宇宙機材料へのデブリ衝突によるマイクロ波放射

相馬 央令子,牧 謙一郎(JAXA),長岡 洋一(総研大),田中 孝治(JAXA), 高野 忠(日大),長谷川 直(JAXA)

1. まえがき

微小隕石やスペースデブリは、宇宙機に超高速 で衝突(平均10km/sec)する[1].現在、スペース デブリの対策として、飛翔しているデブリの観測 と、宇宙機に直接デブリ検出計を設置し衝突した デブリを確認する方法がある[2].飛翔しているデ ブリの観測は、レーダや光学望遠鏡[3]を用いたも のが知られている.レーダで確認できる飛翔する 宇宙デブリの大きさは10cmが限界である[4].こ れより、1cm以上10cm未満のデブリへの対策が 必要となる.

我々は約1cmの飛翔体を加速器で加速させ,超 高速衝突において発生するマイクロ波の検出に成 功した[5]. この現象を応用し,すでにデブリ衝突 を検出するシステムを提案している[6].これまで, ターゲットの材質や厚さの違いによりマイクロ波 放射の程度が異なることを確認した.

本論文では、衝突速度を 3.9~4.9km/sec とし、 ターゲットに実際に宇宙機に用いられているアル ミ表皮と CFRP 表皮のアルミハニカムサンドイッ チパネルを用いる.得られた観測波形からマイク ロ波放出電力を計算し、ターゲットの破壊の規模 との関連を明らかにする.

2. マイクロ波観測システム

図1に,超高速衝突により発生するマイクロ波 を検出する地上実験系を示す.飛翔体の加速器に は二段式軽ガス銃を用いる.ターゲットを設置す るチェンバー内は真空で保たれている.チェンバ 一窓の近傍に受信アンテナを設置する.

受信系を図2に示す.22GHz,2GHzの2つの周 波数帯を用いる.両周波数帯ともヘテロダイン方 式を採用し,受信感度を高めるために低雑音増幅 器(LNA)を使用している.各受信系の観測周波数 (RF)帯域,中間周波数(IF)帯域,利得を表1 に示す.記録装置はサンプリング周波数4GHzの ディジタルオシロスコープを用いる.観測時間は

Imsec である. 飛翔体は質量約 0.2g, 直径 7mm の球形をしたナ イロンで、ターゲット材料については次節で説明 する.また、アンテナとターゲット間距離は 40cm である.

MEMORY

図 2. 22GHz 帯, 2GHz 帯受信系

表 1. 受信系特性			
周波数带	RF 帯域	IF 帯域	利得
[GHz]	[GHz]	[MHz]	[dB]
22	22 - 23	0 - 500	83
2G	1.85-2.25	0 - 120	54.15

3. ターゲット材料

実験で用いるターゲットの材料特性を表 2 に示 す. 今回用いるターゲットは,一般的に宇宙機の 外部から見えるほとんどの構造材料に使われてい るハニカムサンドイッチパネルである. ハニカム サンドイッチパネルは,蜂の巣状のハニカムコア とそれをはさむ表皮からなる. ハニカムコアの材 料は,質量の軽いアルミが一般的である.表皮は, 目的によってアルミ, CFRP などが用いられる. アルミ表皮ハニカムサンドイッチパネル(以下ア ルミハニカム)は,衛星構体を構成するパネルのう ち,搭載機器からの発熱をできるだけ拡散する目 的から電子機器を搭載する部分に用いられる. CFRP 表皮ハニカムサンドイッチパネル(以下 CFRP ハニカム)は,軽量化の目的から電子部品の 無い部分に多く用いられる.

表 2. ターゲットの材料特性

No.	材 料	特 性
1	アルミ表皮	大きさ:110 mm x 110 mm
	アルミハニカム	表皮:Al7074-T81
	サンドイッチパ	厚さ=0.6mm
	ネル	コア:1/4-5056-0007p
		パネル厚さ 25mm
2		大きさ:100 mm x 100 mm
		表皮: Al 2024 - T81
		厚さ=0.635mm
		コア:1/8-5056-0007p
		パネル厚さ 25mm
3		大きさ:100 mm x 100 mm
		表皮: Al 2024 - T81
		厚さ=0.635mm
		コア:1/8-5056-0007p
		パネル厚さ 25mm
4	CFRP 表皮	大きさ:110 mm x 110 mm
	アルミハニカム	表皮:CFRP=M60J 3ply
	サンドイッチパ	クロス材 厚さ=0.3 mm
	ネル	コア:1/4-5056-0007p
		パネル厚さ 25 mm
5		大きさ:148 mm x 110 mm
		表皮:CFRP=M60J 3ply
		クロス材 厚さ=0.3 mm
		コア:1/4-5056-0007p
		パネル厚さ 25.4 mm
6		大きさ:149 mm x 100 mm
		表皮:CFRP=M60J 3ply
		クロス材 厚さ=0.3 mm
		コア:1/4-5056-0007p
		パネル厚さ 12.7 mm

4. 実験結果

4-1.アルミ表皮ハニカムパネルの場合

アルミハニカムの衝突後のターゲット(No.1)を 図3に示す. 衝突速度は4.93km/sec である. 飛翔 体はターゲットを貫通し、表の表皮に直径 1cmの 円形の穴を作り、ハニカムコアの9割、裏の表皮 の 1/3 を吹き飛ばしている. なお, 全ての実験に おいてターゲットの裏面が縦方向に破壊されてい るのは、ターゲットが縦に平行した2本の鉄骨に 設置されていたためである.

図4にこの時のマイクロ波観測波形を示す.横 軸は時刻,縦軸は電圧で,衝突時刻は 51.7usec で ある. 22GHz 帯, 2GHz 帯共に断続した強い信号 が 100µs 付近から 900µs 以上続いているのがわか る.時間の経過と共に、信号の出現間隔が徐々に 広がり、レベルも低くなってきている. 両周波数 帯ともにほぼ同じタイミングで信号が出ている.

また、受信系の特性で電圧値が飽和しているた め、実際の信号はこれより大きいと考えられる. この回のみ 22GHz 帯は受信系の調整ミスにより, マイナス側の信号が出ていない.

アルミハニカムの衝突後のターゲット(No.2)を 図5に示す. 衝突速度は4.49km/sec である. 表の 表皮が直径約 8mm, 裏の表皮が全体の 1/3 破壊さ れ, ハニカムコアは全体の 1/4 吹き飛ばされてい る.

アルミハニカムの衝突後のターゲット(No.3)を 図 6 に示す. 衝突速度は 3.89km/sec である. 表の 表皮が直径約 8mm, 裏の表皮が全体の 1/9 破壊さ れ、ハニカムコアは全体の 1/5 吹き飛ばされてい る.

マイクロ波は No.1 の実験と同様に, No. 2, No.3 共に断続した強い信号が衝突時刻から 600µs 以上 続いている.

図 5. 衝突後のターゲット(アルミハニカム)No.2

(b)裹

図 6. 衝突後のターゲット(アルミハニカム)No.3

4-2.CFRP 表皮ハニカムパネルの場合

CFRP ハニカムの衝突後のターゲット(No.4)を 図 7 に示す. 衝突速度は 4.21km/sec である. 飛翔 体は,ターゲットを貫通し,表の CFRP 表皮を直 径 10mm,裏の表皮を直径 40mm 破壊し,ハニカ ムコアの 1/9 を吹き飛ばしている. こちらも,ア ルミハニカム同様に表の表皮より裏の表皮の方が 破壊が大きい.

図8にマイクロ波観測波形を示す. 衝突時刻は 61.3µsec である. 22GHz 帯では, 衝突後すぐに強 い応答が 150µsec 程続き, その後は広範囲で雑音 レベルに近い信号が断続的に出現している. この 回のみ受信系の調整ミスにより, マイナス側の信 号が出ていない.

2GHz 帯では、衝突後 150µsec 後に高いレベルの 信号が 150µsec 程続いている. その後は 22GHz 帯 と同様にして、広い間隔で雑音レベルに近い信号 が継続している. 22GHz 帯と 2GHz 帯で信号のタ イミングの一致は見られない.

アルミハニカムと比較すると、両周波数帯共に 応答がだいぶ少なくレベルも低くなっている.

(a)表 (b)裏 図 7. 衝突後のターゲット(CFRP ハニカム)No.4

CFRP ハニカムの衝突後のターゲット(No.5)を 図 9 に示す. 衝突速度は 4.42km/sec である. 表の 表皮が直径約 8mm, 裏の表皮が直径約 40mm 破壊 され, ハニカムコアは全体の 1/9 が吹き飛ばされ ている.

CFRP ハニカムの衝突後のターゲット(No.6)を 図 10 に示す. 衝突速度は 4.48km/sec である. 表の 表皮が直径約 8mm, 裏の表皮が直径約 30mm 破壊 され, ハニカムコアは全体の 5%が吹き飛ばされて いる. マイクロ波は, No.4 の実験と同様に, No.5, No.6 共に断続した強い信号が 200µs 以上続いている.

(a)表 (b)裏 図 10. 衝突後のターゲット(CFRP ハニカム)No.6

5. 放出電力と破壊の規模の関係

観測波形からマイクロ波の放出電力を推定する. パルス状包絡線の中の信号がほとんど正弦波状で あることから,これを同周期で振幅が V_o,継続時 間が Tの連続波とみなし,受信機の較正曲線から 出力電圧 V_oに対する入力電力 P_oを求める.これ に継続時間 Tを乗ずることで該当するパルスのエ ネルギーが得られる.この過程を観測時間中に現 れる全ての極短パルス信号について行い,観測時 間中の受信全エネルギーを求める.これをフリス の伝達式に代入することで,衝突により放射され る全電力 P_oを求める[5].

次に破壊の規模について考える.表の表皮の破壊体積は,楕円柱に近似する.楕円の縦横の半径をそれぞれ a, b[mm],表皮の厚さを h[mm]とすると体積 $V \sqcup V = \pi abh$ [mm³]と求まる.また,ハニカムコアは,図 11 のように破壊の規模を錐台に近似して求める.破壊されたハニカムの表の面積を A[mm²],裏の面積を B[mm²]とし,ハニカムの厚さを h[mm]とすると

$$V = \frac{(A+B+\sqrt{AB})h}{3} \quad [\text{mm}^3] \tag{1}$$

となる. なお, 実験 No.1 のアルミハニカムにおいては, ハニカム部分が 9 割以上吹き飛ばされているため, 式(1)ではなく直方体に近似して破壊体積を求める.

図 11. ハニカムの破壊の規模の近似

図 12 に表の表皮の破壊の体積と放出電力の関係 を,図 13 にハニカムコアの破壊の体積と放出電力 の関係をまとめる. どちらも横軸は破壊体積,縦 軸は放射電力である. また,ここで裏の表皮と比 較しなかったのは,前述の通りターゲットが縦に 平行した 2 本の鉄骨に設置されていることから裏 の表皮の実際の破壊の規模が不明瞭だからである.

図 12. 表の表皮の破壊体積と放射電力の関係

図 12,13 より,放出電力は全体として,表皮の 強度の高い CFRP ハニカムより強度の低いアルミ ハニカムの方が大きくなっている.図12より,放 出電力が表の表皮の破壊体積に依存していること がわかる.図13においても同様に放出電力がハニ カムの破壊体積に依存している.

アルミハニカムの実験では、実験 No.2 と No.3 のターゲットの特性が同じであることから、放出 電力もほぼ同量になったと考えられる.また、 CFRP ハニカムにおいては、ハニカムコアが他の ターゲットの 1/2 の厚さであった実験 No.6 のもの が一番放射電力が低い.以上より、放出電力はタ ーゲットの破壊の規模に依存していることがわか る.

6. まとめ

アルミハニカム材への超高速衝突によるマイク ロ波放射を実験的に確認した.得られた結果を以 下に示す.

- (1) アルミ表皮パネル, CFRP 表皮パネルをタ ーゲットに衝突実験をした結果,強いパルス 状の信号が確認された.
- (2)アルミ表皮パネルで 600µsec 以上, CFRP 表 皮パネルでは 200µsec 以上の信号の継続が見 られた.
- (3)実験結果から放出電力を計算した結果,最 大でアルミ表皮パネルで -40.6dBm, CFRP 表皮パネルで-52.0dBm となった.
- (4) 表の表皮の破壊体積およびハニカムの破壊 体積が大きいほど,放射電力も大きいことを 確認した.
- (5) ハニカムサンドイッチパネル構造において も,放射電力は破壊の規模に依存することを 確認した.

参考文献

[1] Interagency Report on Orbital Debris, The National Science and Technology Council, 1995.

[2] H. Fukunaga, N. Hu and F. Chang, Structural damage identification using piezoelectric sensors, *Int. J. Solids and Structures*, vol.39, pp.393-418, 2002.

[3] T. Schildknecht, U. Hugentobler and M. Ploner, Optical surveys of space debris in GEO, *Adv. Space Res.*, vol.23, no.1, pp.45-54, 1999.

[4] T.W. Thompson and R.M. Goldstein, Radar detection of centimeter-sized orbital debris: preliminary Arecibo observations at 12.5-cm wavelength, *Geophys. Res. Let.*,

[5] T. Takano, Y. Murotani, K. Maki, T. Toda, A. Fujiwara, S. Hasegawa, A. Yamori and H. Yano, Microwave emission due to hypervelocity impacts and its correlation with mechanical destruction, *J. Appl. Phys.*, vol.92, no.9, pp.5550-5554, Nov. 2002.

[6] 相馬央令子,石井健太郎,牧謙一郎,高野忠,矢守 章,マイクロ波によるデブリ衝突検出系の検討,第 47回宇宙科学技術連合講演会,1E7,2003.