Software Development for Wind Profiler Signal Processing Using Python

with NumPy and SciPy

Noor Hafizah Binti Abdul Aziz'?, Masayuki K. Yamamoto', Toshiyuki Fuj ita',
Hiroyuki Hashiguchi', Mamoru Yamamoto'
'Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Japan.
2Fa(:ulty of Electrical Engineering, Universiti Teknologi MARA (UiTM), Malaysia.

1. Introduction

Wind profiler is a useful means to measure altitude profiles of vertical and horizontal wind
velocities with high time and vertical resolutions (Hocking, 2011). Range imaging (RIM) is a
technique that improves range resolution down to several ten meters by using frequency
diversity and adaptive signal processing. RIM is useful for resolving fine-scale structure of
atmospheric instability such as Kelvin-Helmholtz billows. Therefore RIM can be used for
early detection of small-scale turbulence. In order to develop an algorithm that detects the
small-scale turbulence automatically, a software with high portability (i.e. work under
multiple platform) and generality (i.e. written by popular software language) is required to be
developed. In developing software, we are using Python with SciPy and NumPy libraries.

2. USRP2 as a Radar Digital Receiver

USRP2 (Universal Software Radio Peripheral 2) is a software defined radio receiver. USRP2
is controlled by UHD (‘Universal Software Radio Peripheral’ Hardware Driver). UHD is
available from C++ and Python. Software defined radar receiver is able to be developed using
free and popular software languange. Because USRP2 does not have trigger terminal to start
and stop data sampling, the leakaged of transmission signals are used for ranging.
Oversampling facility is easy to be implemented because of high-time resolution data
sampling up to 25 MHz is available. Data were collected by USRP2 and 1.3-GHz LQ7
transmission system (Imai et. al., 2007).

3. Python with NumPy and SciPy

Python runs on Windows, Linux/Unix, Mac OS X, and has been ported to the Java and .NET
virtual machines which is free to use, even for commercial products, because of its OSI-
approved open source license. SciPy library is built to work with NumPy arrays which is the
fundamental package needed for scientific computing with Python. NumPy and SciPy contain
a powerful N-dimensional array object, sophisticated functions such as linear algebra, Fourier
transform, and random number capabilities. Indexing like operations can be used in this data
signal processing (example ‘numpy.where’ which returns array indices which satisfy given
conditions). Other useful mathematical operators such as numpy.mean, numpy.max,
numpy.empty, numpy.sum, numpy.array, numpy.copy and numpy.dot is used to increase the
calculation and coding efficiency. Using Python, radar signal processing software has been
developed in order to estimate spectral parameters (i.e. echo power, Doppler velocity and
Doppler velocity variance).

4. Signal Processing Flow

The signal processing starts from IQ signal detection and analog to digital (A/D) conversion
which had been processed in USRP2. In the PC, the IQ signals are ranged, decoded, and
averaged in time (i.e. coherent integration). Subsequently, in offline signal processing which
developed using Python with NumPy and SciPy, it is divided into two parts: time series
signal processing focused on clutter rejection and spectral parameter estimation. In the time
series signal processing, DC component had been removed and then high-pass filtering is
done by running mean method. Ranging, decoding and coherent integration are processed by
online or offline. In the second section, there are three calculations: Doppler spectrum
calculation by FFT, noise level estimation and spectral parameter (i.e. echo-power, Doppler
velocity and Doppler spectrum) estimation by moment method.

Figure 1 shows a result of time series signal processing. Figure 1a shows a raw 1Q time series
data, and red and black curves show real and imaginary component, respectively. Figure 1b
shows a time series after DC component is removed (black and red curves). Low frequency
1Q signals computed by 100 points running average are shown by blue (real component) and
purple (imaginary component) curves. Figure 1¢ shows the time series after the running-
averaged data are subtracted (i.e., highpass filtered data). The time series data shown in
Figure Ic are used for spectral moment estimation.
a) Raw time series

Raw Timeseries ib=4 ifreq=0 ih=10
20000

- ﬁ e ﬂl/ | i m“fgnfﬂw%ﬂn u/n mﬂ«’«’ﬁﬂw\un Jl i ,MU ¥ m\
=M

b) DC had been removed and low-frequency signals computed by 100 points running average

20000

o
——

=

Ampltude
(=]
et

I
—
B 1

[
=]
e_—————=
-
=
=~
=

real —
imag ——
15000 - 0 smooth_real ———
I smooth_imag ———

K "»\ALA..'.‘.. “ i) l'“‘ ’*"!f‘y'"""!‘!i'!""i m,‘ 'ﬁ,!‘“"'*“"""""f*r"“ﬁ,""

=P

¢) Running average data is subtracted

Ampltude

real
imag

f\ JW AT el
I f | |

Ampltude
[=]

-15000 |

o 100 200 300 ao0 500
Data point

Fig. 1 : Example of received time series.

Figure 2 shows a result of spectral data using the time series shown in Figure 1. Red curve is
a Doppler spectrum computed from raw time series (see Figure la) and black curve is a
corrected Doppler spectrum from high-pass filtered time series (see Figure 1¢). Clear-air echo
exist in the range between 2 to 3 ms™ and noise level is 92 dB. For executing FFT,
scipy.fftshift and scipy.fftpack are used.

Spectral Data Filtered and Interpolated ib=4 ifreq=0 ih=10

130 T T . T T : :
raw spectral data ——
filtered spectral data ——
120 interpolated spectral data ——
noise levei ——
1o | Doppler velocity
g 100 ¢
= b
E. | “'i ALl 1 'I l | 1 Pr’ Hil i F[|.1J’. l’ _ ! 'l
90 Mk | p
¢ !X W”"HW I U]H Wi
. ' ! Bl
80 (|
|
70 §
60 1 1 1 1 1 | 1

15 10 5 0 5 10 15
Doppler Velocity [ms ']

Fig. 2 : Example of spectral data.

In spectral parameter estimation, the following procedures are taken. (i) Noise level
calculation using Hildebrand (1974), (ii) 5 points running mean (smoothing) to the Doppler
spectra, (iii) peak search, (iv) determination of continuous Doppler velocity range where
received power is greater than threshold (noise level + 3x(noise standard deviation)), and (v)
spectral parameter estimation using the moment method. In the all procedures, numpy.where
and numpy.max are used. Figure 3 shows a result of spectral parameter estimation. The black
curve is raw Doppler spectrum and green curve is smoothed Doppler spectrum. The Doppler
velocity range selected by smoothed Doppler spectrum and the threshold (blue dotted line) is
used for spectral parameter estimation such as echo power, standard deviation and Doppler
spectra. These calculations use numpy.mean, numpy.where and numpy.max.

raw_timeseries_rec00000000.txt ib=04 ifreq=00 ih=0010 range=1650m

140 ! | | | _ -
135 - Doppler.Velocity.=-2.81-ms’ : ;

130 - Doppler-Std..Dev. = 0.47.ms"!
125 .- Signal Power = 132.27.dB

120 ... Noise Level = 92.653 dB

115 ... Noise St
110 o SNR=12534B
105

Echo Power [dB]

R RN W VL wzﬁmﬁf\/ﬂ'
URRTRTIL RRLURIA

il

80 1 11l | IHI T | 1 T T : H T T
Doppler Velocity [ms™']

Fig. 3 : An example of spectral parameter estimation result.

5. Oversampling Result

Figure 4 shows a spectral parameter estimation result using original range resolution
determined by 1-pus transmitted pulse width (150m), and Figure 5 shows a result of 10 times
oversampling. The result demonstrates that even the simple oversampling can reveal the fine-
scale vertical changes of received signals. The vertical variability of Doppler spectra is much
clearer than no-oversampling scale. Therefore, oversampling is useful for high accurate
reproduction of turbulence structure by further using RIM and for developing an algorithm to
reveal fine-scale turbulence structure by decorrelating signals in range.

6. Conclusion

A radar signal processing software necessary for building detection algorithm of small-scale
turbulence using RIM is being developed using Python with NumPy and SciPy package. Our
results demonstrate that Python with NumPy and SciPy is a powerful tool for radar signal
processing. The software includes the following functions remove clutter signals by high pass
filtering, calculate Doppler spectrum using FFT, estimate noise level using method by
Hildebrand (1974), find the Doppler velocity range where radar echo exists, and estimate
spectral parameters with good accuracy. We showed the example that the software we
developed is useful for mitigating clutter signals. Further we showed a capability of
oversampling to reveal fine-scale structure of radar echo and wind velocity. Further
development will be show in subsequent studies.

ib=04 ifreq=00 range=2100m

[R (|
+

120 o0 .
2000
1800
120
1600
1400
1 110
E 1200
)
(=)
&
o« 1000
100
800
600
90
400 l;‘
|
o /
80 4 L4l 1 1
8 6 2 0 2 4 6 8 100 110 120 130 140 150 160 -20 -10 0 10 20 30 40
Doppler Velocity [ms ') Signal Intensity [dB]
Fig. 4 : Result using 150-m resolution (i.e., without oversampling).
ib=04 ifreq=00 range=2100m
PI Ty .-i- A0 l|| g o '|-'I.’ T ¥ ;‘I ".‘ 130 T T T
2000 j =5) v, A
Pl
1800
120
1600
1400
4 110
E 1200
)
(=]
c
& 1000 | am i
. 100
800
600
90
400 [
200
80 — 1 1 Il *

SNR [dB]

M T

2 0 2 4 6 8
Doppler Velocity [ms ') Signal Intensity [dB)

Fig. 5 : Result using 10-times (15-m) oversampling.

SNR [dB]

100 110 120 130 140 150 160 -20 -10 0 10 20 30 40

Acknowledgement

This research was supported by Adaptable and Seamless Technology Transfer Program
through Target-Driven R&D (A-STEP) Exploratory Research (Research No.
AS2327Z00186A).

References

1. Hildebrand, P.H., and Sekhon, R.S., Objective Determination of the Noise Level in
Doppler Spectra, Appl. Meterol., 13, 808-811, 1974.

2. Hocking, W.K., A review of Mesosphere-Stratosphere-Troposphere (MST) Radar
Developments and Studies, circa 1997-2008, Journal Atmosphere Solar Terr. Phys., 73,
848-882,2011.

3. Imai, K., Nakagawa, T., and Hashiguchi, H., Development of Tropospheric Wind Profiler
Radar with Luneberg Lens Antenna (WPR LQ-7), Sumitomo Electric Technical Review,
38-42,2007.

