

History and Japanese Future Plan of Martian Atmospheric Escape Study

1976	Arrival of Viking 1 & 2 landers	Vertical profile of upper atmosphere Pressure imbalance problem : lonospheric plasma pressure < Solar wind dynamic pressure
1989	Arrival of Phobos 2	Ion escape in the nightside
1997	Arrival of MGS	Discovery of localized crustal magnetic field
1998	Launch of NOZOMI	Failed to orbit the s/c around Mars
2003	Arrival of MEX	Lots of plasma observations But no magnetometer

2012	Launch of EXCEED	
2014	Launch of MAVEN	

2022 ?	Launch of MELOS	
	Atmospheric Escape Study	

Scientific instruments onboard Planet-B		NOZOMI (Plan 1998~	NOZOMI (Planet-B) 1998~	
		Magnetic Field (MGF) Energetic Electron (ESA) Energetic Ions (ISA) Energetic Ion Mass (IMI) High Energy Particles (EIS) Thermal Ion Analyzer (TPA) Electron Temperature (PET)	Sweeden Canada	
MASS		UV spectra imager (UVS)		
dry mass	255.9 kg (incl. sci. payloads 34 kg)	EUV spectrometer (XUV) HF sounder receiver (PWS) Visible Camera (MIC)	(France)	
fuel	279.5 kg	Dust counter (MDC) Neutral Gas mass (NMS) USO(10 ⁻¹⁴)	Germany USA USA	

Imaging of atmospheric escape by EXCEED(2012-)

• Global imaging of atmospheric escape of Mars and Venus by EUV spectrometer from the upstream to downstream at a glance

Charge-exchange (solar-wind observation) O* 83nm resonance scattering C* 133nm resonance scattering N* 108nm resonance scattering (noospheric atmosphere ob servasion) O* 83nm resonance scattering O* 83nm resonance scattering O* 83nm resonance scattering C* 133nm resonance scattering C* 108 mm resonance sc

Mars Exploration with a Lander and Orbiters (MELOS) common question : Did Mars really have a warm and wet environment in its early days ?

To answer the above question: Need to fully understand the evolution of Martian atmosphere, the water, and its climate. The atmosphere to solid-body interactions are significant also.

Sub-groups in MELOS WG:

Target	Method
Atmospheric escape	Two orbiters
Meteorology	An orbiter
Gas exhaust from the surface	Rover
Interior	Network observation by two or more landers with seismometers and heat-flux meters
Dust	Sample and return
Geomorphology	Airplane
Biological probe	Pinpoint lander

Two or three targets will be selected and combined into a project.

MELOS 大気散逸オービターの 主要観測項目と目標

- 太陽風ー電離層 相互作用のlarge-scale構造 撮像と局所的な物理プロセス観測を同時に行う ことによって、cold ionの火星からの流出過程 と役割を明らかにする
- 太陽風・太陽放射を同時にモニターし、流出の 応答を観測することによって、散逸を起こすそれ ぞれの物理プロセスの寄与を明らかにする
- C, N, O で成る各々の成分を正確に分別することにより、水と二酸化炭素の流出量を定量的に明らかにする

Advantages by two-satellites observation

Orbital plane of Orbiter B

Global imaging

of "atmospheric

escape"

- Simultaneous observation of atmospheric escape by
 - Imaging of the global structure
 - Measurement of in-situ process

escape-rate at the ancient

Mars

Monitoring of the upstream by the solar-radiation and solar-wind instruments
 Essential recognize of the escaping process
 Improvement of the estimation about the

monitor

Orbit of Orbiter A

リモートセンシングオービター搭載観測機器候補

機器名称	観測対象	担当	実績等
流出大気撮像カメラ	流出する大気・プラズマの全体像の撮 像(EUV: O+, N+, C+, H, O; UV: C, CO, CO+, CO2+)	山崎	
紫外光吸光セル	流出する大気の D/H比測定	田口	「のぞみ」UVS
太陽風モニター	太陽風フラックス・惑星間空間磁場	二穴	従来型と同程度
太陽放射モニター	EUV/UV領域での太陽放射	二穴	

その場観測オービターへの搭載科学機器候補(1/2)

機器名称	観測対象	担当	実績等
超熱的イオン質量 分析器(STIMS)	流出イオンC,N,Oの分離 (C,N,O,N2+CO,NO,O2,CO2、1eV-100eV)	平原	
低エネルギーイオ ン観測器(MSA)	流出イオンC,N,Oの分離 (C,N,O,N2+CO,NO,O2,CO2、~40keV)	横田	
熱的イオン質量・ 速度分布測定器 (IMVS)	低エネルギーイオン速度分布(0.01eV-100eV)	栗原	
イオン質量分析器 (IMS)	電離圏イオンC,N,Oの分離 (C,N,O,N2+CO,NO,O2,CO2、0.3eV-数eV, 速度分布なし)	(横田)	大阪大学と協 力
中性ガス質量分析 器	超高層の中性大気の高質量分解観測(測定検討 項目:H, H2, He, C, N, O, Ne, CO, N2, NO, O2, Ar, CO2と同位体)		海外と協力
ラングミュアプロー ブ	電子温度、密度測定	阿部	「のぞみ」PET と同程度

その場観測オービターへの搭載科学機器候補(2/2)

機器名称	観測対象	担当	実績等
磁場計測器	電磁圏境界層観測、地殻起源磁場の詳細 観測	松岡	「のぞみ」MGFと同程 度
電場、プラズ マ波動計測器	波動による粒子加速、上部電離圏加熱、 静電加速、静電加速	石坂、熊本	「のぞみ」PWS, LFAと 同程度 MMO SC と同程度
中性・イオンド リフトメーター			
ポテンシャル コントロール			ESTEC 製 field emission ?

The 'in-situ' observation orbiter searches in the views of the imagers onboard 'remote' orbiter

Remote-sensing obs.s/c

300km x 8RM

In-situ obs. s/c 300km x 7000km Peri-apsis of 'in-situ' observation orbiter is nominally at or below 300km, ≤150km in the aero-breaking phase

マヌーバシーケンス例

Events	Delta-V	Notes
MOI	888.9m/s	50Rm x 300km, <i>i</i> =8.67deg
Orbiter Separation		
Inclination Maneuver	150.9m/s	8.67deg→102deg
Ω Rotation		~220 days
Orbiter-B Aerobrake (walk-in/walk-out)	16.8m/s	50Rm→8Rm, at120km altitude
Orbiter-A Aerobrake (walk-in/walk-out)	31.2m/s	50Rm→7,000km, at120km altitude
50Rm x 300km (216hrs) i=8.67 deg		$\frac{d\Omega_{\rm B}}{dt} + \frac{d\omega_{\rm B}'}{dt} = \frac{d\Omega_{\rm A}}{dt} = 0.4142 \text{deg/d}$ 7.9358Rm x 300km (16 h =8.67 deg 7000km x 300km (4.9891 h i=102.0904 deg ×

Requirement to the launch year

- Observation at the high solar activity is important to estimate the ancient atmospheric escape.
- The solar-maximum of about 2024 should be aimed.

Summary

- 火星からの大気流出の物理過程は、惑星の環 境変遷を知るためにも解明しなければならない 課題である。
- 次世代の火星大気散逸研究は、
 - 太陽風と太陽放射を同時モニタリングしながらの散
 逸過程観測

- Large-scale撮像とその場の散逸過程の同時観測 が必須である。

 JAXA における MELOS火星探査ワーキンググ ループのサブグループとして、観測機器、ミッショ ンシナリオ、衛星システムを検討している。