ダークバリオン探査小型衛星DIOSの 開発の現状

大橋隆哉 (首都大)、田原 譲 (名大)、満田和久、 山崎典子 (ISAS/JAXA) 、他DIOSワーキングループ

- WHIM サイエンス
- DIOS 衛星
- 開発状況
- ●まとめと今後

- TMU: T. Ohashi, Y. Ishisaki, Y. Ezoe, S. Sasaki, H. Kawahara
- Nagoya: Y. Tawara, A. Furuzawa, I. Sakurai, S. Sugita
- U. Tokyo: Y. Suto
- Tsukuba U: K. Yoshikawa
- Tokyo Tech: N. Kawai
- Kanazawa U: R. Fujimoto
- Toho U: T. Kitayama
- ISAS/JAXA: K. Mitsuda, N. Yamasaki,
 Y. Takei, M. Ishida
- Kyoto U: T. Tsuru
- Tokyo U Sci: K. Matsushita

Based on OVI measurements Some part of OVI may be from Ly α forest (photoionized) COS observations will clarify origins of OVI line

Cosmic structure

<u>WHIM</u> (10⁵-10⁷ K) が 大構造に広く分布 = ダークバリオン

WHIMのガス密度: $\delta(=n/\langle n_B \rangle) = 10 - 100$ 酸素輝線でWHIMを トレースすること可能

Yoshikawa et al. 2001, ApJ, 558, 520

size = 30 *h*⁻¹ Mpc ≈ 5 deg at *z*=0.1

Warm-hot IGM

10⁵-10⁷K)

Galaxies (~10⁴K)

Cluster gas (10⁷K)

DIOS: spacecraft

Mass	total	~ 400 kg
	payload	~ 200 kg
Size	launch	1.2×1.45×1.4
		m
	in orbit	5.9×1.45×1.4
		m
Attitude	control	3-axix
	accuracy	\leq 30 arcsec
Power	total	500 W
	payload	300 W

Orbit: 550 km altitude, Inclination 30°, period 95 min Launch: 2016 hoped

DIOS: microcalorimeter instrument

Effective Area	200 cm ² (> 100 cm ²)	1000-	ORIGIN
F. o. v	50' diameter	_ر 100	DIOS
SΩ	~ 150 cm ² deg ²	m ² deg	(XMS) Chandra
Angular resol.	3′ (16 x 16 pix)	SΩ (c	Suzaku
Energy resol.	2 eV (FWHM)	1-	
Energy range	0.3 – 1.5 keV	0.1 0.1	SXS •
Mission life	> 5 yr		Energy Resolution (eV) 大きなSΩはIXOに匹敵

4回反射X線望遠鏡 (P3-160)

	DIOS-FXT	Suzaku-XRT
焦点距離	70 cm	450 cm
口径	60 cm	40 cm
反射鏡	4 cm	10 cm
円錐頂角	40.6 deg	3.8 deg
観測帯域	0.5 - 1.5 keV	0.3 - 10 keV
鏡面物質	C 25Å+Ni 25Å +Pt 300Å	Au

可視光の測定により数分角の分解 能を確認

DIOS検出器の開発報告 TESカロリメータの開発状況 (P7-002) TESの信号読み出し系の開発 (P7-031)

検出器システムの検討課題

3次元配線の試作 面積小 → シールド小 プリント配線を使用

ASTRO-H

狭視野(3')で長焦

点距離(5.6 m)

半導体カロリ、

JFET読出し

36ピクセル

冷却系の検討課題

- 機械式冷凍機(ST, JT)はASTRO-H EM 品の使用を想定
- 0.5 keVまで高い感度が必要。 サーマ ルシールドの透過率を高める
- 短焦点距離のためサーマルシールドは

 60 mmが必要
- サーマルシールドを小さく保つため、 検出器に近づける必要がある (距離 40-50 mm)
- 軽量化のため真空容器を使わず常温大 気圧で打ち上げ
- 放射板が地球を見ないよう、軌道周期
 ごとに2回、姿勢の反転が必要

サーマルシールドの音響試験

- 軽量化のためデュワーは真空に封じない → 打ち上げ時の音響が熱
 シールドに影響
- フィルター: ウィスコンシン大学製作
 - ◆ 直径 38 mm
 - ◆ 厚さ Polyimide 70 nm + Al 20 nm
 - 🔶 サポートメッシュ:Si 200/8 μm厚, ピッチ 5/0.35 mm
- 音響試験:2010.12.6-7、周波数:31.5-8000 Hz
- ・
 ・
 音響試験の結果、中央部が破損
 ・
- 対策: サポート構造を改善、何らかの音響シールドも今後検討

まとめと今後

- 2010年度中に熱設計を完了、来年度はじめにはミッションとして提案可能
- 2016年ごろの打ち上げを目指し、小型科学衛星3号 機へ提案したい
- 国際協力:米 (NASA/GSFC, MIT),オランダ(SRON),イ タリア(IASF)より協力の申し出
- ユニークなサイエンス、無冷媒冷却、TESカロリメータの初の実証機となる
- 2020年以降には、より大型(3トン近く)のORIGIN衛星
 でさらにサイエンスを伸ばしたい