

Two-station method with variable mean ionospheric height for latitudinal GRBR-TEC estimation

Kornyanat Watthanasanamechai (RISH, Kyoto Univ.) Mamoru Yamamoto (RISH, Kyoto Univ.) Akinori Saito (Geophysics, Kyoto Univ.)

Introduction

- Latitudinal distributed GRBRs can detect latitudinal structure of TEC with the wide coverage.
- Mean ionospheric height variation is a function of latitude.
- Presumption: Using the variable ionospheric height in stead of a single height may better reveal some longitudinal variation of the GRBR-TFC.
- Estimate of the absolute GRBR-TEC is not easy.
- Estimate technique for GPS-TEC is well established.
- To utilize advantages of both GRBR and GPS networks, the GRBR-TEC is determined by employing the GPS-TEC as an initial guess.

GNU-Radio Beacon Receiver (GRBR)

- GRBR is an "open" digital receiver to measure total electron density of the ionosphere.
- The system is based on GNU Radio. (toolkit for software-defined radio)
- Developed in RISH. (http://www.rish.kyotou.ac.jp/digitalbeacon/)
- Receiving dual frequency data from LEO satellites.
 - C/NOFS (E-W), 400km-orbit
 - DMSP (N-S), 830km-orbit.
 - COSMOS (N-S), 1000km-orl
 - RADCAL (N-S), 800km-orbit

Data and methods

GRBR (5 stations)

GPS (17 stations)

TEC was calculated from the phase leveling technique. [Yamamoto. M, 2008 Absolute TEC = (measured TEC + Bias) *cosine(zenith angle of the satellite)

Effects on GRBR-TEC

- Ionospheric height effect → Employ variable ionospheric
- (The mean ionospheric height used in this work is "hmf2 + 50" (km).) ✓ Bias effect → Employ the GPS-TEC as 0th guess.

- · Known glat, glong.
- Lookup table for ionospheric height at glat, glong from IRI-2012 model.
- Calculate the IPP lat and long from that height.
- Lookup table for ionospheric height at IPP lat and long from IRI-2012 model.
- Converse slant TEC to absolute TEC at the IPP with the IPP height.

GRBR-bias dataset (1st iteration)

Oth guess based on GPS-TEC

RMSE calculation 1

- Find the intersect latitude of each station with 1-degree sampling rate.
- · Calculate the square-error for every station-pairs.
- Average the square-errors. MSEs are gotten here.
- Calculate the square-root of the MSE. RMSE is gotten.

$$SE1_{lat} = (TEC_{1,lat} - TEC_{2,lat})^2 + (TEC_{1,lat} - TEC_{3,lat})^2 + (TEC_{1,lat} - TEC_{4,lat})^2 + (TEC_{1,lat} - TEC_{5,lat})^2$$

$$SE2_{lat} = (TEC_{2,lat} - TEC_{1,lat})^2 + (TEC_{2,lat} - TEC_{3,lat})^2 + (TEC_{2,lat} - TEC_{4,lat})^2 + (TEC_{2,lat} - TEC_{5,lat})^2$$

$$SE3_{lat} = (TEC_{3,lat} - TEC_{1,lat})^2 + (TEC_{3,lat} - TEC_{2,lat})^2 + (TEC_{3,lat} - TEC_{4,lat})^2 + (TEC_{3,lat} - TEC_{5,lat})^2$$

$$SE4_{lat} = (TEC_{4,lat} - TEC_{1,lat})^2 + (TEC_{4,lat} - TEC_{2,lat})^2 + (TEC_{4,lat} - TEC_{3,lat})^2 + (TEC_{4,lat} - TEC_{5,lat})^2$$

$$SE5_{lat} = (TEC_{5,lat} - TEC_{1,lat})^2 + (TEC_{5,lat} - TEC_{2,lat})^2 + (TEC_{5,lat} - TEC_{3,lat})^2 + (TEC_{5,lat} - TEC_{4,lat})^2$$

$$MSE1 = \frac{1}{\Delta lat} \sum_{Lat = start}^{end} SSE1_{lat}, MSE2 = \frac{1}{\Delta lat} \sum_{Lat = start}^{end} SSE2_{lat}, MSE3 = \frac{1}{\Delta lat} \sum_{Lat = start}^{end} SSE3_{lat}$$

$$MSE4 = \frac{1}{\Delta lat} \sum_{Lat = start}^{end} SSE4_{lat}, MSE5 = \frac{1}{\Delta lat} \sum_{Lat = start}^{end} SSE5_{lat}$$

$$SSE5_{lat} = \frac{1}{\Delta lat} \sum_{Lat = start}^{end} SSE4_{lat}, MSE5 = \frac{1}{\Delta lat} \sum_{Lat = start}^{end} SSE5_{lat}$$

$$SSE5_{lat} = \frac{1}{\Delta lat} \sum_{Lat = start}^{end} SSE3_{lat}$$

$$SSE5_{lat} = \frac{1}{\Delta lat} SSE3_{lat}$$

$$SS$$

RMSE calculation 2

11⁵ RMSEs are calculated regarding to the number of the bias sets.

Find the bias set which yield the minimum RMSE.

Result: variable height method

• Two crests of the EIA enhancement on March 24, 2012 (an equinox day) at pre-sunset hour are seen from the GRBR-TEC. They shift southward.

> It may be due to the meridional wind associated with Equatorial Temperature and Wind Anomaly (ETWA) which is linked to EIA. [Devasia et al., 2002].

GRBR-bias dataset (2nd iteration)

Error Analysis (1)

• Latitudinal gradient of the TEC in equatorial region is quite large.

• Two-station method assumption: ATEC₅₁ = ATEC₅₂ However, with large gradient, e⁻ density_{S1} >> e⁻ density_{S2} Thus, ATEC_{s1} ≠ ATEC_{s2} # 2 #1 Earth 13

Suggestion based on Error Analysis(1)

- Latitudinal gradient of the TEC in mid-latitude area is not large compared with that in equatorial \rightarrow Verify this technique with mid-latitude data.
 - Two-station method assumption: ATEC₅₁ = ATEC₅₂
 - Without large gradient, e⁻ density_{s1} ≈ e⁻ density_{s2}
 - Thus, ATEC_{s1} ≈ ATEC_{s2}
 - Tomography technique is one of the candidates

to solve the mentioned problem.

350 km

2 Earth

Suggestion based on Error Analysis(2)

16

- Run the IPP estimation process with more iterations to try to approach the true IPP.
- Employ the hmF2 from ionosonde instead of IRI-2012 hmF2.
 - There are 3 available ionosondes at 100-degree longitude sector.
 - Interpolation and extrapolation are needed if ionosonde hmF2 is used.

[Courtesy of SEALION project (NICT)]

first order linear interpolation and extrapolation

Comparison of ionosonde-hmF2 and IRI-hmF2 on March 24, 2012.

Error Analysis (2)

- Location error from Ionospheric Piercing Point (IPP) estimation process (variable height method).
 - Unrealistic IRI-2012 hmF2
 - o For equatorial region, TE and convergent wind effect on hmF2 is not included in the

Discussions and conclusions

- Variable ionospheric height based on the hmf2 value from IRI-2012 model was applied.
- The bias adjustment algorithm for the GRBRs with meridional alignment has been developed by employing the 0th guess technique based on the GPS-TEC.
- The two- station method was successful to derived GRBR-TEC from polar orbit satellite. We used 5 stations, and were finding minimum of RMSE by the "brute-force attack "" way.
- The GRBR-TEC calculated from the proposed method can reveal the latitudinal variation of the TEC in the low latitude region.

Future works

- Employ the ionosonde data to estimate the IPP height for variable height method.
- Confirm GRBR-TEC with ionosonde TEC.
- Extend the dataset to include new GRBR-chain in Malaysia and latitudinal GRBR-chain in Japan as well.
- Further investigate an efficiency of the proposed method with a number of events and conditions.
- · Comparing the ground-based data (GPS, GRBR, etc.) with the satellite-based data from the ISS-IMAP project (630 nm airglow).