S-02

「すざく」衛星の現状と成果

満田和久 (ISAS/JAXA) & すざくチーム 2011年1月5日

すざく衛星

● 宇宙の構造形成、ブラックホール直近領域の探査などを

- •広帯域X線分光(0.3-700 keV)
- •高分解能X線分光

(半値幅6 eV、0.3-10keV)

により実現する

- ISAS/JAXA と NASAを中心とする国際協力
- 米国のChandra衛星、欧州のXMM-Newton 衛星と相 補的な役割
- 軌道上天文台として、国際公募による観測
- 2005年7月10日、M-V-6により打ち上げ

開発·運用体制

サブシステム	機関
衛星システム	JAXA
X線望遠鏡、光 学ベンチ	名古屋大学、NASA/GSFC、JAXA、首都大学東京
X線マイクロカ ロリーメータ	JAXA、NASA/GSFC、Wisconsin大学、首都大学東京、理研
X線CCDカメラ	京都大学、 <mark>大阪大学、MIT、</mark> JAXA、立教大学、愛媛大学
硬X線検出器	東京大学、JAXA、理研、広島大学、埼玉大学、金沢大学、大阪大 学、青山学院大学
衛星運用、データ処理、科学解 析ソフトウエアー	JAXA、NASA/GSFC、岩手大学、宮崎大学、中央大学、神戸大 学、東工大、ぐんま天文台、日本大学、東京理科大学、日本福祉大
科学アドバイ ザー	Cambridge大学、Leicester大学、MaxPlank研究所、ESA、NASA/GSFC、 Hawaii大学、Rutgers大学、Columbia大学、MIT、Penn State大学、Olin大学
	33機関、約200人

3 これらの研究者でサイエンスワーキンググループを形成

すざくの特徴

● 高感度広帯域X線分光(0.2 - 600 keV)

- ~1000cm2の大有効面積 (1-6 keV)
- 全エネルギーバンドで低い荷電粒子バック グラウンド

➡ 空間的に広がったX線に対して高い感度

- 良いエネルギー分解能
 - 低エネルギー側での優れたエネルギー応
 答関数

2005年	7/10	打ち上げ・初期運用開始		
	8/8	XRS 液体Heを消失し、機能停止		
	9/10	試験観測開始		
2006年	4/1	第1期国際公募観測開始		
	9月	電荷注入によるCCDの放射損傷対策開始		
	11/9	XIS2損傷,使用中止(micro meteoroid?)		
2007年	1月	日本天文学会欧文誌すざく特集号発行		
	4/1	第2期国際公募観測開始		
	5/28	試験観測データを一般公開		
2008年	1月	日本天文学会欧文誌すざく第2特集号発行		
	4/1	第3期国際公募観測開始		
	4/24-25	NASA Senior Review (2010年までの延長)		
	6/5	宇宙理学委員会運用延長審査(2011年7月まで)		
2009年	1月	日本天文学会欧文誌すざく第3特集号発行		
	4/1	第4期国際公募観測開始		
	6/23	XISOの約1/8を損傷(micro meteoroid?)		
	12/18	S1ジャイロノイズ増大、S2に切り替え		
	12/18	XIS1のOBFがmicro meteoroidにより損傷		
2010年	4/1	第5期国際公募観測開始		
	4/7	NASA Senior Review (2012年までの延長)		

すざくの観測運用=国際公募観測

全観測時間の12%を、衛星メインテナン ス、観測機器較正観測、突発天体観測時 間として確保し、

残りの時間を公募観測時間に

- 公募観測時間は、全世界の研究者に開か れており、米国・ESA加盟国以外の国は 日本時間に応募できる。(Key project に ついてはESAも日本へ応募)
- JAXA, NASA, ESAでそれぞれ、peer reviewにより審査
-) 観測後、一定期間(観測タイプにより即時 又は1年)を経過したデータは一般公開

ESA枠は、日米合意に基 づき日本枠の一部を割当

第6期(AO-6)国際公募観測の応募状況 (観測は2011年4月から)

● 応募状況(2009年11月19日締め切り)

- Key project: JAXA 1.71Ms +NASA受付 1.0Ms 競争率はAO-5からの持ち越し分による
- Key project 以外の通常提案: JAXA受付(91, 2.5倍)↓、ESA(28, 3.2倍)↓、NASA (90, 3.6倍)↑
- JAXA受付の日本以外: カナダ(1)、台湾(3)

他のプロジェクトとの協力

● すざくーChandra 共同観測提案

- 国際公募観測 AO-5から
- Chandra衛星の公募観測にすざくとの共同観測
 を提案できる
- すざくーFermi 共同観測提案
 - 国際公募観測 AO-6, つまり今回から
 - Ferimi 衛星の公募解析にすざくとの共同観測を 提案できる
- すざく-MAXI 共同観測
 - ・ 突発天体観測枠: 2010年2月から

すざく-MAXI 協力

- 突発天体観測枠
 - あらかじめ観測提案できない突発現象の観測を随時提 案受付。
 - 観測の可否はサイエンス価値と観測実現性をすざく
 チームが評価して決定
- MAXI提案 突発天体観測(2009年2月から)
 - MAXI チームが観測提案を行う際に、MAXI チームは サイエンス価値の評価を行っている
 - 迅速に対応するために、すざくチームは観測実現性の みを評価する
 - 突発天体観測時間の中に特に枠は設けず、その中で可能な限り受け付ける

すざく-MAXI 協力観測

すざくの2010年の突発天体観測の約半数

天体	種類	観測日	観測時間				
V 0332+53	X線連星パルサー	2010/2/16	32 ks				
XTE J1752-223	ブラックホール候補	2010/2/24-25	40 ks				
GX 304-1	X線連星パルサー	2010/8/13	23 ks				
MAXI J1659-152	ブラックホール候補	2010/9/29 - 0/2 (3 回)	16, 24, 31 ks				
Sep. 24 Sep. 25 MAXI J1659-152							

最近の成果から

1. 木星からの"硬X線放射"の発見 Ezoe et al. (2010), 江副 (2010), 石川 et al. (ポスターP1-02A)

2. 暗黒物質候補としてのステライル ニュート リノ

Loewenstein et al. (2009), Prokhorov & Silk (2010), Koyama et al. (2007), Boyarsky et al. (2009)

本シンポジウムでは他に、ポスター発表: PI-020 から029,02A,02B

木星からの"硬X線放射"の発見 Ezoe et al. (2010), 江副 (2010) 石川 et al. (ポスターP1-02A)

木星からのX線放射

太陽系内で太陽に次いで2番目に強い

すざく以前 = チャンドラ衛星, XMM-Newton 衛星

すざくの観測

空間的に広がったX線放射に対してこれまでにない高い感度と分光能力

0.2-1 keV

"生イメージ"

観測:2006年2月24日-28日

Ezoe et al. 2010

すざくによる発見

0.2-1.0keV

Ezoe et al. 2010

- 0.2-1 keV 太陽風電荷交換反応による輝 線を明確に検出。
- 1-5 keV イメ報道の2倍以上に広がっ
 - た 心奇 鼠教 の 放射 を 発見 r3 arcmin centered at Jupiter 2.25-05
 - Use surrounding region (r3-6 dr5kei) as ogd 0.2 – I keV

"木星が静止する座標系にプロット"

暗黒物質候補としてのステ ライルニュートリノ

Loewenstein et al. (2009), Prokhorov & Silk (2010), Koyama et al. (2007), Boyarsky et al. (2009)

"Cold 暗黒物質で造る宇宙の大構造"

Yoshikawa et al. (2002)

暗黒物質候補

超低光度銀河の輝線放射の上限

こぐま座矮小楕円銀河(UMidSph - UGC 9749)

暗黒物質が存在し,他の天体に 比べて,X線を放射する星や高 温ガスが少ない。距離24万光年

http://half65.blogspot.com/2010/07/ursa-minor-dwarf.html

すざく衛星による輝線放射の上限

Loewenstein et al. (2009)

ステライルニュートリノへの制限 すざく 10 limits 10⁻⁶ 4.5 $\Omega_{N_1} > \Omega_{DM}$ 10⁻⁷ (n) line 10⁻⁸ constraints 5.5 10⁻⁹ 10 ^Dhase-space density line energy (keV) $\sin^2(2\theta_1)$ 10-10 constraints 10⁻¹¹ max=700 Suzakuに加えて, BBN limit: 10⁻¹² XMM-Newton, 10⁻¹³ INTEGRALのデー 10⁻¹⁴ $\Omega_{N_1} < \Omega_{DM}$ タも加味 10⁻¹⁵ 5 10 50 M₁ [keV] Boyarsky et al. (2009)

 θ_1 = mixing angle

 $L_6 = Lepton asymmetry (x10^6)$ ²²

他にも輝線候補

まとめ

- すざくは第5期国際公募による観測を順調に行なっている。第6期国際公募観測の選定中。
- MAXIとの突発天体の共同観測を2010年2月から 開始. これまでに4天体を観測.

● 最近の成果の中から,

- 木星から、衛星イオの軌道以上に広がった硬X線放 射の発見
- ・暗黒物質候補としてのステライルニュートリノパラ メータへの制限

を紹介した.