P1-072 IKAROSのミッション材料の軌道上評価

〇遠藤達也、三桝裕也、横田力男、宮内雅彦、石田雄一、田中孝治、相馬央令子、船瀬龍、 矢野創(JAXA)、岩田稔(九工大)、IKAROSデモンストレーションチーム/ソーラーセイルWG

軌道上の膜面ミッション部の運用結果

IKAROSミッション材料系の定常段階における運用結果を以下に示す。
①定常運用段階の膜面ミッション部の温度は、許容温度範囲 (1.16[℃]~130.37[℃]:裏面が無蒸着の部位)で維持できた。 図2に膜面ミッション部の温度履歴を例示する
② 膜面展開後のカメラ写真の結果(図3)から、判別できるような裂け、破れ、絡みなどは認められず、打ち上げ時の真空境耐性、展開時の機械強度耐性を維持できた。(関連サクセスクライテリア:膜面の展開・展張)
③ 打ち上げ前に断線した2系統のハーネスラインを除き、全てのミッション機器の動作が確認でき、運用中データ取得を維持できた。図4に太陽電池の発電量の履歴を示す (関連サクセスクライテリア:薄膜太陽電池の発電・集電)

④ ALDN、液晶デバイスをミッション運用を実行できた。図5に液晶デバ イスによる姿勢変更の履歴例、図6にALADDINによるダスト観測例 を示す

(関連サクセスクライテリア:エクストラサクセス)

軌道上の膜面の画像

図2b 太陽距離の-2乗×太陽角の方向余弦の履歴

(1[AU]で太陽角ゼロを基準としている)

6

図5.2.6-5 液晶デバイスによる姿勢角変更例

軌道上の液晶デバイスの運用結果

図3 展開後の写真

軌道上の薄膜太陽電池の運用結果

薄膜太陽電池による発電

・6月10日に薄膜太陽電池の発電を実証した。
・薄膜太陽電池システムの発電・集電性能を初期評価した。
・地上試験を踏まえた予測値とほぼ一致することが確認できた。
(展開時の力学環境で性能が劣化することがない)

No.	計測膜	lsc [A]	Pmax [W]	Imp [A]	温度 [°C]	I-V特性				
	予測値	1.15±0.08	40±4	0.85±0.08	42~68	1.2				
1	1R	1.135	35.73	0.853	49.38					
2	1L	1.120	35.90	0.8468	54.67	0.8				
3	2R	1.137	38.40	0.839	57.24					
4	2L	1.150	38.39	0.845	48.94					
5	3R	1.13	36.56	0.853	65.76	0.4				
6	3L	0.960	31.36	0.569	57.38					
7	4R	1.144	37.20	0.849	58.23					
8	4L	1.146	37.18	0.852	55.17					
			計測日	:2010年6	月10日	22:50				

軌道上の薄膜太陽電池の運用結果

11

薄膜太陽電池による発電

 ・惑星間環境における太陽光発電システムの特性評価を週1回程度実施している.
 地上試験での予測劣化曲線と比較を行うとともに、リファレンスセルを搭載し 環境のモニタを実施している. 開放電圧(Voc)と短絡電流(Isc)の特性変化を 下図に示す. 現在はこの値と予測値はよく一致した特性が得られている.
 地上で保管している比較用太陽電池と軌道上データとの比較により、 太陽電池自体の劣化に加え、発電システム・集電線の構造材料物性の変化の 影響を評価できる. 現在、劣化の原因を特定するため、材料の再試験を実施中
 ※惑星間探査機用薄膜発電システム開発のために有用なデータが得られている.

太陽距離:1.05 [AU] 地球距離:7860133 [km] 太陽角:13 [deg.] スピンレート:2.5 [rpm]

1.E-05

9

0

JAXA

参考

軌道上のALDNの運用結果

ALADDIN = Arrayed Large-Area Dust Detector for INterplanetary space:の運用結果

時間は611時間、衝突候補信号は100個以上検出(Threshold =1-2ミクロン)。この検出数は、火星探査機のぞみ搭載のMDC (100 cm²、Threshold=0.1ミクロン)が1998年8月~2002 年4月の45カ月のクルージング期間中に取得した全データ数に 相当。

→短時間で大型微粒子を大量に検出できる、大面積検出器の 有効性を実証。

⁰ □⁴図4^b 太陽電池の軌道上劣化トレンド

╮┵╴┎╶═╦╎┲╸┵╸┍╪┑┶┝╴┎╶┈╸╸、╺╸

DAYS

フライト品の下記データを基に軌道上評価を実施している

ミッション材料系フライト品データ

ミッション材料系フライト品データ

ce

100

Cell_01 Referen

10

ce

(1)主要諸元

表1-2 IKAROSセイル光学定数・膜面比率

	デバイス名	膜面比率 [m ²]	鏡面	拡散	吸収	透過	放射(表)	放射(裏)
	APICAL膜	118.49	0.882	0.065	0.053	0	0.02	0.563
	ISAS膜	19.03	0.882	0.065	0.053	0	0.02	0.624
-	液晶	18	0.089	0.471	0.44	0		
	端面処理	11.47	0.375	0.255	0.370	0	0.90	0.02
	薄膜太陽電池	10.30	0.086	0.06	0.854	0	0.90	0.85
	ブリッジ	3.94	0.882	0.065	0.053	0		
	衛星本体	1.96						
	PVDF	0.54	0.882	0.065	0.053	0	0.04	0.67
	テザーユニット	0.39				0.72		
	全体	184.12	0.719	0.117	0.162			

3

図5.2.6-6 ALADDINによるダスト観測例