The Crystal Growth of In-Se for Thermophotovoltaic Generator

Naoki Takano¹, Hitoshi Kohri² and Takayoshi Yagasaki²

¹ Graduate school, Kogakuin University, 2665-1, Nakano-machi, Hachioji, Tokyo, 192-0015

Fax: +81-426-28-4596, e-mail: bm11033@ns.kogakuin.ac.jp

² Faculty of Engineering, Kogakuin University, 2665-1, Nakano-machi, Hachioji, Tokyo,

192 - 0015

Abstract :

The thermophotovoltaic (TPV) generating system consists of the heat source, the emitter and the TPV cells. The emitter converts thermal energy to photon energy by a thermoluminescence and the emitted photons will directly be converted to electricity by the TPV cells. The heat for the emitter can be supplied by the combustion of a gas, liquid fuels, concentrated sunlight, or a number of other sources including general purpose heat source (GPHS) radioisotope. Therefore, power densities will be achievable 20-100 times greater than the solar flux. The attempts to realize the advantages of TPV energy conversion, however, have reported with only limited success. The most important requirement of the high-efficiency in a TPV system is the wavelength matching between the emission spectrum of heated emitter and the sensitivity of the TPV cells. The emitters made from rare earth oxides and are called the selective emitter due to produce the radiation mainly in one or several narrow emission bands. The Yb_2O_3 emitter is a high temperature resistant material with a selective emission spectrum. The peak wavelength of this spectrum is 980 nm. The bandgap of α - and β -In₂Se₃ is 1.2-1.3 eV, therefore, α - and β -In₂Se₃ are promising as the TPV material for this emitter radiation. We investigated the relationship between crystal growth of In-Se by the vapor transport method and several conditions of surfaces.

Firstly, the quartz ampoule encapsulated only bulk In₂Se₃ as starting material was heated by temperature gradient furnace. Secondly, we used substrates which were a silicon, silicon oxide and sapphire, in order to examine the relationship between the crystal morphology and the surface state. The quartz ampoules encapsulated the each substrate along with the bulk In₂Se₃ and heated by temperature gradient furnace.

From the results of crystal growth which used the only bulk In₂Se₃, the crystals with the shape of hollow hexagonal cylinder were obtained on the inner wall of quartz ampoule. The hollow hexagonal cylinders were identified mixture phase of In₂Se₃. In the conditions with various substrates, the almost same hollow hexagonal cylinders were also deposited on inner wall of ampoule. It is suggested that the crystallization of hollow hexagonal cylinder is necessary not only low responsiveness of substrate but curved surface.

熱光起電力発電を想定した In-Se の合成

高野 直樹¹, 桑折 仁², 矢ケ﨑 隆義² ¹工学院大学大学院, 192-0015, 東京都八王子市中野町 2665-1 ²工学院大学環境エネルギー化学科, 192-0015, 東京都八王子市中野町 2665-1

1. 緒言

熱光起電力(Thermophotovoltaic: TPV)発電シ ステムの概念は古くから存在するが[1],その技 術はあまり知られていない. TPV システムは熱 源, エミッタおよび TPV セルを主要部として 構成される. TPV システムは熱源からの熱エネ ルギーをエミッタの熱ルミネッセンスにより 光子エネルギーに変換し、TPV セルの光起電力 効果によりその光子エネルギーから電力を得 る. 熱源には、ガスや液体燃料、集光太陽光ま たは放射性同位体崩壊熱などが適用可能であ る.したがって.出力密度は地表での太陽光発 電の 20-100 倍が達成される^[2]. しかし現在まで に、TPV システムによるエネルギー変換を実現 しようとする試みは達成されていない. TPV シ ステムにおける高効率化への重要な課題は加 熱されたエミッタからの発光スペクトルと光 電セルの感度との整合である. エミッタとして 希土類元素酸化物を用いた場合,ごく限られた 波長域において大きな出力密度が得られるこ とが知られている^[3]. Yb₂O₃エミッタは 1300 K 以上の高温度域で用いた場合, 波長ピークが 980 nm の発光が得られる^[3]. この波長との整合 のために、光電セルにはバンドギャップが 1.2-1.3 eV の半導体が望ましい. このバンド ギャップを有する、半導体として In₂Se₃に注目 した. In₂Se₃は多様な結晶構造を有する、直接遷 移型半導体である.また、元素を添加すること によりバンドギャップを比較的容易に制御で きるため、TPV システムにおいて高効率化が望 める材料系である.結晶構造にはカチオンサイ トの 1/3 の数の空孔が含まれる. この空孔配列 は添加元素を配位しやすく、そのためバンド ギャップの制御が比較的容易となる.α相は c 面に対して平面的な空孔配列を持つ六方 晶層状構造をとり 1.22 eV のバンドギャッ プをもつ^[4].

現在, In₂Se₃ は真空蒸着法などにより薄 膜が得られている^[5.6].しかし,各元素を 多段プロセスで蒸着し熱処理を加えるた め,結晶内部に発生するひずみが問題とな る.そこで気相からの結晶成長を目的とし,気 相輸送法(Vapor transport method)を選定した. 気相輸送法は温度差の付いた加熱炉の高温側 に出発材料を設置するよう真空アンプル内に 封入し,加熱することにより昇華・輸送・堆積 させる手法である.気相からの成長であるため 成長表面以外と相互作用の無いフリーな成長 になると考えられる.しかし現在までに,気相 輸送法での In-Se の結晶成長については報告さ れていない.

本研究では表面エネルギーの異なる基板を 用いることで、気相輸送法による In-Se の結晶 形態と成長表面との関連性について調査した.

2. 実験手順

2.1 気相輸送法による In-Se の結晶成長

気相輸送法における出発材料は垂直ブリッ ジマン法により溶製した In₂Se₃を用いた.出発 材料のみを真空度 10⁻³ Pa で封入した石英ガラ スアンプルは温度勾配をつけた電気炉により 加熱した.出発材料を設置した高温側の温度は In₂Se₃の融点より 100 K 低い 1050 K に保持し, もう一方の低温側の温度は 850 K に保持した. 石英ガラスアンプルの長さを 240 mm とするこ とで,アンプル内の温度勾配は 0.83 Kmm⁻¹とし た.加熱時間は 168 h とした.

気相輸送法により得られた結晶の微細構造は SEM により観察し,結晶相は粉末 XRD により同定した.

 2.2 結晶成長におよぼす成長表面の影響
2.2.1 気相輸送法による Si(1 0 0)基板上への In-Se の結晶成長

基板を用いることで表面状態を変え,気相 輸送法による In-Se の結晶成長を試みた.表面 酸化膜をフッ化水素酸により除去した Si(100) 基板および出発材料を真空度 10⁻³ Pa で封入し た石英ガラスアンプルは電気加熱炉により加 熱した.加熱条件は前実験と同じとした.

気相輸送後の基板表面の微細構造はSEMにより観察し,結晶相はXRDにより同定した.

2.2.2 気相輸送法による Si-O 基板上への In-Se の結晶成長

基板表面 100 nm に酸化膜を形成した Si-O 基板を結晶成長表面として用いた. この Si-O 基板および出発材料を真空度 10⁻³ Pa で封入し た石英ガラスアンプルは電気加熱炉により加 熱した.加熱条件は前実験と同じとした.

気相輸送後の基板表面の微細構造はSEMにより観察し、結晶相はXRDにより同定した.また、石英ガラスアンプルの内壁に成長していた結晶の微細構造はSEMにより観察した.

2.2.3 気相輸送法によるサファイア基板上への In-Se の結晶成長

サファイア基板を結晶成長表面として用いた.サファイア基板および出発材料を真空度 10⁻³ Pa で封入した石英ガラスアンプルは電気 加熱炉により加熱した.加熱条件は前実験と同 じとした.

気相輸送後の基板表面の微細構造はSEMにより観察し、結晶相はXRDにより同定した.また、石英ガラスアンプルの内壁に成長していた結晶の微細構造はSEMにより観察した.

結果および考察

3.1 気相輸送法による In-Se の結晶成長

気相輸送法による結晶成長を試みた結果, アンプル内壁に針状結晶が無秩序に絡まり 合って析出した.結晶が得られた温度は 920-880 Kであった.Fig.1に得られた結晶の微 細構造観察の結果を示す.結晶は中空な六角柱 状構造であった.六角柱の対角線長は約10 μm, 孔の対角線長は約5 μmであった.また,結晶の 側面には長手方向に対して垂直な方向に形成 された縞があり,層の堆積が確認された.

Fig. 2 に得られた結晶の粉末 XRD 回折パ ターンを示す. 粉末 XRDの結果より,中空六角 柱状結晶は α , β , γ および δ 相 In₂Se₃が混在して 構成されていた. 中空六角柱状結晶は混相 In₂Se₃ で構成され,かつ長手方向に垂直な縞状 の層が確認されたことから, c 軸方向の成長に おいて, ひずみが生じており,それを緩和する ために格子定数の異なる別の相が成長したと 考えられる.

3.2 結晶成長におよぼす成長表面の影響 3.2.1 気相輸送法による Si(1 0 0)基板上への In-Se の結晶成長

反応後の基板表面は灰色で光沢が失われて いた. Fig. 3 に得られた結晶の微細構造観察の 結果を示す.基板表面には密に四角いピラミッ ドのようなテクスチャ構造が形成されており, その表面には凝集した粒子が確認された.

Fig. 2 powder XRD pattern of the hollow hexagonal cylinders obtained on inner wall of quartz ampoule by vapor transport method.

Fig. 3 SEM micrographs of the substrate surface: compactly-arranged square pyramids and agglomerated particles.

Fig. 4に得られた結晶の XRD 回折パターン を示す. 基板表面には β 相 In₂Se₃, InSe および Se の輸送が確認された. これらより,基板温度が 高かいために,出発材料に含まれる In と Si(1 0 0)面が共晶反応し,Si(1 0 0)基板が エッチングされたと考えられる.

Fig. 4 XRD pattern of silicon substrate surface.

3.2.2 気相輸送法による Si-O 基板上への In-Se の結晶成長

Fig. 5 に得られた結晶の微細構造観察の結果を示す. Si-O 基板上には中実六角柱状結晶の堆積が確認された.この六角柱状結晶は 基板に対して垂直に成長していた.六角柱の対 角線長は約10 µm であった.さらに,石英アン プル内壁に成長していたと思われる結晶の微 細構造を観察したところ,前実験と同様の構造 である中空六角柱状結晶が確認された.六角柱 の対角線長は約10 µm,孔の対角線長は約5 µm であり,側面には長手方向に対して垂直な方向 に形成された縞が確認された.

Fig. 5 SEM micrographs of Si-O substrate surface and obtained crystals at the inner wall of the quartz ampoule: (a)the hexagonal rod-like crystal on the Si-O substrate, (b)the hollow hexagonal cylinder grew on the quartz ampoule.

Fig. 6 に得られた結晶の薄膜 XRD 回折パ ターンを示す. 基板表面には α , γ および δ 相の 混在した In₂Se₃ が確認された.

Fig. 6 parallel beam XRD pattern of deposited crystals on the Si-O substrate, (α =0.3 degrees).

3.2.3 気相輸送法によるサファイア基板上への In-Se の結晶成長

気相輸送後の基板表面微細構造観察の結

果,棒状結晶が基板高温側に凝集して析出して いた.Fig.7に微細構造観察の結果を示す.基板 表面には基板に対して垂直な方向への柱状結 晶の成長が確認された.EDXによる元素分布解 析の結果,この柱状結晶は In および Se で構成 されていることが確認された.さらに,石英ア ンプル内壁に成長していたと思われる結晶の 微細構造を観察した結果,前実験と同様の構造 である中空六角柱状結晶が確認された.その結 晶の側面には長手方向に対して垂直な方向に 形成された縞が確認された.六角柱の対角線長 は約 20 μm,孔の対角線長は約 10 μm であり, 孔は六角柱の中心からずれていた.

Fig. 7 SEM micrographs of sapphire substrate surface and obtained crystals at the inner wall of the quartz ampoule: (a)rod-like crystal on the substrate and its EDX((a')Indium, (a'')Selenium), (b)the hollow hexagonal cylinder grew on the quartz ampoule.

Fig. 8 に得られた結晶の薄膜 XRD 回折パ

ターンを示す. 基板表面には β 相 In_2Se_3 が確認 された.

Fig. 8 parallel beam XRD pattern of deposited crystals on the sapphire substrate, (α =0.3 degrees).

4. 結言

本研究で合成した In-Se 中空六角柱状結晶 は基板なし, Si-O 基板およびサファイア基板を 用いた場合に得られた. Si-O 基板およびサファ イア基板の表面には中実六角柱状結晶が成長 した. このことから, いずれの条件で得られた 中空六角柱状結晶も平坦な基板表面ではなく, 曲面を有する石英ガラスアンプル内壁表面で 成長したと考えられる.

Si 基板は他の基板と比較し、原料である In に対する反応性が高いため、In-Se は石英ガラス アンプルの表面で成長せず、Si 基板との反応が 進行したと考えられる.

以上より気相輸送法により成長した結晶の 形態は,原料との反応性のみならず,成長表面 の形状に依存することが示唆された.

参考文献

- Michael W. Edenburn, Solar Energy 24 (1980) 367-371
- [2] L. G. Ferguson and Fatih Dogon, Materials Science and Engineering B83 (2001) 35-41
- [3] B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg and H. R. Tschudi, Solar Energy Materials & Solar Cells 73 (2002) 221-234
- [4] V. P. Munshinskii and V. I. Kobolev, Sov Phys. Semicond. 5 (1971) 1104.
- [5] M. Emziane, S. Marsillac, and J. C. Bernede, Materials Chemistry and Physics 62 (2000) 84-87.
- [6] K. Bindu, C. Sudha Kartha, K. P. Vijayakumar, T. Abe and Y. Kashiwaba, Applied Surface Science 191 (2002) 138-147