小型衛星GAIA搭載用電子密度、温度測定器の 基礎実験と技術的検証

○宮崎貴大¹⁾, Josaphat Tetuko Sri Sumantyo¹⁾, 小山孝一郎²⁾,
阿部琢美³⁾, 中園智幸³⁾, 児玉哲哉³⁾
¹⁾千葉大学, ²⁾台湾国立成功大学, 九州大学, ³⁾JAXA

<u>zakky6310tkhr@chiba-u.jp</u>

1. はじめに

電離層変化と地殻変動の関連性はこれまでに多 くの報告があり、様々な方法で電離層を観測する 研究が行われているが、明確なプロセスは解明さ れていない. 近年では、大型衛星よりも、開発・運 用の費用や期間で利点の多い小型衛星が地球観測 に使用され始めている. 当研究室でも, 地球の地 殻変動を観測する小型衛星 GAIA-I の運用を計画 している.GAIA-Iは電離層の電子温度,電子密 度を測定するためのセンサー, EDTP (Electron Density and Temperature Probe) を搭載してい る. EDTP は電子密度測定にインピーダンスプロ ーブの原理を,電子温度測定には電子温度プロー ブ ETP の原理を使用している. これらの測定は1 つの回路で行うことができるため、小型化かつ軽 量化が可能となっている.一般的なプラズマ測定 器であるラングミュアプローブでも電子温度及び 電子密度が測定できるが、プラズマによる電極汚 染の影響が指摘されており、精密な測定が行えな い問題点 1)がある. また, 小型衛星のようにグラウ ンド面が少ない場合でも EDTP は構体グラウンド の影響を受けずに測定が可能である.

本稿では、スペースチェンバーを使用し、試作 した EDTP の動作を確認する基礎実験及び、ラン グミュアプローブ、インピーダンスプローブとの 比較による技術的検証を行った結果について報告 する.

2. 研究の概要

2.1. EDTP について

EDTP のブロック図を図1に概観図を図2に示 す.EDTP では直径10cm の円板を1cm の間隔を 空けて2つに分けた円板状のプローブを持ってい る.このプローブの片方に高周波の正弦波を印加 し、浮遊電位を測定する.もう一方のプローブに は、正弦波を印加しない場合の浮遊電位を測定し ている.高周波の正弦波を印加した場合の浮遊電 位 V_{fa} [V]は、印加しない定常時の場合の浮遊電位

図2 EDTPの概観図

 $V_f[V]$ よりも負の方向へシフトしており、高周波の 正弦波を印加した電極の浮遊電位と定常時の浮遊 電位の差 $\Delta V_{fa}[V]$ は次の式で表される.

$$\Delta V_{fa} = V_{fa} - V_f = -\frac{kT_e}{e} \ln\left[I_0\left(\frac{ea}{kT_e}\right)\right] \tag{1}$$

ここで, *k* は Boltzman 定数[J/K], *e* は素電荷[C]で ある.また, *I*₀()は0次の変形ベッセル関数であ る.更に異なる2つの振幅*a*1, *a*2 (ただし, *a*2 = 2a1)を印加した際の電位差の比Rを使用し、次式からも同様に電子温度 T_e [K]を求めることができる.

$$R = \frac{\Delta V_{fa2}}{\Delta V_{fa1}} = \frac{\ln\left[I_0\left(\frac{ea_2}{kT_e}\right)\right]}{\ln\left[I_0\left(\frac{ea_1}{kT_e}\right)\right]} \tag{2}$$

この手法は, Electron Temperature Probe (ETP²) と呼ばれ, Hirao と Miyazaki によって発表され, 現在までに国内外のロケット実験や人工衛星に搭 載され電離層観測に用いられている³⁻⁶⁾. 印加する正弦波は FPGA によって制御された DDS (Direct Digital Synthesizer) によって生成 されており,図 3 のように電子温度測定時には, 周波数を 200kHz に固定し,振幅を 0V, 0.5V, 0.25V, 0V と変化させる,また電子密度測定時に は,振幅を 1V に固定し,周波数を 100kHz から

10MHz までスイープさせている.

図3 プローブへの印加波形(上)と得られたΔV_{fa}(下) 電子密度N_e[m⁻³]はインピーダンスプローブと同 様にプローブへ印加される正弦波の周波数をスイ ープし,その周波数とプラズマとの高域混成共鳴 (UHR)周波数やシース共鳴(SHR)周波数との 共振部分で図3のように出力電圧が著しく減衰す る特性から次のように求められる.

$$N_e = \frac{4\pi^2 m_e \varepsilon_0}{e^2} \left[f_{UHR}^2 - \left(\frac{eB}{2\pi m_e}\right)^2 \right]$$
(3)

2.2. 衛星構体グラウンドの変化

ラングミュアプローブのようにプローブと基準 電極となる衛星構体の間に電圧を加える測定器の 場合,電離層内において衛星構体の電位(構体グラ ウンド)が電極に加える電圧を増加させると負の 方向へ沈む現象が見られる.大型衛星のように構 体グラウンドが十分な面積として確保できる場合 では問題とならないが,小型衛星や超小型衛星の ようにソーラーパネルや他の観測機器の取り付け で十分な面積が確保できない場合には正常な電離 層観測が行えない.しかし,EDTP は原理上,構 体グラウンドの影響を受けないため,小型衛星で あっても正常な電離層観測が可能である.

3. 実験と考察

3.1. EDTP と従来手法との比較

EDTP とラングミュアプローブ及びインピーダン スプローブを比較する実験を行った.スペースチ ェンバー内にそれぞれの手法で使用する3プロー ブを設置後、チェンバー内を一度 2×10⁻⁶ Pa の真 空まで空気を抜き、その後、窒素ガスを約 2×10⁻ ³Pa まで注入し、プラズマを生成した. プラズマ の生成条件を変化させるため、プラズマ源に加え るグリッド電圧を 62V, 45V, 30V, 25V の 4 段 階に変化させて実験を行った.また、小型衛星で の観測時に衛星の姿勢によってプローブ面への磁 場の方向が変化することが考えられるため,磁場 についてもチェンバー付属のヘルムホルツコイル を使用して x 軸, y 軸, z 軸方向の磁場をそれぞれ +50000nT, -50000nT に変化させ、地球磁場及び それを打ち消した0磁場の8つの異なる磁場の条 件において測定を行った.図4にチェンバーにお ける磁場の各軸の方向を示す.

図4 磁場の方向

EDTP とインピーダンスプローブの電子密度を比較した結果を図5に示す.電子密度の比較では、磁場及びグリッド電圧の変化とともに、どちらの手法も同様に変化している.大きく異なるのは、z軸方向へ-50000nTの磁場を加えた場合である.この原因としては、EDTP が平面状プローブであるのに対し、インピーダンスプローブは球状であることが関係しており、EDTPの測定回路を使用しプローブの形状のみを変化させた場合にも同様の結果を示した.

EDTP とラングミュアプローブの電子温度を比較した結果を図6に示す. EDTP はラングミュア プローブよりもかなり低い値を示している.また, ラングミュアプローブは磁場及びグリッド電圧を 変化させると大きく電子温度が変化していること がわかる.この原因については改めて実験を行い 解明する予定である.

3.2. 構体グラウンド変化による影響

構体グラウンドの変化による影響を確認するた めに、200×200mmの銅板を用いて作成した立 方体を小型衛星に見立て、銅板を構体グラウンド として使用し実験を行った.この小型衛星模型に は、リレー回路が内蔵されており、構体グラウン ドとして利用できる銅板の面積を1面から6面ま で変化させることができる.図7にラングミュア プローブのプローブへ印加した電圧、プローブ電 圧及び構体グラウンドの電位を示す.このときの

印加電圧(3V) — プローブ電位 — 構体グラウンド電位

図7 ラングミュアプローブの各電位

構体グラウンドの面積は、銅板 6 枚すべてを使 用した場合の 2400[cm²]である. プローブ電位及び 構体グラウンド電位のノイズは、電源等の 50Hz の ノイズである. ラングミュアプローブでは、印加電 圧が徐々に増加し、約 2V 以上になると構体グラ ウンドの電位が負の方向へ印加電圧の増加に比例 し徐々に沈んでいることがわかる. プローブ電位 においても、構体グラウンドの電位減少とともに プローブの電圧も低下するため、プローブ電圧は それ以上増加せず、一定の値のままである. 逆に 印加電圧を減少させると、構体グラウンドの電位 が正の方向へ増加し、2V 以下になると元の電位に 戻り一定の値となる. プローブ電圧も同様に 2V 以 下になると減少し始める. EDTP においては構体グラウンドの面積を1枚 (400[cm²]),3枚(1200[cm²])及び6枚(2400[cm²]) の場合のプローブ電圧を図8に示す.プローブの 面積と構体グラウンド面1枚あたりの面積の比は 1:5 である.EDTPでは,50Hzのノイズが混入して いるがグラウンド面を減らしても,出力波形に変 化は見られず,プローブ面積の5倍程度の構体グ ラウンド面積(400[cm²])でも,電子密度,電子温 度とも測定可能であることがわかる.

4. まとめ

小型衛星 GAIA-I に搭載する電離層観測センサ ーEDTP の基本実験及び技術的検証を行うために スペースチェンバーを用いて実験を行った. GAIA-Iは地殻変動と電離層の関係を明確にする ために当研究室で計画されている 50kg 級の小型 衛星で、電離層の電子密度及び電子温度を測定す るために EDTP を搭載する. EDTP は従来手法の ラングミュアプローブの問題点である電極汚染の 影響や衛星の構体グラウンド変化の影響を受けず, 1 つの測定回路で電子密度,電子温度を測定可能 である.本稿では、EDTP と従来手法のラングミ ュアプローブ,インピーダンスプローブの3つを 比較した実験と、銅板を用いて作成した小型衛星 模型を構体グラウンドとし、面積を変化させるこ とで構体グラウンド変化時の影響を調べる実験の 2つについて測定結果を示した.

EDTP とインピーダンスプローブによる電子密 度測定では、プローブ形状の違いによる測定結果 の差があるもののおおよそ同様の結果が得られた. また、EDTP とラングミュアプローブによる電子 温度の比較では、大きく異なる結果が得られた. この原因についての解明は、今後の課題とし改め て実験を行う.

構体グラウンド変化の影響については、プロー ブと構体グラウンド間に電圧を加えるラングミュ アプローブでは、構体グラウンドが印加電圧の上 昇とともに負方向へ変化する様子が測定でき、電 子温度、密度の測定に対して影響があることが確 認できた.これに対して、EDTPでは、今回の実 験での最小の構体グラウンド面積である 400[cm²] でも測定可能であった.この面積は、プローブ面 積の約5倍である.

今後の計画としては、3 つの手法を比較した際 に見られた測定結果の違いの原因を明確にすると ともに、小型の電子銃を用いた小型衛星の構体グ ラウンドの制御についてスペースチェンバーを用

いて実験する予定である.

参考文献

- Szuszczewicz, E. P. and J. C. Holmes, Surface contamination of activeelectrodes in plasma: Distortion of conventional Langmuir probe measurements, J. Appl. Phys., 46(1975), pp.5134–5139.
- Hirao, K. and S. Miyazaki, Rocket-borne ionospheric direct-sounding instruments, J. Radio Res. Labs., **12**(1965), pp.357–380.
 37(1985), pp.413–430
- Hirao, K. and K. Oyama, Experimental model of electron temperature profiles in the ionosphere at middle latitude, J. Geomag. Geoelectr., 32(1980),pp.95–104.
- Oyama, K.-I. and K. Hirao, Electron temperature probe experiments on the satellite "Taiyo", J. Geomag. Geoelectr., 27(1975), 321–330.
- 5) Oyama, K.-I., K. Hirao, C. S. Coray, T. Kato, H. Oya, T. Takahashi, and S.Watanabe, Electron temperature probe on board Japan's 7th scientific satellite 'Hinotori', Proceedings of the 13th International Symposium on Space Technology and Science, Tokyo, (1982), pp.1515–1523
- Oyama, K.-I. and K. Schlegel, Anomalous electron temperature above the South American magnetic field anomaly, Planet. Space Sci., 32(1984), pp.1513–1522.