スプライトストリーマと不均一ヘイローの関係

三宮 佑介 ^{1*}, 高橋 幸弘 ¹, 佐藤 光輝 ¹, 工藤 剛史 ¹, 小林 縫 ¹, 山田 大志 ¹, 島 侑奈 ¹, NHK 宇宙の渚 ², H. Stenbaek-Nielsen³, M. McHarg⁴, R. Haaland⁵, T. Kanmmae³, S. Cummer⁶, Y. Yair⁷, W. Lyons⁸

北海道大学, 2. NHK 宇宙の渚プロジェクト 3. Geophysical Institute (GI), Univ. of Alaska, Fairbanks, 4. US Air Force Academy, 5. Fort Lewis College, 6. Duke University, 7. Open University of Israel, 8. FMA Research

1. はじめに

雷雲地上間放電に伴う高高度放電発光現象は成層圏,中間圏,熱圏下部で発生し,その中 で最も主要な現象の一つに挙げられるのがスプライトである.スプライトは主に正極性の 雷雲地上間放電(+CG)に伴い,+CG開始後数msから100ms後に発生し,その発光継続時 間は10から100msであることが明らかにされている.またスプライトは発光の際にスト リーマ放電による微細構造を持つ事も明らかにされている.そのストリーマ放電に先行し て,しばしばスプライトへイローと呼ばれるぼんやりとした発光があるスプライトヘイロ ーの内部には不均一構造が確認されており,スプライトへイローの下部から発生するスプ ライトストリーマとの関係が指摘されている.そこで本研究では,先行するスプライトへ イローとそれに続くスプライトストリーマの関係を調べ,ストリーマの発生条件やメカニ ズム解明を明らかにする事を目的としている.今回は,NHK「宇宙の渚」プロジェクトのた めに実施された観測キャンペーン中に航空機から観測されたハイスピードカメラによる観 測画像を用いて,スプライトへイローからスプライトストリーマへの進展速度を計算した.

観測・解析概要

北海道大学のグループは NHK, アラスカ大学フェアバンクス校, デューク大学, アメリ カ空軍アカデミーなどと協力し, 2011年6月26日から2011年7月11日までアメリカコロ ラド州においてスプライト航空機観測キャンペーンを実施した.このキャンペーンは, 世 界で初めてスプライトを航空機2機からハイスピードカメラにより同時に観測する事に成 功した.NHKチームが搭乗する航空機には, PhantomV710ハイスピードカメラとEMCCD カメラを, アラスカ大チームが搭乗する航空機には, PhantomV7.1 ハイスピードカメラと ビデオフレームレートのパンクロマチック CCD カメラ(Watec WAT-902 ULTIMATE)をそ れぞれ搭乗した.ハイスピードカメラのフレームレートは共に8,000から10,000 fps である. 本キャンペーンで航空機のハイスピードカメラによって同時観測されたスプライトは28イ ベントであり, どちらか一方のハイスピードカメラのみ観測されたイベントを合わせると 60イベントを越えるスプライトを観測出来た. 観測されたイベントの内, PhantomV710 で 観測された 2011 年 7 月 5 日 08:50:50UT に観測されたイベントについて, スプライトヘイ ローとスプライトストリーマの進展速度を,1 フレーム毎に進展位置を記録し計算した.

3. 結果

2011 年 7 月 5 日 08:50:50UT に観測されたイベントの親雷放電の位置は北緯 44.8232 度, 西経 96.4024 度,航空機の位置は北緯 46.7444 度,西経 96.5138 度,ピーク電流値は 102 kA, であった.このイベントについて,図1に発光開始から4 msを積分した画像を示す.図1 の①と②はそれぞれ今回,進展速度を計算したスプライトへイロー,スプライトストリー マに関係するカラムを示している.図1 中の黄破線はストリーマが進展した水平スケール を表している.図2aはスプライトへイローの不均一構造を,図2bはそれに続くスプライト ストリーマとカラムを示した.図2aのスプライトへイローの周囲より明るい部分の分布が 図2bのカラムの分布と一致しているように見える.

図 1. 発光開始から 4 ms を積分した画像

図 2. (a) スプライトヘイローの不均一構造, (b) スプライトストリーマとカラムの水平分布

3-1. 図1の①の部分について

続いて観測されたスプライトのハイスピード画像から進展位置を1フレーム毎に記録し, 求めた進展速度について示す.図3は,図1に示した①の部分について記録した進展の位置 をプロットしたものである.スプライトストリーマが進展するにつれ3度分岐しており,そ の分岐点を分岐 a,分岐 b,分岐 c とした.

図3.図1の①の部分についてスプライトストリーマの進展位置のプロット

図 4(a)は進展位置の時間変化を示しており,横軸が時間,縦軸が高度である.また,図 4(b)は鉛直方向の進展速度を示しており,横軸が時間,縦軸が速度である.それぞれの線の 色と分岐点は図3と対応している.(※時間は親雷放電発生時ではなく,任意)

図 4. (a) 進展位置の時間変化, (b) 鉛直方向の速度

スプライトヘイローからスプライトストリーマまで継続して鉛直方向の速度を計算して みると、図4(b)のような速度変化が見られた.スプライトヘイローの下部からスプライトス トリーマが進展し始めたのは、およそ 0.8 ms 辺りであった.また、ピーク速度は 8.0×106 m/s であり、その後は指数関数的に速度が減少していくように見える.

3-2. 図1の②の部分について

図5は、図1に示した②の部分について記録した進展の位置をプロットしたものである. スプライトストリーマが進展するにつれ5度分岐しており、その分岐点を分岐d、分岐e、分 岐f、分岐g、分岐hとした.図6(a)は進展位置の時間変化を示しており、横軸が時間、縦軸 が高度である.また、図6(b)は鉛直方向の進展速度を示しており、横軸が時間、縦軸が速度 である.それぞれの線の色と分岐点は図5と対応している.(※時間は親雷放電発生時ではな く、任意)

図5. 図1の②の部分についてスプライトストリーマの進展位置のプロット

図 6. (a) 進展位置の時間変化, (b) 鉛直方向の速度

②についても①と同様にスプライトストリーマの鉛直進展速度を計算した.ストリーマ が進展し始めたのは、およそ 0.6 ms 辺りであった.また①の速度ピークのタイミングとは 違い、②の速度ピークは記録し始めの 9.1×10⁶ km であった.速度の減少は①と同様に指数 関数的である.

4. まとめ

本研究では、2011年6月26日から2011年7月11日までの間にNHK「宇宙の渚」プロ ジェクトの観測キャンペーンで、航空機により撮影された光学データをもとにスプライト ヘイローとスプライトストリーマの進展速度を計算した.今回のスプライト観測キャンペ ーンでは28イベントのスプライトを2機の航空機から同時にハイスピードカメラで観測し、 どちらか一方のハイスピードカメラで観測できたイベントを含めると、60イベントを越え る.

今回は観測された 2011 年 7 月 5 日 08:50:50UT のイベント中の 2 か所のスプライトヘイ ローの不均一部分に注目し、スプライトヘイローとスプライトストリーマの関係を調べる ための初期解析として、進展速度を継続して求めた.同じイベント中で進展速度を比較し た結果、ピーク速度は異なり、また速度が減少していく様子はどちらも指数関数的である ことがわかった.

今後はさらにイベント数を増やし、イベント毎の速度変化の特徴を調べる必要がある. さらに光量の度数分布や、二次元 FFT 法を用いることによって、より詳細なスプライトへ イローの不均一構造を捉え、スプライトストリーマ発生の位置との関係を明らかにする必 要がある.

(b)

参考文献

[1] Luque, A and U. Ebert, Emergence of sprite streamers from screening-ionization waves in the lower ionosphere, Nature Geoscience, PP757-760, October 2009, DOI:10.1038/NGEO0662.

[2] Stenbaek-Nielsen, H. C., M. G. McHarg, High time-resolution sprite imaging: Observations and implications, J. Phys. D: Appl. Phys., 41, pp234009

[3] Moudry, D., Stenbaek-Nielsen, H. C., Sentman, D., and Wescott, E., Imaging of elves, halos and sprite initiation at 1ms time resolution, Journal of Atmospheric and Solar-Terrestrial Physics 65 (2003) 509-518, DOI: 10.1016/S1364-6826(02)00323-1