ILOM計画における地上試験観測用 望遠鏡の水銀皿の開発

Developments of the Mercury pool for In-situ Lunar Orientation Measurements(ILOM) for preliminary observations on the Earth

〇鶴田誠逸¹•花田英夫¹•荒木博志¹•浅利一善¹ 鹿島伸悟¹•宇都宮真²•神谷友裕²

1:RISE月惑星探查検討室/NAO 2:宇宙科学研究所/JAXA

第13回宇宙科学シンポジウム 2013年1月8-9日

ILOM計画

ILOM: In-situ Lunar Orientation Measurement (月面天測望遠鏡計画)

〇計画と目的

月面に光学望遠鏡を設置して星を観測し、 月の回転変動を直接計測することで月の 物理秤動の観測精度をあげ、月の進化と 内部構造の解明を目指す

〇望遠鏡概要

- 極域を想定して写真天頂筒 (PZT(Photographic Zenith Tube))型
- 反射面:水銀皿の水銀面
- 目標分解能:1ミリ秒角

OPZTの特徴

- ・焦点距離をかせげる
- ・若干の傾斜は相殺でき、星像中心がずれない

実験と目的

〇今回行った実験と目的

反射鏡としての水銀皿の試作を行い、 水銀面の面精度や振動の影響などを 計測し、最適な形状を探る ↓ ILOM-BBMを使って地上観測を行い、 特性を検証する

ILOM BBM@岩手大学

水銀面の必要光学的有効径

ILOM-BBM:口径100mm、焦点距離1000mm 望遠鏡視野角:半径0.5°の円形を想定

試作水銀皿(1)

→0.5mm**、**1mm

試作水銀皿(1)

アマルガム生成後

ILOM望遠鏡:1ミリ秒角を達成するには傾斜を ±80秒角以内に保持することが必要

水銀皿に傾斜を与え、干渉縞の変化から水銀面の変化を観察

	0		0				0
水平	+90	+180	+270	水平	+90	+180	+270
	0			0			
+180	+90	水平	- 90	+180	+90	水平	- 90
0	Ø			6		6	6
-180	-270	-180	-90	-180	-270	-180	-90
深さ 0.5mm				深さ 1mm			

±270秒角の傾斜変化では大きな変動は見られない

水銀皿(1):振動の影響による星像の 位置変化(1)

ピンホールを使用して疑似星像を作り、水銀面で反射した像をCCDカメラで観察

星像中心位置変位量:約±2μm

水銀皿(1):振動の影響による星像の 位置変化(2)

詳細な面精度の測定を国立天文台三鷹先端 技術センター(ATC)所有のZygo干渉計で測定

深さ 1mm

揺れが深さ0.5mm より大きい 振動条件では PV=0.5程度も

PV=1.628λ rms=0.105λ

9

水銀皿(1)の有効径

試作水銀皿(2)

ILOM-BBM鏡筒径:120mm

組立を考慮すると水銀皿の 水銀面の径はφ84mmが限 界 →水銀面φ84mmとした

深さ:浅いほど振動の影響が 小さい →0.5mm、0.25mmを 試作

試作水銀皿(2)

水銀皿(2):面精度

ダイナミック干渉計(DynaFiz) ■

(キャノンマーケティングジャパン)

-1.00E-06 -2.00E-06 -3.00E-06 15 17 19 時間(秒)

3.00E-06

2.00E-06

1.00E-06

除振台:±1µm程度の変位

21

23

25

振動(除振台、2012年6月5日13:52:15~13:52:25)

動画撮像ができる

深さ 0.25mm PV=1.427入 rms=0.213入 有効径:φ65mm 有効径φ60mmを得ることができた

深さ 0.5mm PV=1.681λ rms=0.212λ₁₂ 有効径:φ68mm

6.212 6.46

anane (FF 30 APG 33 ange 11.884 1.930 see 3.333 8.454 972e 3.758 8.573 Tagne 11.384 1.738

変位(南北)

水銀皿(2):傾斜による干渉縞の変化

±270秒角の傾斜変化では大きな変動は見られない

水銀皿(2):振動の影響による星像の 位置変化(1)

1秒間隔で連続撮影

13

14

星像中心位置変位量:約±0.5μm

Y座標

水銀皿(2):動画から求めた基台の振動と 星像の変動の関係(1)

深さ0.25mm:動画像から1/30Hzで像を抽出して星像中心を導出

・基台の振動と星像の変動の間には
相関関係はない
・1秒間隔での撮像から求めた星像
中心位置変位と動画から求めた変位の振幅は合っている

水銀皿(2):動画から求めた基台の振動と 星像の変動の関係(2)

深さ0.5mm:深さ0.25mmと同様に星像中心を導出

・深さ0.25mmと同様な結果
・深さ0.5mmの方が振動の周波数が高い

試作水銀皿の問題点

• 水銀面 Φ84mmの試作水銀皿では深さ0.5mmの皿が安定していた

しかし、

- 水銀注入後、表面の汚れを取り除くためにガラス棒で表面を掃いて溝に 落とす
- 汚れと一緒に水銀も溝に流れる
- それが繰り返されるうちに側面にアマルガムが生成される
- そのアマルガムに浸みこむように水銀が徐々に流れ、時間の経過ととも に水銀面の有効径が減少する

側面に生成したアマルガム (水銀面 φ70mmの例)

試験用水銀皿

そこで、対策として・・・

アマルガムのできにくいステンレス材に 銅材を埋め込んで試験 ↓ 数週間経っても流れ出しなし

試作水銀皿(3)

ステンレス(304)を台座として、その台座に 水銀を満たす銅材を埋め込んだ形状の皿 を試作

試作水銀皿(3)

深さ:0.25mm、0.5mm

1度程度の傾きでは流れ出ないことを確認

水銀皿(3):有効径と面精度測定

天文台三鷹のZygo干 渉計で光学的有効径 と、傾斜による面精度 の変化を測定した

光学的有効径:φ62mm

必要有効径φ60mm以 上を得ることができた

SUS-Cu 0.5_00 rms=0.369λ

測定結果の例 : 深さ0.5mm

SUS-Cu 0.5_270 $rms=0.299\lambda$

SUS-Cu 0.5_-270 rms=0.312λ

深さ 傾斜角(秒角)

水銀皿(3):面精度

深さ	0.5 m	IM	0.2	:5mm
秒角	ΡV(λ)	rms(λ)	ΡV(λ)	rms(λ)
0	7.341	0.369	4.117	0.329
90	2.227	0.302	3.428	0.318
180	2.762	0.31	3.397	0.322
270	2.193	0.299	4.41	0.321
180	2.071	0.299	4.068	0.316
90	3.258	0.311	4.329	0.312
0	2.34	0.308	4.514	0.317
-90	2.168	0.303	5.035	0.302
-180	2.168	0.303	4.924	0.307
-270	2.14	0.312	4.525	0.303
-180	2.145	0.302	5.943	0.303
-90	2.068	0.303	1.255	0.23
0	2.02	0.305	7.299	0.312

有効径内面精度:rms=0.3λ

まとめ

ー連の試作・実験の結果、 ILOM地上試験観測用水銀皿 として

- 水銀面直径: φ83mm
- 深さ: 0.5mm(または0.25mm)
- SUSを台座とした水銀皿

を採用することとした

その特性として

- 光学的有効径:φ62mm
- 面精度:rms=0.3λ

が得られた

今後、室内実験で光学系の特性を確認し、 地上観測で性能確認を行う予定

@岩手大学

