

スペースデブリ問題における 超高速衝突実験の役割

宇宙航空研究開発機構 研究開発本部 未踏技術研究センター 東出真澄

2013/12/19-20

日本における超高速衝突実験の現状と将来展望 研究会, 相模原

スペースデブリとは

Inter-Agency Space Debris Coordination Committeeによる定義

Space debris are all man made objects including fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that are non functional.

使用済みロケット

運用終了後の人工衛星

ロケット・衛星の破片

宇宙に大量に存在するゴミである!

なにが問題か?

デブリの衝突速度は、 低高度軌道では十数km/s、静止軌道では数百km/s

→ 微小デブリの衝突でも、運用中の人工衛星に 重大な損傷を与えることが可能

デブリの数が一定数に達すると 衛星の破砕によって発生したデブリが 連鎖反応的に増殖する (ケスラーシンドローム)

宇宙活動が不可能になる

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

2/38

デブリの軌道高度分布

低高度軌道のデブリ

1mm以上の微小破片も含めると、 1.5億個のデブリが存在すると言われている

低高度軌道のデブリ数

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

6/38

デブリ衝突による被害と頻度

低高度軌道におけるデブリの平均衝突速度は10km/s

衝突デブリ寸法	0.1 mm	0.1 ~ 1cm	1~10cm	> 10cm
衛星の被る被害	太陽電池 セルの 損傷等	_{ミッション} 能力の 部分的喪失	致命的な 損傷 (全壊)	完全なる 破壊
衝突頻度(高度 700km、20m ² で10 年寿命の低軌道 衛星)	25680 回	1.9 回	0.015 回	0.0012 回

微小デブリによる衝突被害を想定しておく必要がある

微小デブリの衝突例

©NASA

©NASA

DING LOG ID# 18

DIA .108

スペースシャトルの窓ガラ スのデブリ衝突痕。1992 年以降43回のフライトで 76枚のガラスを交換 (NASA提供)

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

8/38

ISSのデブリ衝突回避

ISS建設当初は年1回程度の回避だったが 現在は数カ月に1度の頻度の回避運用が必要になっている

Date of Maneuver or Close Approach	Object Avoided	Action Taken
2-April-2011	Fragmentation debris from Russian Cosmos 2251	Collision Avoidance Maneuver
28-June-2011	Debris apparently from Proton ullage motor breakup	Crew retreated to Soyuz due to insufficient time for maneuver
29-September-2011	Russian Tsyklon rocket body debris	Collision Avoidance Maneuver
13-January-2012	Fragmentation debris from Iridium 33	Collision Avoidance Maneuver
28-January-2012	Fragmentation debris from Fengyun-1C	Collision Avoidance Maneuver
24-March-2012	Fragmentation debris from Russian Cosmos 2251	Crew retreated to Soyuz due to insufficient time for maneuver

Recent ISS Debris Collision Risks

Ref. NASA Orbital Debris Quarterly News, 16 (2), 2012

軌道上の衝突事故

2009年2月10日 史上初めて活動中の2つの衛星同士が衝突

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

10/38

軌道上の衝突事故

衝突直後

軌道滞在時間

標準的な衛星 (面積重量比0.01m²/kg)の 軌道寿命

- 高度500kmで1~2年
- 高度650kmで約25年
- 高度800kmで200~300年

Ref. NASA Safety Standard - Guidelines and Procedures for Limiting Orbital Debris, 1995

積極的に除去しないと、 デブリの数は増加する

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

12/38

2006年に打ち上げを停止した場合の、低高度軌道のデブリ数予測結果

新たな打上を停止してもデブリは増えると予想されている → ケスラーシンドロームは既に起きている

デブリ問題とアプローチ

10cm以下のデブリは観測による軌道決定ができない

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

14/38

デブリ環境モデルの精度向上

「デブリ環境モデルの精度向上」に関連する、 超高速衝突実験が必要な研究課題

<u>デブリ生成モデル</u>
 → 衝突事故や破砕実験によって軌道上で発生する破片
 → デブリ衝突時に宇宙側に放出されるエジェクタ
 <u>軌道上での微小デブリ分布計測</u>
 → インパクトセンサ
 → 粒子捕集

NASA Standard Breakup Model

Johnson, N.L., et al., NASA's New Breakup Model of EVOLVE 4.0, *Adv. Space Res*, **28**(2001), pp. 1377-1384

構造物に40J/gを超えるエネルギで物体が衝突した場合に 生じる破片の分布をモデル化したもの

 $N_{cum}(L_C) = 0.1 (M_{tot})^{0.75} (L_C)^{-1.71}$ $L_C = (a + b + c) / 3$

L_c:特性長さ(m) M_{tot}:破片の総質量(kg) N_{cum}:L_c以下である破片の累積個数 a:破片の最も広い幅(m) b:破片の、a軸に直交する最も広い幅(m) c:破片の、a軸とb軸に直交する幅(m)

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

16/38

破砕モデルの課題

完全破壊と部分的な破壊による発生破片の違い

衝突エネルギが小さい場合

衝突位置による違い(人工衛星)

材料による違い

大型衛星と小型衛星では材料構成が異なる(推進系の有無) 複合材料の適用割合が拡大(衝突物も含む)

圧力容器の破砕(静止軌道)

Bariteau, M. et al., Modelling of Ejecta as a Space Debris Source, *Space Debris*, **2**(2000), pp. 97-107

	$M_e = K 7.41 \times 10^{-6} \ (\rho_p / \rho_t)^{0.5} \ E_p^{1.133} \cos^2(\vartheta)$
	$M_e = \beta M_{cone} + (1 - \beta) M_{spall}$
	$d_p \leq 1 \mu m$ のとき $\theta = 1$
	1 μ m< d_p <100 μ mのとき θ =-0.3log(d_p)-0.8
	d _p ≤1μmのとき β=0.4
	<i>M_e</i> : エジェクタの総質量 (kg)
	κ:ターゲット材に関する補正係数
	<i>E_p</i> : 飛翔体の運動エネルギ (J)
	$ ho_{p}$:飛翔体の密度 (kg/m³)
	ρ _t : ターゲットの密度 (kg/m³)
	∂: 衝突角度
	β:重み係数
	<i>d_p</i> : 飛翔体の直径 (m)
2013/12/19-20	日本における超高速衝突実験の現状と将来展望 研究会, 相模原

18/38

エジェクタモデルの課題

衝突物・被衝突物の材質による破片分布の違い

衝突物はアルミの試験がほとんど

太陽電池の表面, ハニカムサンドイッチパネル, MLI

衝突軸方向に噴出するエジェクタの測定法

構造物を貫通した場合

エジェクタの出にくい条件

軌道上でのデブリ分布計測

LDEF (Long Duration Exposure Facility) 1984~1989 EuReCa (European Retrievable Carrier) 1992~1993

Ref. 松本ら, 平成23年度スペースプラズマ研究会, 2012

2013/12/19-20

日本における超高速衝突実験の現状と将来展望 研究会, 相模原

20/38

インパクトセンサの課題

低高度軌道では、数百μmのデブリについて 実環境データが不足している

デブリ環境は時間変動しているので、 継続的な環境調査が必要 → 数百µm以外のサイズデータも有用

材質や速度もわかった方が良いが、 サイズだけでも十分に意味がある

安価でコンパクトなシステムが求められている

デブリ環境モデルの精度向上

「デブリ環境モデルの精度向上」に関連する、 超高速衝突実験が必要な研究課題

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

22/38

防御能力の向上・デブリ発生防止

「防御能力の向上」「デブリ発生防止技術の開発」に関連する 超高速衝突実験が必要な研究課題

低高度軌道の人工衛星では、1mm以下のデブリ衝突が問題

JAXAで実施した防御バンパ試験

構体外部に露出した構造を防御するために,形状に柔軟性の 高いバンパが必要とされている

→ 高強度繊維織布に着目

高強度繊維織布の貫通限界を評価する

- Alamido fiber (Kevlar produced by DuPont)
- Glass fiber covered with PTFE (Beta produced by Saint-Gobain)
- Ceramic fiber (Nextel produced by 3M)

Refs. Higashide, M. et al., *Proc. 29th ISTS*, 2013 東出ら, 平成23年度衝撃波シンポジウム, 2013 東出ら, 平成23年度スペースプラズマ研究会, 2013

2013/12/19-20

日本における超高速衝突実験の現状と将来展望 研究会, 相模原

26/38

試験装置

Two-stage light gas gun @ ISAS/JAXA

Sabot

貫通限界重さ

高強度繊維織布は アルミ板よりも 極めて軽量な バンパ材である

Kevlarバンパの重量は アルミ板の約30%

Betaバンパの重量は アルミ板の約60%

Nextelバンパの重量は アルミ板の約50%

日本における超高速衝突実験の現状と将来展望研究会,相模原

0.6

防御バンパ研究の課題

適用部分によって様々な制約がある(放射線環境,熱環境)

スタンドオフ距離による防御は,熱の問題で適用できない 部分も多い

MLIの防御効果を評価する必要がある

進展部をどのように防御するか

バンパへの衝突で生じたエジェクタが衛星に及ぼす影響

試験後の供試体(1)

Projectile: φ0.3mm, Impact velocity: 5.9km/sec

Front

Back

Inside wall

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

34 / 38

衝突で生じたデブリ雲はハニカムセル内に閉じ込められる

数値解析

Ref. Nitta, K. et al, Procedia Eng., 58, 2013

2次デブリの拡散がハニカムコアによって妨げられ、 後壁の損傷を増加させていることを確認

2013/12/19-20

日本における超高速衝突実験の現状と将来展望研究会,相模原

36/38

損傷リスク評価の課題

貫通・非貫通が問題でない場合も多い

衛星にとっては電気的損傷の方が致命的

電線は宇宙空間にむき出しになっていることも多い → 直径2mm程度の電線が束になっている

設計者にとっては、構体内部はデブリの影響を考えなくとも 良い、という状況が望ましい

構体によく使用されるハニカムサンドイッチパネルへ 衝突試験を実施した結果, 0.2mm以上のデブリは 貫通してしまった

2013/12/19-20 日本における超高速衝突実験の現状と将来展望研究会,相模原 38/38