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Effects of non-Maxwellian velocity distribution, e.g. Druyvesteyn-type, on the 
plasma dispersion are investigated and plasma waves and the sheath formation 
criterion are considered. Dispersions of ion acoustic and electron waves, the 
floating potential and Debye length are calculated and the differences from the 
case of Maxwellian distribution are described. Results may be useful for plasma 
diagnostics using probes and waves.  

 
1. Introduction 

In weakly ionized plasmas, the velocity 
distribution of electrons often deviates from 
Maxwellian to Druyvesteyn type [1]. The 
solution of Boltzmann equation showed that if 
the mean free path l is constant, Druyvesteyn 
type is obtained [2]. Later, by expressing the 
relation between the elastic cross section s 
and the energy E by s µEn it was shown that 
if n=-1/2 (mean collision time t is constant) 
Maxwellian is obtained [3]. This does not 
hold for most gases except Hg. Results of 
measurements have shown that the velocity 
distribution is more like Druyvesteyn [4-6].  

In the present paper, the plasma dispersion 
for Druyvesteyn-type is derived, from which 
wave dispersions and the sheath formation 
criterion are calculated and compared with 
those of Maxwellian.  

 
2.Druyvesteyn-type velocity distribution 

The Druyvesteyn energy distribution [1] is 
given in an analytical form as [7]   
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where Em is the average energy ( =m<v2>/2),  
a=G(5/4)3/2/G(3/4)5/2, b= G(5/4)2/G(3/4)2 or 
a=0.5191, b=0.5471. Using the relation of 
the velocity f(v) and energy distributions F(E) 
[8], 
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we obtain the 1-dim velocity distribution f(v). 
For the case of Druyvesteyn, we have 
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The relation (2.2) recovers the relation 
between energy and velocity distributions for 
the case of Maxwellian.  

This Druyvesteyn-type velocity distribution 
reflects well the characteristics of FD(E) well: 
the low and high velocity regions are more 
deficient while the medium region more 
populated than in Maxwellian velocity 
distribution. 

  
3. Effect on the wave dispersions 

The dispersion relation for the electron-ion 
plasma is given by 
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where standards notations are used. Here, we 
assume exp[i(ωt - kx)] contrary to Fried- 
Conte [10]: The pole is assumed in the upper 
half of x-axis for the damping mode.  
 
3.1 Electron waves 

Dropping the positive ion term, putting 
x=b1/4v/<v2>1/2 and z=(w/k)b1/4/<v2>1/2 and 
substituting fD(v) into fe in (3.1), we have 
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Define YD(z) as 
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We make asymptotic and series expansions. 
(i)z>>x: phase velocity >> thermal velocity 
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The imaginary part is assumed to be small. 



Using the relation vm
2=<v2>/(2b)1/2, we obtain 

the dispersion relation to the second order, 
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For comparison, the case of Maxwellian is 
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Figure 1 shows the dispersion relation w/we 
vs kvm/we for Druyvesteyn D and Maxwellian 
M distributions. It is seeen that the group or 
phase velocity is smaller and the Landau 
damping rate is smaller for Druyvesteyn 
distribution. 

0.9

1

1.1

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

w
/

w
e

kv
m
/w

e

M

D

 
    Fig.1. Dispersion of electron waves.  
 
3.2 Ion acoustic waves 

As the phase velocity is much smaller than 
vm, we make series expansion of YD for z<<x  
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Neglecting kv in the ion term in (3.1), we 
obtain the dispersion relation as 
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The ion acoustic velocity is obtained as 
CD=0.6914(m/M)1/2vm, which  is slower than 
that of Maxwellian, CM=0.707(m/M)1/2vm by 
about 2.2%. The damping rate in the long 
wavelength limit, ωi/ω= 0.504(m/M)1/2, is a 

smaller than that of Maxwellian [11] given by 
(πm/8M)1/2CM= 0.627(m/M)1/2  by ~20%. 
This is considered to be due to the fact that 
fD(v) is more rounded at small v than fM(v). 
Figure 2 shows the dispersion of ion waves 
for Druyvesteyn and Maxwellian denoted by 
D and M, respectively. 
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Fig. 2. Dispersion of ion waves. 
 
4. Effect on probe characteristics 
4.1 Electron current  

The electron current density Je in the 
retarding region of a plane probe is given by 
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Substituting f(v) from (2.2), we obtain for the 
Druyesteyn distribution 
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For large h, the asymptotic form becomes 
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which agrees with (4.2) with an error less 
than 5% above h>5. 

For Maxwellian, we have the known form 
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where sM=(8/2p)1/2 =0.9213. JoSD and JoSD are 
the saturation current densities at h=0 for 
both velocity distributions, respectively.  
Figure 3 shows the normalized electron 
current density je=Je/JoSD for Druyvesteyn 



with the asymptotic value jeappx together with 
je=Je/JoSM for Maxwellian distribution vs 
eVp/Em. It is seen that je of druyvesteyn 
decreases more steeply than je of Maxwellian, 
which is considered to be due to the lack of 
higher energy tail in fD(v). 
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Fig.3. Electron current of plane probe in 

retarding region vs eVp/Em (=h).  
M:Maxwellian, D:Druyvesteyn. 

 
3.2 Positive ion current 
It is known that the sheath condition can be 
obtained from the dispersion relation [8],  
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where fe, fp are the velocity distributions for 
electrons and positive ions respectively and 
we, wp are their angular plasma frequencies.  
In the limit of klD→0 (the sheath thickness 
is much longer than Debye length), we have 
by neglecting k 
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where M is the ion mass. Using the relation 
between the one dimensional velocity 
distribution f(v) and the total energy 
distribution F(E) is [8],  
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Substituting Druyvesteyn energy distribution, 
FD (2.1), we have 
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For the case of Maxwellian (Em= 3kTe/2) [9],  
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The reciprocal of LHS corresponds to the 
sheath edge potential Vs, which becomes 
Em/2.19 and Em/3 for Druyvesteyn and 
Maxwellian distributions respectively.  

The positive ion current density J+ at the 
sheath edge is equal to the ion acoustic 
velocity times the ion density there, i.e.  
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where ds=ns/no, ns and no are the densities at 
the sheath edge and plasma, respectively. For 
a probe with a deep negative potential, all the 
electrons are reflected and ds is given by 
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where vs=(2eVs/m)1/2. Integrating by part and 
using (4.8), (4.13) can be transformed into 
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Substituting Vs, ds is calculated to be 0.5648 
for Druyvesteyn distribution, while ds= 
exp(-1/2)=0.6065 for Maxwellian. Then, 
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where C=0.3817 for Druyvesteyn and 
C=0.3502 for Maxwellian distributions 
respectively. J+ is larger for Druyvesteyn 
distribution by about 9% for the same average 
energy Em. 
 
5. On the floating potential 
5.1 DC floating potential 

The DC floating potential is determined by 
the equating electron and positive ion current 
densities: Je=J+. Using (4.2) and (4.15) for Je 
and J+, we have 
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The normalized floating potential hf=eVf/Em 
was calculated numerically for Druyvesteyn 
distribution as a function of mass ratio M/m. 
In the case of Maxwellian, hf states (e=ln(1)), 
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Figure 4 shows hf vs M/m for both velocity 
distributions. It is seen that is hf is larger for  
Maxwellian by a factor of 1.34 (H2) to 1.55 
(Hg). This is considered to be due to the 
truncation of higher energy tail in fD(v), 
which gives smaller value of je  at deeper 
negative biases. 
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Fig. 4. Normalized floating potential vs M/m. 
 
5.2 Effect of ac modulation 

The substrate bias is modified by applying 
an alternating current voltage (ac) to it.  
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Fig. 5. Modulated current density jeMOD vs the 

modulation amplitude Dh for some gases. 
 
The modulation effect depends on the 

velocity distribution given by jeMOD(h,Dh).  
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where Dh is the amplitude of modulation 
normalized by Em: Dh=DV/Em. This holds in 
the range h>Dh. If h>Dh; je in the phase of 

crossing h=0 is replaced by unity due to the 
assumption of an ideal planar probe.  
For the case of Maxwellian, it is known that 
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where Io is the Bessel function of 0 th order. 
Figure 5 shows the modulated current 

density jeMOD as a function of Dh for some 
gases in comparison with that of Maxwellian. 
It is seen that jeMOD increases with Dh and the 
increase rate is larger than for Maxwellian 
where jeMOD is independent of the kind of gas, 
and that the modulation effect is slightly 
larger as the ion mass is larger. 
 
6. Effect on Debye length 
 Substituting F(E) into the equation (4.14) for 
the density distribution at a potential V, we 
obtain the Poisson equation as 

where C=1 for FM , C=1.046 for FD. We get 
lD=eovm

2/2Ce2no for the potential 

It has been found that the Debye length for 
the Druyvesteyn distribution is 0.978 of that 
of Maxwellian distribution. 
 
References 
[1] M.J. Druyvesteyn and F.M. Penning, 

Rev.Mod.Phys. 12 (1940) 87. 
[2] T. Holstein, Phys.Rev. 70 (1946) 367.  
[3] T. Ruzika, A. Rutscher and S. Pfau, Ann. 

Physik 24 (1970) 124. 
[4] H. Amemiya and K. Ogawa, J.Phys. D 30 

(1997) 879.  
[5] H. Amemiya and N. Yasuda, J.Phys. Soc. 

Japan 66 (1997) 623.  
[6] S. Bhattacharjee and H. Amemiya, Rev. 

Sci.Instrum.70 (1999) 3332. 
[7] I. Shkarofsky, J.W. Johnston and M.P. 

Bachinsky, The particle kinetics of plasmas, 
Addison-Wesley Pub. Company, 1966.  

[8] H. Amemiya, J.Phys.Soc.Japan 66 (1997) 
1335; ibid. 67 (1998) 1955. 

[9] J.E. Allen, J.Phys.D 9 (1976) 2331. 
[10] B D Fried and S D Conte, The Plasma 

Dispersion Function, Academic Press, New 
York and London, 1961. 

[11] R N Franklin, Plasma phenomena in gas 
discharges, Clarendon Press, Oxford, 1976. 

[12] Preliminary result has been published in 
H. Amemiya, Proc.30th ICPIG Ireland, 151, 
B6 (2012).  

(5.5)             2)(1
2

2
2

mo

o

mv
eVeCn

r
Vr

rr
×=

¶
¶

¶
¶

e

(5.6)             )exp(1

D

r
r

V
l

-µ


