Sprint-A/EXCEED の光学系開発(性能と試験) 〇鍵谷将人 (東北大)、EXCEED チーム

概要

Sprint-A/EXCEEDは地球周回軌道から、惑星大気と磁気圏のEUV発光を分 光観測する。ミッション部の要は、口径20cmの主鏡と凹面反射グレーティ ングおよびMCP検出器から成るEUV分光器である。焦点距離1600mmのオ フセットパラボラ主鏡と口径50mmのトロイダルグレーティング用いるこ とで、55-145nmの波長帯域において、0.3nmの波長分解能と10"の空間分 解能を有する。スリット長は400、スリット幅は必要とする波長分解能に 応じて10"から140"までの4種類を交換することが可能である。 本発表では主に光学性能とアライメント検証方法について示す。

結像性能の評価試験方法

図1に主鏡・回折格子を組み合わせた結像性能評価試験の光学系配置を示す。光源から射出し、ピンホール を透過した光は、直径30mmの斜鏡を経由し、コリメート鏡(放物面、φ203mm, f1200mm, Auコーティング) にてコリメートされ、主鏡に入射する。

<可視光による主鏡のアライメントおよび結像性能の確認>

可視光において分光器のスリット上に結像したピンホール像をFOVあるいは別途用意する可視カメラで観察 することで、主鏡単体での空間分解能と、主鏡ースリット間の結像性能とアライメント誤差を評価する。主鏡の 回折限界は可視波長で約8um、FOVの空間分解能も約8um/pixelであるため、ミッション要求を満たす空間分 解能(55um)が得られているかどうかを確認することは可能である。

表1. 光学系諸元				
十辞	オフセットパラボラ 有効口径 d200mm (SiC-CVD)			
ሥ元	「「「」」(SIC-CVD) 焦点距離 1600mm			
観測波長帯域	55 – 145 nm			
波長分解能 (単色スペクトルの広がり)	10" slit : 0.3nm			
	26" slit: 0.6nm			
	64" slit: 1.0nm			
スリット長	400 arcsec			
グレーティング	等間隔直線溝トロイダル回折格子			
	有効口径			
	Rh=400mm, Rv=393.14mm			
	格子定数 1800 本/mm			
	逆線 分散 1.38nm/mm			
検出器	MCP			

く主鏡・グレーティングを組み合わせた結像性能・波長分解能の確認>

重水素ランプ(EUV連続光)やEUVランプ(EUV単色光)を光源として、MCPに結像したピンホール像の広がり から、主鏡とグレーティングを合わせた空間分解能と波長分解能、ならびにスリットーグレーティングーMCP間 のアライメント誤差を評価する。MCPの位置検出精度は50umであるため、ミッション要求を満たす空間分解 能(55um)ならびに波長分解能(430um)が得られているかどうかを確認することは可能である。

くピンホール、コリメート鏡のアライメント>

図2にピンホールとコリメート鏡のアライメント次の光学系配置を示す。ピンホールとコリメート鏡間の距離 の調整は、主鏡ーコリメート鏡間に(i)平面鏡をおいてオートコリメーションを行い、ピンホールの最結像の広 がりをピンホール裏面にて確認することで実施する。確認後は(i)平面鏡をとりはずす。コリメート鏡と主鏡間の 角度アライメントは、それぞれの鏡に取り付けた(j),(k)アライメントミラーをオートコリメータで観察することで、 相対角度を検出し調整を行う。

検査光学系のアライメントに要求される精度を、被検査光学系に要求されるアライメント誤差の半分とすると (i) ピンホールとコリメート鏡間距離に要求されるアライメント誤差は0.1mm、 (ii) コリメート鏡と主鏡間に要求される角度誤差は0.02° である。予備試験の結果から、(i)の達成にはピンホール反射面の面精度が要求されることが課題である。(ii) についてはオートコリメータの角度分解能(0.003°)を考慮すると達成可能である。

要求される結像性能

EXCEEDは観測対象にスリットを当てて、対象のスペクトル情報をスリットに沿 った方向に空間分解する空間1次元の分光器である。従って光学系に要求され る結像性能を、波長方向と空間方向に分けて議論する。表2と3に空間、波長方 向に要求される光学結像性能と許容アライメント誤差を示す。

表2. 空間方向(スリット長辺方向)に要求される結像性能 (FWHM)と許容アライメント誤差

	ミッション要求結像性能 (FWHM)	アライメント誤差のな い場合の結像性能 (FWHM)	許容アライ メント誤差
光学系全体	10"	3.6"	
(主鏡+回折格子)	(焦点面にて78um)	(焦点面にて28um)	
主鏡	7.1"	1.0"	tiltX<0.05°,
	(焦点面にて55um)	(焦点面にて8um)	dZ<0.2mm
回折格子	7.1"	3.5"	tiltX<0.03°,
	(焦点面にて55um)	(焦点面にて27um)	dZ<0.2mm

表3. 波長方向(スリット短辺方向)に要求される結像性能 (FWHM)と許容アライメント誤差

	ミッション要求結像性 能(FWHM)	アライメント誤差のない 場合の結像性能 (FWHM)	許容アライメント誤 差	
回折格子	0.6nm	0.17nm	tiltX<0.03°,	
	(焦点面にて430um)	(焦点面にて125um)	dZ<0.2mm	
				_

主鏡・コリメート鏡・ピンホールのアライメント 図2