超高速衝突に伴う電気的現象に関する基礎研究

小林正和(東海大)、田中真(東海大)、 牧謙一郎(JAXA)、相馬央令子(JAXA)、田中孝治(JAXA)

1.まえがき

微小隕石やスペースデブリは、宇宙機に超高速で衝突(相 対速度で数 km/sec~数+ km/sec)する。デブリ衝突検出に 関しては、レーダや光学望遠鏡を用いたものが知られてい る。レーダで確認できるスペースデブリの大きさは 10cm が限界であり、1cm 以上 10cm 未満のデブリへの対策が必 要である。

我々は約 1cm の飛翔体を加速器で加速させ、超高速衝 突において発生するマイクロ波の検出に成功した[1]。この 現象を応用し、すでにデブリ衝突を検出するシステムを提 案している[2]。これまで、ターゲットの材質や厚さの違い によりマイクロ波放射の程度が異なることを確認した。

本論文では、電波の偏波に着目し、飛翔体速度が 6.4~ 6.7km/sec 程度で衝突実験を行いメカニズムの解明を目的 とした。 2.実験の構成

図1に、実験系全体の構成を示す。飛翔体の加速器には 二段式軽ガス銃を用いる。ターゲットを設置するチャンバ 内は真空に保たれている。

各周波数帯における受信系の構成を図2に示す。22GHz 帯、5.8GHz帯、300MHz帯の3つの周波数帯を用いる。 22GHz帯、5.8GHz帯に関してはヘテロダイン方式を採用 しており、受信感度を高めるために低雑音増幅器(LNA)を 使用している。記録装置はサンプリング周波数4GHzのデ ジタルオシロスコープを用いる。観測時間は1msecである。

飛翔体は質量約 0.2g、直径 7mm の球形をしたナイロン で、ターゲット材料については厚さ 2~50mm のアルミ板 を用いた。アンテナは図 1 に示したようにチャンバ内に 2 つ、ターゲットの前面と裏面に設置した。距離は約 40cm である。また、チャンバ窓の近傍にもアンテナを設置し、 5.8GHz 帯においては水平偏波と垂直偏波のアンテナを 1 セットとして設置した。

図1 実験系全体の構成

図2 各周波数帯受信系構成

3.実験結果

3-1 チャンバ内およびチャンバ外の電波の比較

図3にターゲットの厚み25mmの衝突後の波形を示す。

図3 飛翔体速度 6.7km/s における衝突時の波形

図4に図3に示した衝突のターゲットの様子を示す。

図4 衝突後のターゲット前面(左)および裏面(右)の様子

チャンバ内の電波の振幅を比較すると、衝突後 100 μ sec 後の電波において、ターゲットの裏側に設置したアンテナ で受信した電波よりも、ターゲットの前面に設置したアン テナで受信した電波の方が振幅が大きいことが見て取れ る。また、チャンバ外に設置した水平および垂直偏波のア ンテナで受信した電波の振幅については大きな違いはみ られない。

3-2 水平および垂直偏波での違い

図5に水平偏波と垂直偏波のアンテナで受信した電波の 波形を示す。図3の青枠で囲まれたパルス信号を取り出し、 500MHz以上の信号をカットした信号をそれぞれ、青線と 赤線で示した。

図6に図5に示した信号の頭から1振幅目を取り出した 信号を示す。また、図7に図6に示した水平・垂直方向の 電場変化を電界ベクトルとし、1振幅分のベクトルの先端 の軌跡(電波の偏波)を示す。同様に図8・図9にも2振幅 目の信号をそれぞれ示す。

図5 水平および垂直偏波アンテナで受信した信

図7と図9を比較すると、円偏波の特性がみて取れる。 また、図7の1振幅目では時計回りの旋回であり、図9の 2振幅目では反時計回りの旋回であることがみて取れる。

4.考察

以前の研究では、22GHz帯、2GHz帯、300MHz帯の3 つの周波数帯で実験を行っていたが、今回新たに5.8GHz 帯を追加し、電波を受信することができた。5.8GHz帯に おいては今回初めてチャンバ内にアンテナを設置しター ゲットに対して前面と裏面で振幅の変化が見て取れた。図 4 に示した衝突後のターゲットの様子を見ると、前面には 大きなクレータができており、裏面まで貫通せずに出っ張 っている所がみて取れる。物の破壊の度合いによって振幅 が異なっている。

また、チャンバ外に設置した水平および垂直偏波のアン テナでは振幅に違いが見られ、円偏波の特性が確認できた。 しかし、同一方向の旋回ではなく振幅によって旋回報告に 異なりが見られた。今まで、1 つのパルス信号は同一地点 の物理現象だと考えられていたが、そうでない場合も考え られる。

衝突より 300 μ sec 後のチャンバ内のアンテナとチャン バ外のアンテナの電波の振幅を比較すると、チャンバ内の アンテナの方が衝突点までの距離が近いにも関わらず、振 幅が小さいことが見て取れた。ターゲットの破壊は既に終 了していることが考えられるのでチャンバ壁面に衝突し た破片による信号の可能性がある。

5.結論

本論文では、超高速衝突による電磁波放射のメカニズム 解明を目的として、以下の結論を得た。

過去の研究では、直線偏波のアンテナのみを様々な周波 数帯で計測を行っていた為、電波特性が不明であった。ま た、アンテナの設置場所もチャンバ外の窓近傍のみであっ た為、電波のビームパターンも不明であった。

本研究では、チャンバ内にアンテナを設置し、またチャ ンバ外のアンテナについては水平偏波と垂直偏波のアン テナを用い計測を行った。チャンバ内ではアンテナの位置 によって振幅の違いが見て取れ、チャンバ外では円偏波の

特性が見て取れた。

今後は、非金属製のチャンバで実験を行い、複数点にア ンテナを設置しより詳細な衝突時のビームパターン計測 を行うことによって、破壊と電波の関係性を明らかにする ことが期待できる。また、プラズマプローブによるプラズ マ計測やターゲットの電位変動、シミュレーションや高速 度カメラによる内部破壊の様子を複合的に行いメカニズ ムの解明を目指す。

謝辞

研究は、宇宙航空研究開発機構・宇宙科学研究所のスペー スプラズマ共同利用設備の二段式軽ガス銃を用いて行わ れました。二段式軽ガス銃の運用において長谷川直氏、小 野瀬直美氏に多大な助力を頂いて感謝しています。

参考文献

[1] T. Takano, Y. Murotani, K. Maki, T. Toda, A. Fujiwara, S. Hasegawa, A. Yamori and H. Yano, Microwave emission due to hypervelocity impacts andits correlation with mechanical destruction, J. Appl. Phys., vol.92, no.9, pp.5550-5554, Nov. 2002.
[2]相馬央令子,石井健太郎,牧謙一郎,高野忠,矢守章,マイクロ波によるデブリ衝突検出系の検討,第47回宇宙科学技術連合講演会, 1E7, 2003.

[3] K. Maki, E. Soma, M. Toshinai, T. Takano, A. Fujiwara, and A. Yamori, "MicrowaveEmission due to Hypervelocity Impacts and Its Dependence on Target Materials", Asia-Pacific Microwave Conference, vol. 2, Seoul, Korea, pp.587-590, Nov. 2003.