観測ロケットS-310-37号機による 下部電離圏の超熱的電子エネルギー分布観測

> ISAS/JAXA 下山学 ISAS/JAXA 阿部琢美

1. はじめに

超熱的電子から熱的電子へのエネルギー 遷移過程は、下部電離圏のエネルギー収支に重 要な役割を果たしていると考えられている.し かしこのエネルギー領域は、1 eV以下の熱的電 子を測定するラングミュアプローブと 5~10 eV以上を対象とする静電型エネルギー分析器 の中間に位置しており、このエネルギー帯の観 測データの著しい欠如のため進展の遅れている 科学的課題も多い.例えば、(i)光電子から熱的 電子へのエネルギーカスケード、(ii)中性大気 と超熱的電子の非弾性衝突によるエネルギー交 換過程、(iii)極域下向き円磁力線電流のキャリ アの同定、(iv) Sq focus 付近の沿磁力線電流に 伴う電子加速の存否、などがその代表例である.

そこで我々は,熱的から超熱的領域にわた る連続的な電子エネルギー分布の観測を目的と して新たな手法に基づいた観測ロケット搭載用 測定器を開発し,ロケットに搭載して観測を行 った.本講演では,超熱的電子エネルギー分布 測定器の詳細と観測ロケット実験で得られた結 果を紹介する.

2. 超熱的電子のエネルギー分布測定器

測定の基本原理はサンプリングプローブ法 であり、オリフィスに入射した電子を電圧掃引 メッシュによりエネルギー選別することで、電 流電圧特性(ラングミュア特性)を取得する. 測定器の仕様を表1に,模式図を図1に示した. 本測定器では、ドルベステインの原理 [Druyvesteyn, 1930]を基にエネルギー分布の 導出が可能な二次高調波法と高感度の電子検出

表1. 超熱的電子エネルギー分布測定器の仕様.

基本原理:サンプリングプローブ法
エネルギー分布測定:二次高調波法
検出器:二次電子増倍管
エネルギーレンジ:<5 eV (@Ne~10 ⁵ /cc)
エネルギー分解能:~0.15 eV
時間分解能:2Hz
使用可能圧力: <10 ⁻¹ Pa (高度90km以上)

図 1. SPA の模式図.

器である二次電子増倍管(CEM)を組み合わ せることで、今まで困難であった熱的から超熱 的にかけての電子エネルギー分布観測を高エネ ルギー分解能で実現した.主な特徴としては、 1)電子エネルギーの絶対較正が約0.01 eVの 高精度で可能であること、2)0.15 eV以上の 高エネルギー分解能が実現されたことである.

まず1)については、測定原理にプローブ法を

図2. 超熱的電子エネルギー分布測定器 の外観.

用いているためロケット基準電位に対するプラ ズマ空間電位を算出可能であり、言い換えれば ロケット電位の変動に左右されずに電子エネル ギーの絶対値を決定可能とういことになる. ま た2)は、エネルギー分布の算出にドルベステ インの原理を採用したことで可能になったもの で、このエネルギー分解能は低エネルギープラ ズマの測定にしばしば用いられる静電型エネル ギー分析器に比べ高い.また大気圧力が10⁻¹ Pa 程度と高い下部電離圏(~90 km)において高電 圧を使用する二次電子増倍管を正常に動作させ るために、非蒸発型ゲッターポンプによる差動 排気システムも搭載している. オリフィスには 真空封じのための蓋が取り付けられており, ロ ケットが測定開始高度に達した時点で蓋を開け る.

3. Sq 電流系と高電子温度層の関係

超熱的電子エネルギー分布測定器が初めて搭載された S-310-37 号機観測ロケット実験は,

「Sq 電流系中心に発生する高電子温度層の生 成メカニズムの解明」を目的としたものである.

Sq(Solar quiet)電流系とは、地磁気活動が穏 やかな時に観測される電離層中の電流分布を指 し、緯度 30° かつローカルタイム正午付近を中 心とした渦状電流で特徴付けられる.この電流

[Oyama and Hirao, 1979].

系は中性大気の太陽潮汐にともなうダイナモに 起因して生じるため,夏・冬半球で非対称な分 布を示す.Fukushima(1979)は,夏・冬半球の Sq中心の電位差は1kVオーダーに達し,冬半 球から夏半球への沿磁力線電流が生じると予測 した.電離圏の電気伝導度は,プラズマ密度の 小さな下部電離圏(E領域)で急激に減少する ため,電位差はこの領域に配位すると予想され る.

一方,これまで鹿児島内之浦宇宙空間観測所 より打ち上げられた数多くの観測ロケットによ り,高度100km付近の狭い高度範囲で電子温 度が背景大気温度に比べ数100K上昇するとい う現象がしばしば確認されている(図3).これ らデータの統計解析により,次のような幾つか の条件下で観測されることが明らかになってき た[小山等,1977].

- ① 冬季
- ② 11:00LT 頃
- ③ 高度 95 km~110 km 付近
- ④ 観測場所が Sq 電流系中心に近づくにつれ て温度上昇幅は大きくなる

図4.予測される高電子温度層生成のメ カニズム.

これらの結果から小山等は次のようなメカニズ ムを提案した(図4).

- ① 夏冬半球の Sq 電流系中心に電位差が生じ,
- 電位差は電気伝導度の小さな下部電離圏に
 配位,
- ③ この電場が周囲の電子を加速し、熱化した 結果として電子温度を上昇させる.

我々は、この加速電子の熱化過程で生じると考 えられる超熱的電子の存否を検証するために、 超熱的電子エネルギー分布観測を行った.

4. S-310-37 観測ロケット実験

観測ロケット S-310-37 号機は,2007 年1月 16日 11:20JST に鹿児島県内之浦宇宙空間観測 所(41.1N,100.3E)より打ち上げられた.ロケッ トは高度 100km 付近で Sq 電流系の中心を通過

図5. 搭載された電子温度プローブにより 測定された高電子温度領域.

し, 打ち上げ後 184 秒で最高到達高度 138km に達し, その後着水した.

搭載機器の1つである電子温度測定器の観測 からは、ロケット上昇時の高度 97~101km 付 近で当初の目的通り高電子温度層を通過したこ とが確認されている(図5). 温度上昇幅は背景 温度に対し500~600K 程度であった.

5. SPA 観測概要

SPA はロケット上昇時の高度 90km (打ち上 げ後約 80 秒) で蓋開け,検出器の高電圧 ON を行い,観測を開始した.機器の動作はフライ トを通して正常であった (図 6).

図 6. 電子エネルギー分布 (上), 電流電圧 特性(中)およびロケット高度(下)

6. 電子エネルギー分布の観測

図7は観測された電子エネルギー分布(上) とロケット高度(下)を、ロケット打ち上げか らの時間に対してプロットしたものである.エ ネルギー分布は約10秒毎に平均を行いプロッ

トしてある. 打ち上げから 130~140 秒 (ロケ ット上昇時の高度 125km 付近)で, 0.5~1.0 eV 程度の超熱的電子の増大が確認できる.

図8.電子エネルギー分布(ロケット上昇時の高度125~138 km).

図8はロケット上昇時の高度 125~138km のエネルギー分布を表している.この高度領域 のエネルギー分布には,非常に大きな電子密度 擾乱に起因すると考えられるノイズが確認され たため,電子エネルギー0.2 eVの移動平均処理 を施している.高度 125km の電子エネルギー 分布には,エネルギー0.5~1.1eV 程度の超熱的 成分の増大が存在している.

7. 電子密度擾乱

電流電圧特性には、微小スケールの電子密度 擾乱に起因すると考えられる電流値の変動が確 認された.図9は電流電圧特性からハイパスフ ィルターにより電流値の変動成分のみを取り出 した結果である.フィルターのカットオフ周波 数は約500 Hz である.これによるとロケット 上昇時の高度100 km 付近から急激に振幅が大 きくなり、高度125 km 付近で最大値をとり、 次第に小さくなっていっていることが分かる. ここで検出された電子密度擾乱の空間スケール は2m程度に相当する.ロケット下降時には同 様の変化は確認出来ない.

図9. 電流電圧特性から抽出された微小空間スケールの電子電流値変動.

8. まとめと今後の方針

電子エネルギー分布では、ロケット上昇時の 高度約 125 km 付近で超熱的電子成分の増大を 観測した.また取得された電流電圧特性から算 出した電子密度擾乱も、同高度で最大値をむか えている.電子温度プローブによる観測から高 電子温度層が高度約 97~101 km に存在してい たことを考えると、これらの結果は、高電子温 度層よりも高高度で電子加速とそれに伴うプラ ズマ不安定が存在する可能性を示唆するもので ある.今後は搭載機器の1つである電場計測器 との比較から電子加速領域の特定を行い、メカ ニズムの解明に迫りたい.

9. References

[1] Fukushima, Electric Potential difference between conjugate points in middle latitudes caused by asymmetric dynamo in the ionopshere, J. Geomag. Geoelectr., 31, 401-409, 1979.

[2] Oyama, K.-I. and Hirao, K, Distortions of the energy distribution of ionospheric thermal electrons near the focus of Sq current vortex, Planet. Space Sci., 27, 18-192, 1979.

[3] 小山孝一郎, 平尾邦雄, 福島直, ダイナモ領域の Sq focus 付近における熱電子の異常加熱について, 東 京大学宇宙航空研究所報告, 第13巻第2号, 1977.

[4] Druyvesteyn, Der Niedervoltbogen, Zeits. Phys.,64, 781, 1930.