はやぶさ2搭載中間赤外カメラTIRの開発状況と科学目標

〇岡田達明1, 福原哲哉2, 田中智1, 田口真3, 中村良介4, 関口朋彦5, 今村剛1, 千秋博紀6, 荒井武彦7, 小川佳子8, 北里宏平8, 出村裕英8, 松永恒雄⁹,長谷川直¹,和田武彦¹,坂谷尚哉^{10,1}滝田隼^{11,1}, Jorn Helbert¹², Thomas Mueller¹³, Axel Hagermann¹⁴,はやぶさ2・TIRチーム¹ ¹ISAS/JAXA,²北海道大,³立教大,⁴産総研,⁵北海道教育大,⁶千葉エ大,⁷NAOJ,⁸会津大,⁹国立環境研,¹⁰総研大,¹¹東京大,¹²DLR,¹³MPE,¹⁴オープン大

「はやぶさ2」での熱観測

1)対象小惑星の素性の理解:熱物性の特徴から推定 ・表層の物理状態とその分布, 地形との対応から 母天体内での圧密or低密度化の過程 現在の低重力小惑星での圧密や堆積過程 ・地上観測と現地観測との比較 地上観測による熱モデルの妥当性検証と将来の応用性 YARKOVSKY/YORP効果の実観測と力学進化への応用 2) サンプル採取地点選定のため基礎情報 表層状態を熱慣性から推定 砂,礫,岩盤の地域をHome Positionから選定 粒子内に組織的多様性を含む1mm径粒子の採取可能な地点 ・軌道履歴の推定と合わせて過去の最高到達温度の推定 有機物の揮発温度依存性から残存成分を予測 3)小惑星への降下運用の安全アセスメント ·小惑星熱放射,表面温度 探査機の安全な降下運用を保証 MASCOT/MINERVA-IIの着陸運用の安全性 小惑星熱モデル

熱シミュレーションによるミッション観測運用計画立案

TIR(中間赤外カメラ)の科学目標概要

·対象天体=C型·小型·近地球型(NEO)の予想される物理的特徴 H=20km~0.1kmで熱撮像.熱慣性を±20%で決定し物性・物理状態を決定

- ・炭素質隕石的な物質,極めて低いバルク密度
- ・低密度(or低強度)のため巨大クレータが形成,内部が露見
- ・低重力場のため巨大岩塊が表層に点在
- ・砂礫や岩石小片が重カポテンシャル面に沿って堆積,平原形成 ・クレータが表層を掘削、内部を露出、エジェクタが周囲に堆積(?)
- 熱放射から熱物性を決定し、表層状態を制約
- 小惑星の物理的・熱的進化過程の解明

・C型の地形観測

- 20m@20km, 1m@1km等での解像度で0.3K以下の精度で地形判別 ・低反射率,波長依存性の低い反射スペクトル 高太陽高度からの観測が大部分 .1.
- ・地形認識に温度差にたいする熱撮像が有効

·Yarkovsky·YORP効果

小惑星熱モデル(解像度20m,熱慣性±20%,放射率±3%)を構築 ・小惑星熱モデルから予想される1年後の小惑星軌道・自転変化 ・高精度軌道決定と、撮像による自転変化

小惑星質量,慣性能率への制約

・含水鉱物・有機物吸収帯の熱放射成分の除去・補正

絶対温度±2K以内で決定し、NIRS3の吸収帯の深さが最悪で±50%以内に ・NIRS3による3µm帯分光スペクトルから熱放射成分の除去 \mathbf{J}

小惑星表面上の含水量等の定量的検出

・小惑星からのダスト雲等の放出物の検出 50um大粒子で数個/cc以上なら検出可能性あり

・静電力、微小隕石衝突等で小惑星から周辺に浮遊するダスト ・人エクレータ(SCI)衝突後の浮遊ダスト

・ダスト生成と浮遊メカニズム

・はやぶさでの試料採取の「謎」の解明

衛星探索

- HPから10m以上のサイズで検出・軌道追跡が可能 小惑星を周回する衛星の探索
- ・小惑星質量の決定と軌道安定性から質量分布の推定

C型: 253 Mathilde (D~50km) 非ラブルパイル構造 非常に低密度~1300kg/m³ 巨大クレータ存在

小型小惑星:25143 Itokawa (D~0.3km) ラブルパイル構造 低密度~1900kg/m3 クレータ乏しく, 巨大岩塊あり 平原(堆積地)あり

DE-IF試験時のTIR-S(FM)

小惑星熱モデルの計算例

「はやぶさ2」ミッション

- ・目的:C型近地球小惑星の探査とサンプルリターン
- ・打上:2014年12月@種子島(バックアップ:2015年) ·到着:2018年7月
- ·出発:2019年12月以前
- ·帰還:2020年12月
- ・体制: JAXA, 海外協力(米, 独・仏, 豪)

探查対象天体:1999JU3

・分光タイプ	:Cg, NEA
・天体直径	:0.92±0.05km
・自転軸斜角	: (λ, β)=(331, 20), (73, -62)
・自転速度	:0.3178day (~7.6 h)
・アルベド	$:0.063 \pm 0.006$
・熱慣性	: 200-300 (SI)

·軌道 :0.96~1.42AU

TIR(中間赤外カメラ)

- ・小惑星の熱撮像(サーモグラフィ)を10µm帯で世界初実施
- ・非冷却ボロメータアレイ使用による軽量化設計
- ・「あかつき」LIRと同設計で短期間での確実な開発を実現

Table. Specifications of TIR (at EOL)

Mass	3280 g
Power	22W
Detector	NEC 320 bolometer (AR coating)
Wavelength	8-12μm
FOV	16° × 12°
IFOV	0.877mrad = 0.05°
Detection range	250-400K
Pixel numbers	344 × 260 (effective 320 x 240)
Temp. resolution	< 0.5K (@350K), < 0.6K (@250K)
Abs. temp accuracy	< 5K (@350K), < 6K (@250K)
Ge Lens F-value	1.4
MTF (@nyquist freq)	>0.3
A/D Conversion	12 bit

勢慣性と物質の物理状態

[J m ⁻² s- ^{0.5} K ⁻¹]]		表面划	1. 1.
~10 ~50 100~200 200~400 400~1000 1000~2000 2000~		微細粒(<10µm) 細粒(~100µm) 砂(<mm): 433<br="">砂利(<m): 251<br="">岩石片(<m): 25<br="">岩石(空隙多数) 岩石(一枚岩、空</m):></m):></mm):>)で高空隙率(~ or less): 月レコ エロス 43イトカワ「ミュ 143イトカワ「荒 2000の1111	80%): 1セレス、火星の砂 パリス ーゼスの海」 地」 nicrocks)
Thermal ine and thickne of atmosphe	ertia gi ss of re ere-les:	ves information ab agolith, and the pre s bodies (1° in SI u	out the presence (sence of exposed nits: Jm ⁻² s ^{-0.5} K	(or absence), depth rocks on the surface ⁻¹).
25143 Itok F - 600 Coarse reg	golith	$\begin{array}{c} 433 \; \text{Eros} \\ \Gamma = 150 \end{array}$ Finer and thicker	The moon $\Gamma = 50$ Mature and	1 Ceres Γ - 10 Very fine
and bould	ers	regolith	nne regolitn	regolith rr
*		Ultr (I	ra-Fine Pe =50) (I	ebbles Boulders =200) (I>1000)
Â,	Ι	Ultr (I = (pCk) ^{0.5}	a-Fine Pe =50) (I	ebbles Boulders =200) (I>1000)

Longitude [deg]

