Radiatively-driven clumpy absorbers in the NLSy1 IRAS 13224-3809

Takuya Midooka (U. Tokyo, ISAS/JAXA) Misaki Mizumoto (Kyoto Univ.), Ken Ebisawa (U. Tokyo, ISAS)

16th June, 2022 XMM-Newton Workshop

- 1. Introduction
- 2. Target: IRAS 13224-3809
- 3. Method: spectral-ratio model fitting
- 4. Results
- 5. Summary

Constrained the outflow velocity of clumpy absorbers by "spectral-ratio model fitting"

1. Intro: Most AGNs host various absorbers

	observation	outflow velocity	origin
warm absorbers (WAs)	~65% of AGN (notably, radio-quiet Sy1)	< 2000 km/s	wind from NLR? torus? disk?
ultrafast outflow (UFO)	~40% of Sy1,2	0.1-0.3 c	disk winds?
clumpy absorbers (clumps/obscurers)	parts of Sy1	zero? (unknown) 。	BLR clouds? torus? disk winds?
PDS 456 (nardini+15)	UFO absorption	P S WGC 5548 Nus Chandra 2002 pn 20 RGS 2013 P P	INTEGRAL 2013
E 1.0 E 0.8 5 Rest-frame	$\frac{1}{10}$	5. 1 En	(Naasura+14) 10 100 3/15 ergy (keV)

1. Intro: Are clumps originated from wind?

To explain the observed X-ray spectra, both <u>the clumps</u> and <u>the disk winds</u> (the origin of UFO) are required.

We want to explain the both in a unified picture

The "Hot-inner Clumpy-outer wind" (Mizumoto+19) model suggests that the clumps are wind origin.

However, observational evidence does not exist that clumpy absorbers are outflowing

1. Intro: Outflow Simulation

- Radiation-MHD simulation of supercritical accretion flow
- Disk wind is driven by the radiation
- Wind turns into many clumps further away 30 (Rayleigh-Taylor + RHD instabilities)

 $\rightarrow\,$ Hot-inner Clumpy-outer wind model is supported by theoretical studies

5/15

1. Intro: Challenges in observational studies

- In the 0.3-2 keV band, there are various components
- thermal plasma
- soft-excess
- WAs
- clumpy absorbers (CF, ξ , $N_{\rm H}$, $v_{\rm out}$)

- Spectral parameters are degenerate
- $\rightarrow v_{out}$ of clumps cannot be constrained

We implemented a novel method "Spectral-ratio model fitting"

The purpose of this study is

- to constrain v_{out} of the clumps
- to confirm whether the clumps are outflowing

2. Target: NLSy1 IRAS 13224-3809

- $0.5-2 \times 10^6 M_{\odot}$ (Alston+19)
- 1.5Ms observed by XMM-Newton in 2016
- 0.2-0.3c UFO absorption lines detected
- The dimmer the X-rays,
 - the deeper the UFO absorption (Parker+17)
 - the slower the UFO velocity (Chartas+18)
- Spectral variation can be modeled with partial absorption by clumps(Yamasaki+16)
- \rightarrow Ideal target to examine the relation between the UFO and the clumps

3. Method: Spectral-ratio models

Model: PL partially absorbed by ionized clumps (pow*zxipcf) Assumption: covering fraction (CF) of the brightest spectrum is 0 Modeled spectral ratios by taking the ratio to the brightest one

3. Method: model vs observation

Shape of the spectral ratio is determined by the clump parameters (CF, ξ , $N_{\rm H}$)

In addition to the above parameters, we need variations of continuum norm and outflow velocity v_{out} of clumps 10/15

4. Results: Spectral-ratio model fitting

All the 9 (B/A ... J/A) observed spectral ratios are successfully fitted

* Residuals above 3 keV may be due to changes in PL index

4. Results: best-fit params

- v_{out} is strongly constrained and comparable to that of the UFO (~0.2-0.3c)
- As the X-ray flux gets dimmer
 - CF gets higher
 - v_{out} gets lower
 - PL norm gets lower
- constant ξ , $N_{\rm H}$ regardless of flux

First observational indication that the clumpy absorber is driven by the radiation pressure

4. Results: Velocity of the clumps and UFO

We fitted each intensity-sliced spectrum assuming a simple model (PL + gauss). UFO velocities are estimated from the best-fit UFO line energy.

- Velocity of the clumps are comparable to that of the UFO
- Similar variations with the X-ray flux
 - \rightarrow consistent with the "Hot-inner Clumpy-outer wind" model13/15

5. Summary

- XMM observed IRAS 13224 for 1.5Ms.
- We invented a "spectral-ratio model fitting" in 0.3-5keV.
- We found that v_{out} of clumps and UFO are comparable and have similar flux dependence.

Our finding supports the "Hot-inner Clumpy-outer wind" scenario.

