by j	jaxa
---------------------------------	------