金星探査機・地上分光観測結果と放射輸送計算による金星雲 構造の検討

高木聖子 [1], 岩上直幹 [1] [1] 東京大学理学系研究科地球惑星科学専攻

1 はじめに

金星は地球とほぼ同じ大きさ・密度を持ち、太 陽系形成時には互いに似た惑星として誕生したと 考えられているが、その内部環境は互いに全く異な る。観測の他に数値計算によるシミュレーションを 用いて金星気象の理解にアプローチする試みが多 くなされている。それらの1つに金星大気・雲粒 子による太陽光の吸収・散乱を考慮した放射輸送計 算が挙げられる。現在この計算には金星雲モデル Pollack et al. (1993)が広く用いられているが、こ の雲モデルは局所的な雲モデルであり、金星全体の 雲を反映するものではない。

本研究は様々な金星探査機(Venera, Pioneer Venus, Venus Express)観測結果や、地上分光観 測の観測データを用いて広範囲の金星雲モデルを 作ることを目的とする。今回は過去の全金星降下プ ローブ(Venera, Pioneer Venus)の観測結果を最 大限に生かして作った雲モデル cloud T2x [Takagi & Iwagami, 2011] を紹介する。 2 既存の雲モデル Pollack et al.(1993) と これまでの観測結果

図 1 雲モデル Pollack et al. (1993)

図 1 は現在広く使われている金星雲モデル Pollack et al. (1993)である。金星降下プローブ Pioneer Venus (アメリカ)による粒径分布観測結 果と偏光観測結果を統合して作られた。ところで雲 モデル Pollack et al. (1993)のもや層(高度 70 km 以上)の光学的厚さは 10 である。しかし、かつて Pioneer Venus OCPP で観測されたもや層の光学 的厚さは 1 であり [Crisp et al., 1986]、Pollack et al. (1993)が現実とは異なる雲モデルであることが 分かる。さらに Pollack et al. (1993)は Pioneer Venus の観測結果のみを統合して作られた局所的 なモデルであり、金星全体の雲を反映するものでは ない。

3 これまでの金星降下プローブ観測結果
 と平均雲モデル cloud T

図 2 金星降下プローブ着陸位置。V は Venera(旧ソ 連) PV は Pioneer Venus(アメリカ)を意味する。 同色の探査機はペアで打ち上げられたためほぼ同時期に 着陸した。

図 3 これまでの金星降下プローブ観測結果 (James et al.,1997)。各グラフの右上の文字は探査機名。V は Venera (旧ソ連)、PV は Pioneer Venus (アメリカ) を意味する。

広範囲な金星雲モデルを作成するため、これま での全金星降下プローブの観測結果(図3)を使用 した。横軸は1km あたりの光学的厚さ、縦軸は 高度で雲層ごとに区別してある。各雲粒子の比は Knollenberg & Hunten(1980)に従った。これら の観測結果を全て平均し、もや層を付け加えて雲モ デル cloud T を作成した(図4)。図3の金星降下 プローブ観測結果でもや層(70-90 km)がないの は、その高度において観測が始まっていなかったた めである。しかしもや層の存在は地上観測などから 明らかであるため(Crisp et al., 1986)、より現実 に近い雲モデルを作るために Crisp et al. (1986) に従ってもや層を付け加えた。

図 4 雲モデル cloud T. これまでの金星降下プロー ブの観測結果の平均。Upper haze は Pioneer Venus OCPP(偏光計)による観測結果。各雲層の各雲粒子の 比は Knollenberg & Hunten (1980)に従った。

また、実際の雲の光学的厚さの変動率を図 3 と 図 4 から見積もった(図 5)。これは図 4 に対する 図 3 の各観測結果の各雲層の光学的厚さ変動であ る。上層・中層・下層は図 3 の雲モデルに対する最 大偏差と最少偏差である。もや層は観測例がないた め、- 50 $\% \sim +50$ % としている。

	Optical thickness			Maximum	Maximum	
	Mode 1	Mode 2	Mode 3	total	deviation	positive deviation
Upper haze (80-90 km)	0.200	0.0	0.0	0.2	- 50 %	+ 50 %
Upper haze (70–80 km)	0.150	0.650	0.0	0.8	- 50 %	+ 50 %
Upper (57-70 km)	2.941	7.059	0.0	10.0	- 70 %	+ 100 %
Middle (50–57 km)	0.490	5.096	8.915	14.5	- 42 %	+ 86 %
Lower (47.5–50 km)	1.334	1.268	6.898	8.5	- 76 %	+ 135 %
				34.0		

図 5

雲モデル cloudT の詳細と変動率

4 雲モデル cloud T2x [Takagi & Iwagami, 2001]

ここで雲モデル cloud T(図4)は広い高度 において等密度分布をしており、現実の金星雲が そのような分布をしているとは考えにくい。現実 の雲に近づけるため、金星大気モデル VIRA 1985 (Keating et al., 1985)の圧力分布に合うように雲
 モデル cloud T(図4、等密度分布)を雲モデル
 cloud T2x(図6・図7、等混合比分布)に変換した。

図 6 雲モデル cloud T2x (Takagi and Iwagami. (2011)

Layer center		Optical thickness per 2 km			
altitude (km)	mode1	mode2	mode3	total	
89	0.013	0.0	0.0	0.013	
87	0.020	0.0	0.0	0.020	
85	0.033	0.0	0.0	0.033	
83	0.052	0.0	0.0	0.052	
81	0.082	0.0	0.0	0.082	
79	0.011	0.052	0.0	0.063	
77	0.015	0.077	0.0	0.093	
75	0.024	0.114	0.0	0.138	
73	0.036	0.168	0.0	0.204	
71	0.053	0.249	0.0	0.302	
69	0.149	0.355	0.0	0.504	
67	0.208	0.495	0.0	0.703	
65	0.290	0.691	0.0	0.981	
63	0.405	0.946	0.0	1.369	
61	0.565	1.346	0.0	1.911	
59	0.789	1.878	0.0	2.667	
57	0.596	1.777	0.819	3.192	
55	0.114	1.186	2.084	3.384	
53	0.146	1.509	2.652	4.307	
51	0.186	1.920	3.374	5.480	
49	0.334	1.268	6.898	8.500	
total				34.0	

図 7 雲モデル cloud T2x の詳細

図 6・図 7 が全金星降下プローブの観測結果を 最大限生かした最新の金星雲モデルである。図 6・ 図 7 の雲モデルと図 5 の変動率を合わせることで 基本的金星雲構造だけでなく、雲のあらゆる変動可 能性を考えている。

5 改良に向けて・・

cloud T2x(図6)は全金星降下プローブの観 測結果を最大限生かして作ったモデルであるが、図 2のプローブ着陸位置から分かるように、金星全体 の雲を反映するものではない。ここから、今後の展 望として現在検討中の雲モデル改良法を示す。

5.1 地上分光観測と放射輸送計算 輝度分布比較

図8 (左)地上観測による HCl 吸収領域(1.7 µm)輝 度分布。観測日時:2007年5月26日、観測時間:4h-7h (UT)、対象:昼面太陽散乱光、シーイング:1.0"、(中央) 放射輸送計算結果。雲モデルは cloud T2x、(右)放射 輸送計算結果。雲モデルは Pollack et al.(1993).

図 9 図 8 の y 座標 0 付近における相対輝度。横 軸は図 8 の横軸に相当する。

図8(左)は IRTF 望遠鏡(ハワイ・マウナケ ア)を用いて観測した HCl 吸収領域(1.7 µm)の輝 度分布である。地球から見た金星の見た目の中心を 原点とする。横軸は経度方向、縦軸は緯度方向であ る。また clooud T2x(図 6)・Pollack et al.(1993) 両雲モデルを用いて、金星大気・雲に吸収・散乱さ れた太陽散乱光(1.7 μ m)の放射強度を求めた(図 8(中央)(右))。中心から外に向かう輝度値の増 加は再現できているが端の傾向が合わない(図 9)。 原因は計算で平面大気を仮定したためと考えられ る。また、両計算結果に大きな違いは見られなかっ た。輝度は雲の光学的厚さに依存するが(Takagi & Iwagami, 2011)、両雲モデルの全光学的厚さがほぼ 等しいためと考えられる。 雲モデルを作るため、現在雲モデル改良法を検討中 である。現段階では地上観測と放射輸送計算結果の 輝度比較と吸収線比較を改良法として検討中であ る。さらに地上観測は極の情報が不足するので、今 後は極情報が豊富な Venus Express の観測結果も 用いて検討を重ねる。

5.2 地上分光観測と放射輸送計算 吸収線比較

図10 (左)地上観測によるCO₂吸収領域(1.7 µm) 輝度分布。観測日時:2007年5月26日、観測時間: 4h-7h(UT)対象:昼面太陽散乱光、シーイング:1.0"、 (右)図10(左)上の3点における吸収線比較。

図 10 (左)は IRTF 望遠鏡 (ハワイ・マウナ ケア)を用いて観測した CO₂ 吸収領域 (1.7 µm) の輝度分布である。cloud T2x・Pollack 両雲モデ ルを用いて金星昼面太陽散乱光 (1.7 µm)のスペク トルを計算し、図 10 (左)上の 3 点において吸収 線の形状を比較した (図 10 (右))。cloud T2x を 用いて求めた吸収線の方がより観測と合っている。

6 まとめ・今後の展望

過去の金星降下プローブの観測結果を最大 限に使い、新金星雲モデル cloud T2x[Takagi & Iwagami, 2011] を作成した。さらに広範囲の金星