修士論文

すばる多天体近赤外撮像分光装置 (MOIRCS) による 銀河リッジX線放射の起源天体の研究

東京大学大学院理学系研究科 天文学専攻博士課程(前期課程)

指導教官 海老沢 研

鈴木 健介

2008年3月22日

概 要

銀河面リッジから放射されている X 線 (Galactic Ridge X-ray Emission; GRXE) の存在は 1980 年代から (知られていた。しかし、その起源が (1) 真に拡がったプラズマであるのか、(2) 暗い X 線点源の重ね合わせ であるのかの議論は 21 世紀となった現在でも決着がついていない。Ebisawa et al.(2005) は、史上最高感 度を誇る X 線天文衛星 Chandra を用いて 200 ksec の観測を行い、2-10 keV では GRXE の大部分を点源 に分解できなかったことから、その起源は真に拡がったプラズマであると主張している。一方 Revnivtsev et al.(2006)は、GRXEの空間分布と近赤外線放射の空間分布との一致を根拠として、Chandra 衛星でも分 解できなかった GRXE が、実は検出限界以下の暗い点源の重ね合わせで説明できると主張している。本研 究では、Chandra 衛星によって分解された X 線点源の赤外線対応天体を、世界最高級感度を誇るすばる望 遠鏡/MOIRCSを用いて分光観測し、その起源を調べた。その結果、ハードなX線を放射する一部の天体 から輝線が見つかり、それは激変星中の降着円盤からのものだと考えられる。一方、ハードな X 線を放射 しているが、赤外線で吸収を示す新たな天体も発見した。この天体は、~2.5 keV という中間的な温度を持 ち、吸収線を持つことから通常の星だと考えられる。今までのあすか、Chandra による研究から、GRXE のエネルギースペクトルは低温成分 (~0.6 keV) と高温成分 (~6 keV) の 2 成分で説明できることがわかっ ていたが、高温成分を点源で説明しようとすると、その候補である激変星は数が少なく、GRXEの大部分を 説明できるほどは数が多くないという問題点がある。一方、この数年、Swift, INTEGRAL, すざくにより、 10 keV より高エネルギー側での激変星の観測が進められてきており、一部の激変星においては数十 keV 以 上の温度で表される非常に硬い X 線スペクトルを示すことがわかってきた。そこで我々は、6 keV の高温 成分の代わりに、今回我々が発見したような 2.5 keV の中間温度成分をもつ通常の星と、数十 keV という 超高温の激変星の重ね合わせで GRXE のエネルギースペクトルが説明できるかどうか、すざく衛星による GRXEの観測データを用いて検討した。その結果、この3成分モデルですざく衛星のGRXEスペクトルは よく再現され、中間エネルギーを持つ通常の星が十分に存在すれば、超高温の激変星の数はそれほど多く なくともよいことがわかった。

目 次

第1章	はじめに	4
第2章 2.1 2.2 2.3	レビュー 銀河面リッジ X 線放射	5 5 6 7
第 3 章 3.1 3.2 3.3	観測装置	8 8 8 9 9 11
第4章 4.1 4.2 4.3	 データ処理 データの確認 ADU 値の補正 ダーク 4.3.1 既存のダークフレームの作成 4.3.2 仮想的なダークフレームの作成 	 16 19 19 19 19
4.4 4.5	 4.3.3 ダークの差し引き	20 20 20 20 21 21
4.6	 4.5.1 ホットビッセルマップ 4.5.2 デッドピクセルマップ 4.5.3 バッドピクセルマップ 夜光 4.6.1 A - B 4.6.2 A/A - B/B	21 21 21 21 21 22 23
4.7	4.6.2 r//Isky D/Dsky 4.6.3 c*A/A _{sky} - B/B _{sky}	23 23 25 25 25 25 25

	4.7.4 重ね合わせ	26
4.8	スペクトル抽出	27
	4.8.1 一次元スペクトルの抽出	27
	4.8.2 波長較正	27
4.9	大気の吸収の除去....................................	27
第5章	議論	42
5.1	等価幅の測定	42
5.2	星のタイプの決定....................................	45
5.3	Hardness Ratio と等価幅	45
5.4	X 線フラックスと等価幅の関係	45
5.5	カラーカラーダイアグラム	45
5.6	GRXE の X 線エネルギースペクトルの解釈	47
	5.6.1 新種の X 線天体	47
	5.6.2 超高温の激変星	49
	5.6.3 新たなモデル	49
5.7	$\log N - \log S$ のシミュレーション	52
	5.7.1 数密度-光度関係	53
	5.7.2 銀河円盤モデルの考慮	53
	5.7.3 結果	54
	5.7.4 点源説、拡散プラズマ説の違い	55
第6章	まとめと考察	56
6.1	本論文のまとめ	56
6.2	GRXE の起源解明へ向けて	57
付録A	、使用したマスク	60

第1章 はじめに

夜空を見上げれば、数え切れないほどの星が光り輝き、美しい世界を形作っている。星座や神話などに代 表されるように、人類は、はるか昔からこの夜空に想いを馳せてきた。天の川という夜空を流れる川を見出 したのもそのひとつである。科学が発展した今日では、この川は地球が所属する太陽系、それが所属する もっと大きな系である銀河を横から眺めたものであり、約2000 億個もの個々の星から構成されていること がわかっている。しかし、科学の力はこの夜空をこれだけでは終わらせず、さらなる謎を投げかけてきた。 赤外線やX線などの目には見えない光がこの世の中に存在し、それで夜空を眺めたらどうなるかという疑 問を残したのである。そこから始まったのが赤外線天文学であり、X線天文学である。

ここでは X 線に注目しよう。X 線で夜空を眺めたらいったいどうなっているのだろうか?可視光と同じよ うな天の川が見えるのだろうか?その天の川は、可視光と同様に個々の星が集まって構成されているのだ ろうか?これらの疑問のうち、一部には答えることができる。X 線で眺めても、やはり天の川は存在した。 現在では、特に銀河面の尾根 (リッジ)部分から放射されている高エネルギーの X 線の起源に注目が集まっ ている。このリッジ部分から放射されている X 線の起源が個々の星の集まりだとして説明を試みる者と (点 源説)、いやいやそうではなくて、拡がった高温のプラズマもあって、星とプラズマの重ね合わせが見えて いるのだとする説明を試みている者 (拡散プラズマ説)がいるのだ。これまでに、この議論に決着をつけよ うと、X 線天文衛星を用いた観測が繰り返されてきた。EXOSAT、てんま、ぎんが、あすかなどの歴代の 衛星がその任務にあたった。もちろん、現在、史上最高感度を誇っている Chandra 衛星でも観測が行われ ている。しかし、それでもなお、点源説か拡散プラズマ説かははっきりしていないのだ。

本論文も、このリッジ X 線放射の起源を探るための大きなプログラムのひとつである。現在のところ、 リッジ成分を説明するためには、X 線で観測するだけでは不十分なのである。なぜなら、X 線の感度がまだ まだ足りず暗い天体が見えていないという現状があり、また、X 線で見えている天体についても情報が少な すぎて正体がわからないからである。そこで、リッジ成分の一部(または全部)を構成しているだろう個々 の天体そのものを近赤外線で観測し、その星の正体や分布を探っていこうというのが本論分の趣旨である。 近赤外線は、その透過力が X 線とほぼ同程度であるため、吸収を強く受けてしまう可視光などよりも観測 の上で有利なのである。さらに、大望遠鏡を使って集光し分光するためより多くの情報が得られ、天体の起 源にせまることができるはずである。先の Chandra 衛星によって観測されたデータによって、対象領域か ら約 280 個の X 線天体が見出されている。そこで、これらのうち赤外線で対応天体が見つかっている約 90 個の天体について、すばる望遠鏡の MOIRCS を用いて近赤外分光観測を行った。本論文では、その結果に ついての報告を行う。

第2章 レビュー

2.1 銀河面リッジ X 線放射

1962年、Giacconiらが月で反射された太陽 X 線の観測を目的としてロケットを打ち上げたのが X 線天文 学誕生の瞬間である。その時彼らは、月以外の場所から X 線がやってきていることを発見したのだが、偶 然にもこの天体は全天でもっとも明るい X 線源である Sco X-1 だった。その後、1970年代になって、X 線 天文学は本格的な天文衛星の時代に突入した。1970年の Uhuru 衛星を皮切りに数多くの衛星が欧米から打 ち上げられ、日本でも 1979年に最初の X 線天文衛星はくちょうが打ち上げられた。こうして X 線天文学に ついて多くの知識が蓄積されていく中、我々の所属する銀河系についての観測も進んだ。その中で、1980 年代前半から現代に至るまで解決できずにいる問題も存在する。

宇宙からやってくる一様に拡がった X 線は、2 種類に大別することができる。ひとつは宇宙 X 線背景放 射 (Cosmiic X-ray Background, CXB) であり、これは、銀河系外の数多くの点源の重ね合わせとして説明 できることがわかっている。そしてもうひとつが、銀河面に沿って放射されている銀河面リッジ X 線放射 (Galactic Ridge X-ray Emission, GRXE) である。こちらは、その起源について今も議論が続けられている。

GRXE は 1980 年代前半から知られており (図 2.1)、その空間分布やエネルギースペクトルの理解が進ん できた。GRXE は、銀河面にそって約1度の厚みを持ち、銀経約-30度から+30度の範囲に分布している。 ピークは銀河中心にあり、バルジ成分も存在する。銀河面全体で積分した強度は約10³⁸ ergs/s(2-10 keV) であり、これは銀河系内の明るいX線連星一つ分と同程度である。また、エネルギースペクトルには高度 に電離したイオンによる輝線が見られ、それが熱的プラズマによるものだと考えた場合、その温度は~5-10 keV に対応する。現在さかんに議論されていることは、このGRXE の起源である。GRXE が (1) 真に拡 がったプラズマが存在しているのか (拡散プラズマ説)、あるいは、(2)CXB と同じようにたくさんの暗いX 線点源の集まりであるのか (点源説) ということに、いまだに決着がついていない。

図 2.1: EXOSAT 衛星によって観測された GRXE。

この議論に決着をつけるためには、星間吸収の影響が少ない約2 keV より高エネルギー側で撮像観測 を行い、リッジ成分を個々の点源に分解することが必要である。これを世界で初めて可能にしたのが、日 本の4番目のX線天文衛星あすかである。あすかは精力的に広い範囲の銀河面を観測し、当時としては 最も高精度な銀河系内天体の logN-logS プロットを作成した。限界感度も当時としては最高の約 2×10^{-13} ergs/s/cm²(2-10 keV) であったが、それでもGRXE を点源に分解するには不十分であった。あすかの限界 感度はその位置精度 (~1分角)で制限されており、これ以上感度を下げることはできない。一方、1999年 に打ち上げられた Chandra 衛星は ~0.5 秒角の位置分解能を誇り、限界感度は天体からの光子数だけでほ ぼ決まるため、観測時間を稼げば稼ぐほど暗い天体を検出できるという利点がある。

Ebisawa et al. (2005) は、この Chandra 衛星を用いて、あすかが観測した銀河面上、銀緯 28.5 度の「空白領 域」を 2000 年、2001 年の 2 度にわたって計 200 ksec 観測し、あすかより約二桁低い~3×10⁻¹⁵ ergs/s/cm²(2-10 keV) の感度を達成した。その結果、(1) 限界感度より明るい天体全てをあわせた表面密度が~500 個/deg² であり、これは高銀緯領域の AGN の数と比べてそれほど多くはないこと、(2) 視野から限界感度より明るい 点源を全て取り除いても、高銀緯領域と比べてはるかに強い X 線フラックスが観測されることを発見した。 銀河面の裏側にある AGN は、観測領域の銀河系内の水素柱密度~6×10²² cm⁻² では約 20 %(2-10 keV) の 減光を受けるものの、ほぼ全てが観測される。そのため、(1) はこの感度に達すると銀河系内 X 線点源が もうあまり存在しないことを示唆しており、また、(2) は CXB に加えてまさに GRXE が存在する証拠で ある。Chandra 衛星による logN-logS カーブは、背景の AGN、中性子星またはブラックホールを含む連星 系、白色矮星を含む暗い連星系 (激変星) の和でうまく説明でき、Chandra の限界感度以下の暗い X 線源の 光度関数に対する影響は小さいという主張のもと、Ebisawa et al.(2005) は GRXE の起源が銀河面上で真 に拡がった (未知の) 放射成分であると結論した。ただし、この拡散プラズマ説では、~5-10 keV もの高温 プラズマがどのように銀河内に維持され続けているかという新たな問題も生じる。

一方、これと正反対の結論を主張しているのが Revnivtsev et al.(2006)である。彼らは、(1)GRXE 成分 と近赤外線輻射の大局的な分布が一致していることと、(2)太陽系近傍の暗い X 線天体の光度関数を根拠 とし、GRXE の大部分が点源の和として説明できると主張している。(1)、(2)ともに X 線のデータは主に RXTE 衛星のものを利用しているが、この衛星は撮像観測することはできず、感度も Chandra 衛星と比較 してはるかに劣っている。しかし、一度に広い領域を観測できるという利点を持っており、約 10 年間の観 測で全天をほぼくまなくカバーし、比較的明るい X 線天体の天球上の分布や太陽系近傍の X 線天体の光度 関数、GRXE の大局的な空間分布を明らかにしている。彼らの議論の内容については、2.2 節で紹介する。

このように、GRXE 発見から 20 年以上経った現在でも拡散プラズマ説と点源説が激しく議論を戦わしている。究極的には、GRXE のフラックスを全て説明できるようになるまで限界感度を下げればいいのだが、それには現在最高感度を持つ Chandra 衛星を用いても ~300 万秒以上の露光時間が必要で、非現実的である。

2.2 銀河面リッジの赤外線観測

Revnivtsev et al.(2006) が点源説を支持する大きな根拠が、GRXE 成分と近赤外線輻射の大局的な分布 の一致である。特に、GRXE と 3.5 μ m の近赤外線放射の空間分布はほぼ完全に一致していた。この 3.5 μ m の放射は通常の星 (大部分が晩期型主系列星) の分布を表していると考えられているため、星があると ころに GRXE 放射ありき、と考えることができる。そこで Revnivtsev et al.(2006) では「星の質量あたり のリッジ X 線放射率」を求め、1M_☉ の星あたりのリッジ X 線光度 ~3.5×10²⁷ ergs/s/M_☉(3-20 keV) とい う値を得た。

一方 RXTE 衛星の観測では、衛星の感度の限界のために ~10³⁰⁻³² ergs/s 程度の暗い X 線天体は太陽系 のごく近傍でしか観測できなかったものの、全天で ~30 個が受かった。この観測により、太陽系近傍におけ る暗い X 線天体の空間密度を求めることができ、さらに、主系列星の空間密度と組み合わせることで「太 陽系近傍における 1M_☉ の星あたりの X 線天体の放射率」がわかる。

Revnivtsev et al.(2006) は、「星の質量あたりのリッジ X 線放射率」と「太陽系近傍における 1 M_{\odot} の星 あたりの X 線天体の放射率」とがほぼ一致していることを発見した。つまり、太陽系近傍の暗い X 線星の 分布を銀河面全体に当てはめれば、GRXE のほぼ全てが点源で説明できる、ということである。さらに、 ~5 keV より低エネルギー側ではアクティブな晩期型連星系、それより高エネルギー側では複数のタイプの 激変星が支配的になり、それらの異なったエネルギースペクトルを重ね合わせれば、GRXE の X 線エネル ギースペクトルを再現できるといっている。ただし、この点源説では、Ebisawa et al.(2005) が見積もった ものよりもはるかに多くの暗い天体が銀河を埋めつくしていることになり、銀河面全体の X 線天体の空間 分布を太陽系近傍のわずか 30 個足らずの天体の外挿から求めることが正しいかどうかなどの問題も残る。

2.3 さらなる観測

前述の通り、現状では X 線での観測だけではこの議論に決着がつけられない。そこで別のアプローチと して、GRXE の一部(または大部分)を担っている点源の起源を探ることを考える。銀河面上の天体は強く 吸収を受けて可視光では観測が困難なため、目的を果たすためには X 線と同等の透過力を持つ近赤外線で の観測が必要である。

Ebisawa et al.(2005) は Chandra 衛星で観測した領域から新たに 274 個の X 線天体を発見した。そのうち 142 個については ESO/NTT または 2MASS によって赤外線対応天体も見つかっている。本論文では、 それらの赤外線対応天体について、世界最高級感度を誇るすばる望遠鏡を用いて分光観測を試みた。

第3章 観測

3.1 観測装置

3.1.1 すばる望遠鏡

すばる望遠鏡は、日本が所有する世界最大級の地上望遠鏡であり、設置場所はハワイのマウナケア山頂 (北緯 19°49′43″、東経 155°28′50″、高度 4139 m)である。有効口径 8.2 m を有し、4 つの焦点 (主、カセグ レン、2 つのナスミス)にさまざまな観測装置を取り付けて可視 ~ 赤外の観測を行う。1999 年 1 月にファー ストライトを行ったこの望遠鏡には、高い鏡面精度を維持するための能動光学や、空気の乱れを抑える新型 ドームなど高度な技術が多数使われている。

3.1.2 すばる多天体近赤外撮像分光装置 (MOIRCS)

すばる望遠鏡のカセグレン焦点に取り付けて観測を行う装置のひとつがすばる多天体近赤外撮像分光装置 (Multi-object Infrared Camera and Spectrograph, MOIRCS) である。この装置は、近赤外 ($0.8 \sim 2.5 \mu$ m) での観測を行うもので、撮像モードと分光モードの2つの観測モードがあり、視野は4'×7'である。どち らのモードでも視野を2つに分割し、2つの 2048×2048 ピクセルの赤外線検出器 (HgCdTe)を用いて受光 する。装置そのものからの赤外線を防ぐため、赤外線検出器は77 K、それ以外の部分も100 K 以下に冷却 して運用される。

● 撮像モード

MOIRCS には複数のフィルターが用意されており、観測者が自由に選択することができる。特に近赤外線領域で代表的な3バンド (J,H,K_s) については、その感度が発表されている (表 3.1)。

Filter	Wavelen	$\operatorname{igth}[\mu\mathrm{m}]$	Sensitivity(Vega magnitu		
	Center	Width	[mag]	[mag/pixel]	
J	1.26	0.17	23.6	25.9	
Н	1.64	0.28	22.5	24.8	
Ks	2.14	0.31	22.6	24.8	

表 3.1: 各フィルターの感度。条件は、シーイングが 0²/5、1 時間観測で 5 シグマ以上となるもの。点源は 直径 1²¹の拡がりがあるものとし、拡がった天体では mag/pixel としている。感度はベガを 0 等級とした場 合の相対等級。(http://subarutelescope.org/Observing/Instruments/MOIRCS/imag_sensitivity.html)

● 分光モード

分光観測を行うためには、グリズムを光路上に挿入する。グリズムとはプリズムと回折格子を組み合わせたもので、入射光と分散光の進行方向を変化させないという特徴がある。検出器の位置を固定し

たまま複数の波長で分光観測を行うことができるため、可視光や赤外線望遠鏡では広く用いられている。MOIRCS では、低分散グリズム2つ(zJ500,HK500)と中分散グリズム1つ(R1300)が利用可能である。各グリズムの波長分解能や感度は表3.2の通りである。

もうひとつ多天体分光観測に欠かすことのできないものがマスクである。マスクとは、分光対象天体 の位置にあわせてスリットを開けたアルミニウム板のことで、これによって、一回の露光によって複 数天体の分光が可能になる。また、観測中にマスクを取り換えることによって複数の視野での多天体 同時分光を可能にしている。一枚あたり最大で 50 個近くのスリットを開けることができるが、その 配置は観測者自らが指定する必要がある。一度に 18 枚 (観測者用は 14 枚)のマスクが格納可能であ り、観測中に取り換えることができるようになっている。

Grism	Operating	Resolution	Dispersion	Sensitivity(Vega magnitude)
name	range $[\mu m]$	(0.5 slit)	[Å/pixel]	$[mag/arcsec^2]$
zJ500	0.9-1.78	700@J	5.57	J=19.2
IIVEOO	1.3-2.5	640@H	7 79	H=17.8
HK500		$820@K_s$	1.12	K=17.6
		1500@J	1.91@J	J=17.8
R1300	1-2.5	1600@H	2.61@H	H=16.7
		1500@K	3.88@K	K=17.1

表 3.2: 各グリズムの性能と感度。

(http://subarutelescope.org/Observing/Instruments/MOIRCS/spec_sensitivity.html)

3.2 観測準備

3.2.1 マスクの準備

MOIRCS を用いて分光観測を行うためには、観測者自身が事前にマスクのデザインをしなければならな い。そのために、wmdp_moircs¹というタスクが用意されており、観測者はこれを利用する。もうひとつマ スクのデザインに必要なデータとして pre-image がある。pre-image とは、観測予定領域を事前に MOIRCS によって撮像観測したもので、MOIRCS サポートチームによって用意される。

我々は、マスクデザインにあたり、まず Ebisawa et al.(2005)の Chandra 衛星の観測データの再解析を 行った。点源とみなす条件であるしきい値を下げて新たに 13 個の天体を点源とみなし、全部で 287 個の点 源の中から分光天体を決定した。新たに加えた天体の名前と赤経、赤緯を表 3.3 に示す。

決定にあたっては、マスクに開けられるスリットの数やマスクの角度、視野の大きさなどを考慮して、目 的天体を少しでも多く観測できるようにした。その結果、9枚のマスクを製作し、102個の点源を分光でき るようにした(図 3.1)。ただし、9枚のうち1枚(gp04)については、観測中に破損してしまったために使う ことができなかった²。これらのマスクを本論文ではgp03,06,07,08,09,10,12,13(破損した1枚は除いてあ る)と呼ぶ。番号が飛んでいるのは、デザインはしたが製作しなかったマスクがあるからである。各マスク の詳細なデザインと Chandra 天体の対応は付録 A を参照。

 $^{^{1}}$ pre-image が撮像観測された後に、MOIRCS サポートチームに連絡するとプログラムが渡される。

²裏返しに MOIRCS へ設置してしまったため。

天体名	赤経 (J2000)	赤緯 (J2000)
AE1_003	18:43:27.71	-4:06:20.98
AE1_056	18:43:53.20	-4:09:52.00
AE1_063	18:43:55.75	-4:01:47.52
AE1_070	18:44:01.60	-4:11:01.03
AE1_084	18:44:07.72	-3:58:38.80
AE1_097	18:44:17.15	-4:00:45.00
AE1_104	18:44:22.52	-4:05:28.49
AE1_109	18:44:22.79	-4:09:35.64
AE1_115	18:44:26.06	-4:02:35.34
AE2_118	18:43:43.72	-3:51:09.80
AE2_130	18:43:49.48	-3:52:33.29
AE2_134	18:43:51.72	-3:51:22.99
AE2_137	18:43:52.52	-3:53:04.22

表 3.3: 新たに加えた天体。

) 1E-08 2E-08 3E-08 4E-08 5E-08 6E-08 7E-08 8E-08 9E-08 1E-07

) 1E-08 2E-08 3E-08 4E-08 5E-08 6E-08 7E-08 8E-08 9E-08 1E-07

図 3.1: 赤が 0.5-2 keV、緑が 2-4 keV、青 4-8 keV として三色合成した Chandra 衛星の画像上での各マ スクの位置関係。それぞれ、横軸が赤経、縦軸が赤緯であり、また、各マスクは緑が chip1 側、赤が chip2 側。マスクが重ならないように 2 枚の図で表した。左図:gp03,06,07,08 の Chandra 画像上での位置。右 図:gp09,10,12,13 の Chandra 画像上での位置。

3.3 観測

2007 年 6 月 8 日から 10 日にかけて観測を行った。天体を自動追尾するオートガイド装置が使用不可で あったため、観測の合間にこまめに (数分 ~ 数十分に一度) 位置合わせを行った。表 3.5 は観測ログの中か ら、実際に解析を行ったデータに関する部分を抜粋したものである。

表中の語句の説明

• Time

ハワイ時間 (HST) であらわした露出開始時間。

• File name

観測データの FITS ファイル名。*01.fits-*04.fits という表記は、*01.fits, *02.fits, *03.fits, *04.fits と いう4枚のファイルを表す。MOIRCS のデータは、視野を2つに分割して2つのファイルとして保存 する。したがって、全てのデータは偶数個で1セットとなる。特に天体の分光データの場合、ある領 域を一度観測した後にスリット方向にディザリング幅だけずらして観測するため、4つのファイルで 1セットとみなす (4.6節参照)。そこで、表 3.5 でも天体の分光データについては4ファイルで1セッ トとしてまとめてある。

- Object
 - mos

各マスクを用い、実際に対象天体を分光観測したデータ。

- dark

赤外線検出器にまったく光を当てずに観測したデータ (4.3 節参照)。

- flat_on

赤外線検出器全面に均等に光を当てて観測したデータ (4.4 節参照)。

- comp

あらかじめスペクトルのわかっている波長較正用ランプを当てて観測したデータ(4.8.2節参照)。

- std

星のタイプ (例:A 型星) が既にわかっている天体を標準星と呼ぶ。この標準星を観測したデータ (4.9 節参照)。複数の候補の中から一部 (std3, std4, std7, std8) を観測した。実際の天体名との関 係は表 3.4 参照。

	天体名	赤経	赤緯
std3	HD121081	13:54:00	-28:09:53
std4	HD130049	14:46:21	-11:06230
std7	HD122549	14:02:29	+00:01:23
std8	HD216662	22:54:49	-08:02:16

表 3.4: 標準星のファイル名と実際の天体名の関係。

• Mask

分光観測の場合に、どの領域を分光観測したかを表す。マスク名によって区別する。gp03,06,07,08,09,10,12,13 がある。

• Exp

露出時間。単位は秒。

• Coadd/NSMP

Coadd とは、各ポインティング位置での露出の回数のことである。Coadd の回数分の露出を行い、それをまとめてひとつのファイルへと出力する。一方、NSMP とは赤外線検出器の非破壊読み出し回数のことである。一度露出したら、そのデータに対して NSMP 回の非破壊読み出しを行い、それらをまとめてひとつのファイルへと出力する。したがって、露出時間が Exp の場合、各データの総露出時間は Exp × Coadd × NSMP と同等になっている。

表 3.5: 観測ログ。ただし、全取得データから本論文で解析に用いた データだけを抜粋して記述した。

Time	File name	Object	Mask	Exp	Coadd/NSMP
2007 年	56月8日				
	dark13_no1_01.fits - dark13_no1_06.fits	dark	n/a	13	1/1
	gp07_flat_on_01.fits - gp07_flat_on_10.fits	$flat_on$	gp07	15	1/1
	$gp07_comp_01.fits - gp07_comp_30.fits$	comp	gp07	13	1/1
20:07	std3_no01_01.fits - std3_no01_04.fits	std3	gp07	60	2/1
	std4_no01_01.fits - std4_no01_04.fits	std4	$\mathrm{gp07}$	80	2/1
	gp07_no01_01.fits - gp07_no01_04.fits	mos	gp07	60	1/1
	$gp07_n002_01.fits - gp07_n002_04.fits$	mos	gp07	60	1/1
	$gp07_n003_01.fits - gp07_n003_04.fits$	mos	gp07	300	1/4
	$gp07_n004_01.fits - gp07_n004_04.fits$	mos	gp07	300	1/4
	$gp07_n005_01.fits - gp07_n005_04.fits$	mos	gp07	300	1/4
00:11	$gp07_n006_01.fits - gp07_n006_04.fits$	mos	gp07	180	1/4
00:24	$gp07_n007_01.fits - gp07_n007_04.fits$	mos	gp07	180	1/4
00:43	$gp07_n008_01.fits - gp07_n008_04.fits$	mos	gp07	180	1/4
00:58	$gp07_n009_01.fits - gp07_n009_04.fits$	mos	gp07	180	1/4
01:13	$gp07_n010_01.fits - gp07_n010_04.fits$	mos	gp07	180	1/4
02:00	gp09_no01_01.fits - gp09_no01_04.fits	mos	gp09	180	1/4
02:21	$gp09_n002_01.fits - gp09_n002_04.fits$	mos	gp09	180	1/4
02:42	$gp09_n003_01.fits - gp09_n003_04.fits$	mos	gp09	180	1/4
02:56	$gp09_n004_01.fits - gp09_n004_04.fits$	mos	gp09	180	1/4
03:46	$gp09_n005_01.fits - gp09_n005_04.fits$	mos	gp09	180	1/4
	gp09_no06_01.fits - gp09_no06_04.fits	mos	gp09	180	1/4
	gp03_no01_01.fits - gp03_no01_04.fits	mos	gp03	180	1/4

continued from previous page

Time	File name	Object	Mask	Exp	Coadd/NSMP
	gp03_no02_01.fits - gp03_no02_04.fits	mos	gp03	180	1/4
	gp03_no03_01.fits - gp03_no03_04.fits	mos	gp03	180	1/4
	gp03_no04_01.fits - gp03_no04_04.fits	mos	gp03	180	1/4
	$gp03_comp_01.fits - gp03_comp_30.fits$	comp	gp03	13	1/1
	$gp03_flat_on_01.fits$ - $gp03_flat_on_10.fits$	${\rm flat_on}$	gp03	13	1/1
	gp09_flat_on_01.fits - gp09_flat_on_10.fits	${\rm flat_on}$	gp09	13	1/1
	gp09_comp_01.fits - gp09_comp_30.fits	comp	gp09	13	1/1
	dark 180_no1_01.fits - dark 180_no1_14.fits	dark	n/a	180	1/1
2007 年	56月9日				
20:06	std3_no02_01.fits - std3_no02_04.fits	std3	gp12	90	2/1
20:30	std4_no02_01.fits - std4_no02_04.fits	std4	gp12	90	2/1
21:05	std7_no01_01.fits - std7_no01_04.fits	std7	gp12	60	2/1
22:15	gp12_no01_01.fits - gp12_no01_04.fits	mos	gp12	180	1/4
22:24	gp12_no02_01.fits - gp12_no02_04.fits	mos	gp12	180	1/4
	gp12_no03_01.fits - gp12_no03_04.fits	mos	gp12	180	1/4
	gp12_no04_01.fits - gp12_no04_04.fits	mos	gp12	180	1/4
	gp12_no05_01.fits - gp12_no05_04.fits	mos	gp12	180	1/4
23:32	gp12_no06_01.fits - gp12_no06_04.fits	mos	gp12	180	1/4
	gp12_no07_01.fits - gp12_no07_04.fits	mos	gp12	180	1/2
	$gp12_no08_01.fits - gp12_no08_04.fits$	mos	gp12	180	1/4
00:00	$gp12_n009_01.fits - gp12_n009_04.fits$	mos	gp12	180	1/4
00:13	gp12_no10_01.fits - gp12_no10_04.fits	mos	gp12	180	1/4
00:59	gp06_no01_01.fits - gp06_no01_04.fits	mos	gp06	180	1/4
	gp06_no02_01.fits - gp06_no02_04.fits	mos	gp06	180	1/4
	gp06_no03_01.fits - gp06_no03_04.fits	mos	gp06	180	1/4
	gp06_no04_01.fits - gp06_no04_04.fits	mos	gp06	180	1/4
	gp06_no05_01.fits - gp06_no05_04.fits	mos	gp06	180	1/4
	gp06_no06_01.fits - gp06_no06_04.fits	mos	gp06	180	1/4
02:31	gp06_no07_01.fits - gp06_no07_04.fits	mos	gp06	180	1/4
	gp06_no08_01.fits - gp06_no08_04.fits	mos	gp06	180	1/4
2007年6月10日					

22:15	std4_no03_01.fits - std4_no03_04.fits	std4	gp10	90	2/1
	gp10_no01_01.fits - gp10_no01_04.fits	mos	gp10	180	1/4
	gp10_no02_01.fits - gp10_no02_04.fits	mos	gp10	180	1/4
	gp10_no03_01.fits - gp10_no03_04.fits	mos	gp10	180	1/4
	$gp10_n004_01.fits - gp10_n004_04.fits$	mos	gp10	180	1/4
	gp10_no05_01.fits - gp10_no05_04.fits	mos	gp10	180	1/4

	c	•	
continued	trom	previous	nage
comunucu	monn	previous	page

Time	File name	Object	Mask	Exp	Coadd/NSMP
	gp10_no06_01.fits - gp10_no06_04.fits	mos	gp10	180	1/4
	gp10_no07_01.fits - gp10_no07_04.fits	mos	gp10	180	1/4
00:03	gp10_no08_01.fits - gp10_no08_04.fits	mos	gp10	180	1/4
00:43	gp13_no01_01.fits - gp13_no01_04.fits	mos	gp13	180	1/4
00:49	$gp13_n002_01.fits - gp13_n002_04.fits$	mos	gp13	180	1/4
00:59	gp13_no03_01.fits - gp13_no03_04.fits	mos	gp13	180	1/4
01:14	gp13_no04_01.fits - gp13_no04_04.fits	mos	gp13	180	1/4
01:32	$gp13_n005_01.fits - gp13_n005_04.fits$	mos	gp13	180	1/4
01:40	$gp13_n006_01.fits - gp13_n006_04.fits$	mos	gp13	180	1/4
01:49	$gp13_n007_01.fits - gp13_n007_04.fits$	mos	gp13	180	1/4
02:03	gp13_no08_01.fits - gp13_no08_04.fits	mos	gp13	180	1/4
	gp08_no01_01.fits - gp08_no01_04.fits	mos	gp08	180	1/4
02:43	$gp08_n002_01.fits - gp08_n002_04.fits$	mos	gp08	180	1/4
	$gp08_n003_01.fits - gp08_n003_04.fits$	mos	gp08	180	1/4
03:00	$gp08_n004_01.fits - gp08_n004_04.fits$	mos	gp08	180	1/4
03:09	$gp08_n005_01.fits - gp08_n005_04.fits$	mos	gp08	180	1/4
03:18	$gp08_n006_01.fits - gp08_n006_04.fits$	mos	gp08	180	1/4
03:27	gp08_no07_01.fits - gp08_no07_04.fits	mos	gp08	180	1/4
03:36	$gp08_n008_01.fits - gp08_n008_04.fits$	mos	gp08	180	1/4
	std8_no01_01.fits - std8_no01_04.fits	std8	gp08	120	2/1
	gp10_flat_on_01.fits - gp10_flat_on_10.fits	flat_on	gp10	13	1/1
	$gp10_comp_01.fits - gp10_comp_10.fits$	comp	gp10	13	1/1
	gp13_flat_on_01.fits - gp13_flat_on_10.fits	$flat_on$	gp13	13	1/1
	$gp13_comp_01.fits - gp13_comp_10.fits$	comp	gp13	13	1/1
	gp12_flat_on_01.fits - gp12_flat_on_10.fits	$flat_on$	gp12	13	1/1
	$gp12_comp_01.fits - gp12_comp_10.fits$	comp	gp12	13	1/1
	gp08_flat_on_01.fits - gp08_flat_on_10.fits	${\rm flat_on}$	gp08	13	1/1
	$gp08_comp_01.fits - gp08_comp_10.fits$	comp	gp08	13	1/1
	gp06_flat_on_01.fits - gp06_flat_on_10.fits	${\rm flat_on}$	gp06	13	1/1
	$gp06_comp_01.fits - gp06_comp_10.fits$	comp	gp06	13	1/1

我々の観測では、データ解析に必要な全ての較正データを得ることができなかった。そのため、後日、 MOIRCS サポートチームによって必要な較正データが取得された。それが、以下に示した分である。ただし、 Coadd/NSMP の欄が?/?となっているものがある。これは、FITS ファイルのヘッダ部分に Coadd/NSMP の値が書かれていなかったためであるが、実際のデータを見て判断したところ、他の較正データ同様、1/1 であると考えられる。

2007年6月18日

$dark60_no1_01.fits - dark60_no$	1_20.fits dark	n/a	60	1/1

continued from previous page						
Time	File name	Object	Mask	Exp	Coadd/NSMP	
2007年6	5月22日					
	dark60_no2_01.fits - dark60_no2_18.fits	dark	n/a	60	?/?	
(dark180_no2_01.fits - dark180_no2_20.fits	dark	n/a	180	?/?	
(dark300_no1_01.fits - dark300_no1_20.fits	dark	n/a	300	?/?	

第4章 データ処理

この章では、データを処理し、科学的な議論ができるプロダクト(天体ごとに波長較正されたスペクトル) までを生成するための手続きについて述べる。データ処理には、IRAFを用いた。

4.1 データの確認

観測データを調べ、解析に必要なものを取り出した(表 4.1)。各項目の意味は以下の通りである。

• File set name

観測ログに示したファイル名のうち、ひとつのポインティングに属する複数のファイルのセット。例 えば、dark13_no01 とは、dark13_no01_01.fits - dark13_no01_06.fits という 6 枚の FITS ファイルを 表している (3.3 節参照)。

ディザリング幅

分光観測では、バックグラウンドを見積もるために対象領域を一度撮像した後、スリット方向にディ ザリング幅分だけずらしてもう一度撮像を行う。ディザリング幅は、ターゲットとその周辺の星とが、 ティザリング前後で極力重ならないように観測ごとに選んだ。

• Airmass

天頂から、観測領域までの角度をzとした場合に $1/\cos(z)$ で定義される値。天頂方向がもっとも Airmass が小さくなる (=1)。 Airmass が大きい場合、地球大気をより多く通過することになるため吸収が大きくなり、同時に、地球大気の背景放射も大きくなる。

表 4.1: 観測データのうち、特に解析に必要なもののみを抜き出した もの。ただし、表 3.5 の中で?だった部分には推定値をいれた。

File set name	Exp	Coadd	NSMP	mask	ディザリング幅	Airmass
	[sec]				[arcsec]	
dark13_no01	13	1	1	-	-	-
$dark60_no01$	60	1	1	-	-	-
$dark60_no02$	60	1	1	-	-	-
$dark180_n001$	180	1	1	-	-	-
$dark180_n002$	180	1	1	-	-	-
$dark300_no01$	300	1	1	-	-	-
std3_no01	60	2	1	gp07	5.0	1.547 - 1.550
$std3_n002$	90	2	1	gp12	6.0	1.544 - 1.549

	C	•	
continued	trom	nroviolis	nare
commutu	monn	previous	page
		1	1 0

File set name	Exp	Coadd	NSMP	mask	ディザリング幅	Airmass
	[sec]				[arcsec]	
std4_no01	80	2	1	gp07	6.0	1.227 - 1.231
$std4_no02$	90	2	1	gp12	6.0	1.242 - 1.247
std4_no03	90	2	1	gp10	5.0	1.174 - 1.175
$std7_n001$	60	2	1	gp12	6.0	1.063
$std8_n001$	120	2	1	gp10	6.0	1.268 - 1.276
gp03_comp	13	1	1	gp03	-	-
gp06_comp	13	1	1	gp06	-	-
gp07_comp	13	1	1	gp07	-	-
gp08_comp	13	1	1	gp08	-	-
gp09_comp	13	1	1	gp09	-	-
$gp10_comp$	13	1	1	gp10	-	-
gp12_comp	13	1	1	gp12	-	-
gp13_comp	13	1	1	gp13	-	-
gp03_flat	13	1	1	gp03	-	-
gp06_flat	13	1	1	gp06	-	-
gp07_flat	15	1	1	gp07	-	-
gp08_flat	13	1	1	gp08	-	-
gp09_flat	13	1	1	gp09	-	-
gp10_flat	13	1	1	gp10	-	-
gp12_flat	13	1	1	gp12	-	-
gp13_flat	13	1	1	gp13	-	-
gp03_no01	180	1	4	gp03	4.8	1.468 - 1.492
gp03_no02	180	1	4	gp03	4.8	1.545 - 1.573
gp03_no03	180	1	4	gp03	4.8	1.610 - 1.642
gp03_no04	180	1	4	gp03	8.0	1.726 - 1.764
gp06_no01	180	1	4	gp06	8.0	1.118 - 1.122
gp06_no02	180	1	4	gp06	8.0	1.102 - 1.105
gp06_no03	180	1	4	gp06	4.0	1.095 - 1.096
gp06_no04	180	1	4	gp06	4.0	1.093
gp06_no05	180	1	4	gp06	4.0	1.096 - 1.098
gp06_no06	180	1	4	gp06	4.0	1.101 - 1.103
gp06_no07	180	1	4	gp06	4.0	1.112 - 1.116
gp06_no08	180	1	4	gp06	4.0	1.122 - 1.126
gp07_no01	60	1	1	gp07	5.0	1.609 - 1.621
gp07_no02	60	1	1	gp07	5.0	1.586 - 1.597
gp07_no03	300	1	4	gp07	5.0	1.497 - 1.535
gp07_no04	300	1	4	gp07	5.0	1.291 - 1.313
gp07_no05	300	1	4	gp07	5.0	1.249 - 1.268
gp07_no06	180	1	4	gp07	5.0	1.204 - 1.214

	C	•	
continued	trom	nroviolis	nare
commuted	mom	previous	page
		1	1 0

File set name	Exp	Coadd	NSMP	mask	ディザリング幅	Airmass
	[sec]				[arcsec]	
gp07_no07	180	1	4	gp07	5.0	1.173 - 1.181
gp07_no08	180	1	4	gp07	5.0	1.139 - 1.145
gp07_no09	180	1	4	gp07	5.0	1.118 - 1.123
gp07_no10	180	1	4	gp07	5.0	1.105 - 1.108
gp08_no01	180	1	4	gp08	4.0	1.120 - 1.125
gp08_no02	180	1	4	gp08	4.0	1.130 -1.136
gp08_no03	180	1	4	gp08	4.0	1.143 - 1.149
gp08_n004	180	1	4	gp08	4.0	1.157 - 1.164
gp08_no05	180	1	4	gp08	4.0	1.174 - 1.182
gp08_n006	180	1	4	gp08	4.0	1.194 - 1.204
gp08_n007	180	1	4	gp08	4.0	1.216 - 1.227
gp08_n008	180	1	4	gp08	4.0	1.240 - 1.252
gp09_no01	180	1	4	gp09	7.2	1.092 - 1.093
gp09_no02	180	1	4	gp09	7.2	1.101 - 1.104
gp09_no03	180	1	4	gp09	4.8	1.114 - 1.118
gp09_no04	180	1	4	gp09	4.8	1.138 - 1.144
gp09_no05	180	1	4	gp09	4.8	1.232 - 1.244
gp09_no06	180	1	4	gp09	4.8	1.285 - 1.299
gp10_no01	180	1	4	gp10	5.0	1.497 - 1.522
gp10_no02	180	1	4	gp10	5.0	1.446 - 1.468
gp10_no03	180	1	4	gp10	5.0	1.398 - 1.418
gp10_no04	180	1	4	gp10	5.0	1.327 - 1.343
gp10_no05	180	1	4	gp10	5.0	1.293 - 1.308
gp10_no06	180	1	4	gp10	5.0	1.263 - 1.276
gp10_no07	180	1	4	gp10	5.0	1.235 - 1.247
gp10_no08	180	1	4	gp10	5.0	1.211 - 1.222
gp12_no01	180	1	4	gp12	7.0	1.835 - 1.888
gp12_no02	180	1	4	gp12	7.0	1.737 - 1.775
gp12_no03	180	1	4	gp12	7.0	1.607 - 1.638
gp12_no04	180	1	4	gp12	7.0	1.543 - 1.571
gp12_no05	180	1	4	gp12	7.0	1.396 - 1.416
gp12_no06	180	1	4	gp12	7.0	1.317 - 1.333
gp12_no07	60	1	2	gp12	5.0	1.298 - 1.304
gp12_no08	180	1	4	gp12	5.0	1.269 - 1.283
gp12_no09	180	1	4	gp12	5.0	1.215 - 1.226
gp12_no10	180	1	4	gp12	5.0	1.193 - 1.203
gp13_no01	180	1	4	gp13	6.5	1.134 - 1.139
gp13_no02	180	1	4	gp13	6.5	1.123 - 1.127
gp13_no03	180	1	4	gp13	6.5	1.114 - 1.118

continued.	from	previous	nage
comuniaca	monn	previous	page

File set name	Exp	Coadd	NSMP	mask	ディザリング幅	Airmass
	[sec]				[arcsec]	
gp13_no04	180	1	4	gp13	6.5	1.102 - 1.104
$gp13_no05$	180	1	4	gp13	6.5	1.095 - 1.096
gp13_no06	180	1	4	gp13	7.5	1.094
$gp13_n007$	180	1	4	gp13	7.5	1.094
$gp13_n008$	180	1	4	gp13	7.5	1.097 - 1.099

4.2 ADU 値の補正

ADU(analog to degital unit) 値とは、天体からの光子によって検出器上に発生した電子の数×gain のことを指す。通常は一度の露出による値を意味するが、3.3 節で説明したように、観測データは Coadd×NSMP 倍されている。そのため、この ADU 値も同様に Coadd×NSMP 倍されていることになる。Coadd、NSMP の値は観測対象ごとに変わるため、全てのデータを Coadd=1、NSMP=1 として規格化したほうがデータ を扱いやすい。そこで、それぞれのデータを Coadd×NSMP 値で割って規格化した。

4.3 ダーク

赤外線検出装置は、光があたっていなくても余計な電流が生じる。このような電流を暗電流 (ダーク) と 呼ぶが、観測データにはバックグラウンドとしてこの情報が加わることになる。そこで、天体を観測したの と同じ時間だけ光を当てずに露出したデータ (ダークフレーム)を用意し、これを天体のデータから引きさ ることでキャンセルする。

4.3.1 既存のダークフレームの作成

ひとつの露出時間に対して、現在は複数のファイルが存在する。例えば、dark13_no1は dark13_no1_01.fts - dark13_no1_06.fts の 6 つのファイルがある。今後の解析では、dark13_no1 はひとつのファイルとして扱い たいので、これらのファイルを全て足しあわせて中央値をとったものを、今後は dark13_no1 として扱うこ とにする。ただし、chip 1 側、chip 2 側でわけて足しあわせる必要があるため、実際は dark13_no1_ch1.fts と dark13_no1_ch2.fts のふたつのファイルで1 セットである。他のダークフレームについても同様である。

4.3.2 仮想的なダークフレームの作成

我々は、ダークフレームとして 13,60,180,300 秒の観測データを持っている。分光観測での露出時間は 主に 180 秒であるため問題ないが、標準星の露出時間は 90,120 秒であるため、差し引くための適当なダー クフレームがない。そこで、暗電流の量が露出時間と比例関係にあるという仮定のもと、90,120 秒のダー クフレームを仮想的に作成した。その手法は、60,180 秒のダークフレームに重みをつけて足しあわせると いうものである。

dark90_no1 = dark60_no2 * 0.75 + dark180_no2 * 0.25 dark120_no1 = dark60_no2 * 0.50 + dark180_no2 * 0.50 ただし、露出時間や検出器全面の標準偏差が単調関数関係に近づくように、dark60、dark180 はともに no2 のほうを採用した。

4.3.3 ダークの差し引き

これで、13,60,90,120,180,300秒のダークフレームが得られた。そこで、残りの全ての観測データ(対 象天体、標準星、波長較正用ランプ)から、露出時間に対応したダークフレームを差し引いた。

フラット 4.4

赤外線検出装置を構成するピクセルは、全てが同じ感度を持っているわけではない。そこで、検出器全面 に均等に光をあてたデータ(フラットフレーム)を用意し、オブジェクトフレームをフラットフレームで割 ることでピクセルによる感度の違いを補正する。

4.4.1 フラットフレームの作成

ダークフレーム同様、フラットフレームもひとつのマスクに対して複数のファイルが存在している。そこ で、これらを足しあわせて中央値をとったものを今後は用いる。

例) gp03_flat_on_01.fits - gp03_flat_on_10.fits \rightarrow $\begin{cases} gp03_flat_on_ch1.fits \\ gp03_flat_on_ch2.fits \end{cases}$

4.4.2 フラットの補正

これで各マスクごとにフラットフレームが得られた。そこで、残りの全てのデータ(対象天体、標準星、 波長較正用ランプ)をそれぞれのマスクに対応したフラットフレームで割り算をし、赤外線検出器の感度ム ラを補正した (図 4.1)。

図 4.1: フラットの割り算の例。std3_no01_02.fits を gp07_flat_on_ch2.fits で割った。ただし、 gp07_flat_on_ch2.fits とは、gp07_flat_on の 5 枚の chip2 フレームを全て足しあわせて中央値をとった ものである。

4.5 バッドピクセルマップの作成

赤外線検出装置を構成するピクセルの中には、おかしな振舞いをするものがある。まわりのピクセルと比較して異様に高い値を返したり、逆に光が当たっても全く反応しなかったりする。前者がホットピクセル、後者がデッドピクセルと呼ばれ、どちらもデータ解析の際に無視できないものである。そこで、実際に観測に用いた赤外線検出装置のホットピクセル、デッドピクセルがどこにあるのかをバッドピクセルマップとして明らかにしておく。

4.5.1 ホットピクセルマップ

まわりと比較して異様に高い値を常に示しているピクセルがホットピクセルである。これが検出器面上 のどこにあるかを明らかにするために、露出時間の最も長かった 300 秒のダークフレーム (dark300)を用 いる。ダークフレームは全く光を当てずに露出したデータであるため、ホットピクセルと正常なピクセルと の違いが顕著にでるからである。dark300 は全部で 10 セットあるため、まずこれらを足し合わせて中央値 をとり、さらに、検出器全面での頻度分布をとった。その結果、ADU > 20000 をホットピクセルとするこ とに決め、これより高い値を示しているピクセルを0、そうでないものを1 としたホットピクセルマップを 作成した。

4.5.2 デッドピクセルマップ

光が当たっても反応しないピクセルがデッドピクセルである。これがどこにあるのかを明らかにするには、 フラットフレームを用いる。フラットフレームは検出器全面に一様な光を当てたデータであるため、デッド ピクセルと正常なピクセルとの違いが顕著にでるからである。こちらも、ホットピクセルマップ作成時と同 様に頻度分布をとり、ADU < 0.5 をデッドピクセルとすることに決めた。これよりも小さな値を示してい るピクセルを0、そうでないものを1としたデッドピクセルマップを作成した。

4.5.3 バッドピクセルマップ

作成したホットピクセルマップとデッドピクセルマップの各ピクセル値をかけ合わせることによって、バッドピクセルマップを合成した。しかし、このままでは0がバッドピクセル、1が正常なピクセルを指すため、0と1とを反転させて、最終的なバッドピクセルマップとした。図4.2に、ホットピクセルマップ、デッドピクセルマップ、バッドピクセルマップを示した。

4.6 夜光

赤外線の地上観測では、地球大気による影響(夜光)が避けられない。この影響を除去するために、次に 述べる方法が一般的である。

(1) 対象領域を観測する (A と表記)。

(2) スリット方向にディザリング幅だけずらして、同じ領域を再度観測 (Bと表記)。

(3)A,Bを用いて、夜光をキャンセルする。その手法を以下で説明する。

図 4.2: 左から順に chip1 のホットピクセルマップ (黒がホットピクセル)、デッドピクセルマップ (黒がデッドピクセル)、バッドピクセルマップ (白がバッドピクセル)。ただし、ホットピクセルマップ、デッドピク セルマップについては、イメージの外側に黒い枠を加えて境界がわかるようにしてある。

4.6.1 A - B

A,Bのデータを用いた、もっとも単純な夜光のキャンセルの方法が A-B という操作である。A の時に分 光天体があった場所には、B の時には何も天体がないはずである (そうなるようにディザリング幅を決定す る)。そこで、単純に A-B という操作を行えば夜光のみがキャンセルされ、分光天体のデータのみが残る。 仮に、A の分光天体のカウント数を Src、夜光のカウント数を Sky と表すと

$$\begin{array}{rcl} A & = & \mathrm{Src} + \mathrm{Sky} \\ & B & = & \mathrm{Sky} \\ & \mathrm{A} - \mathrm{B} & = & (\mathrm{Src} + \mathrm{Sky}) - \mathrm{Sky} = \mathrm{Src} \end{array}$$

となって、夜光がきちんと引けることがわかる。

初めに、この操作を全ての分光データに対して行った。MOIRCS で観測されたデータは、一つの視野を 二つ (chip 1, chip 2) に分離して別々のファイルとして保存されている。さらに、A、B が 1 セットである から、結局、 1 セット当たり 4 枚のファイル (A_{chip1}, A_{chip2}, B_{chip1}, B_{chip2}) が存在することになる (3.3 節参 照)。そこで、これらの組合せにより 4 枚のファイル ((A – B)_{chip1}, (A – B)_{chip2}, (B – A)_{chip1}, (B – A)_{chip2}) を作成した。新たに作った 4 枚のファイルの命名法は、表 4.2 の通りである。

表 4.2: A-B という操作を実行した時のファイル名のつけ方。

File name	組み合わせ
$gp_ab_01.fits$	gp_chip1_A.fits - gp_chip1_B.fits
$gp_ab_02.fits$	gp_chip2_A.fits - gp_chip2_B.fits
$gp_ab_03.fits$	gp_chip1_B.fits - gp_chip1_A.fits
$gp_ab_04.fits$	gp_chip2_B.fits - gp_chip2_A.fits

この手法によって A-B という操作を実行したところ、夜光を引きさることができたものと引き残ったものがあった。標準星については、天体が十分に明るいため問題はない。しかし、それ以外の天体については、無視できない影響を与える恐れがある。そこで、標準星についてはこの方法を用い、それ以外のものについては以下に述べる方法で夜光の完全な除去を目指した。図 4.3 に夜光をうまく引けたものと引けなかったものの例を示す。

図 4.3: A-B という操作の結果。左:std3_no01 の chip 2 のイメージ。右図のような夜光のしましまがない。 右:gp03_no04 の chip 2 のイメージ。夜光の引き残りによるしましまが見える。

4.6.2 $A/A_{sky} - B/B_{sky}$

A-B という操作で夜光が引き残るものがあったのは、夜光のレベルが時間変化したためだと考えられる。 そこで、これに対処するために、A,B それぞれの夜光のレベルを事前に調べ、その値でそれぞれを規格化 してから引くという手法をとった。4.6.1 節と同様に、A での分光天体のカウント数を Src、夜光のカウン ト数を A_{sky}、B での夜光のカウント数を B_{sky} と表すと

$$\begin{array}{rcl} A & = & {\rm Src} + A_{\rm sky} \\ & B & = & B_{\rm sky} \\ \\ \displaystyle \frac{A}{A_{\rm sky}} - \frac{B}{B_{\rm sky}} & = & \left(\frac{{\rm Src}}{A_{\rm sky}} + 1 \right) - 1 = \frac{{\rm Src}}{A_{\rm sky}} \end{array}$$

となり、ノーマリゼーションが変化するものの(これは後で補正可能)、夜光はきちんと引くことができる。 各マスクには、天体が何も入っていない空のスリット(スカイスリット)が必ず用意されている(付録 A 参照)。そこで、そのスカイスリット内に存在する夜光輝線の一つに着目し、その部分の統計を調べて平均 値を調べる(A_{sky}、B_{sky}に対応)。その値で A,B それぞれを規格化したのちに A-B という操作を行なった。 その結果、多くのものは夜光がキャンセルできたが、一部にまだ引き残りが見られた。引き残った夜光線の 特徴を表 4.3 に示す。

4.6.3 $c^*A/A_{sky} - B/B_{sky}$

 A/A_{sky} - B/B_{sky} で夜光が引き残ってしまったのは、視野内で夜光のレベルが異なっていたためだと考え られる。すなわち、スカイスリットでの夜光レベルと分光天体があるスリットでの夜光レベルが違うとい うことである。スカイスリット以外の多くのスリットは、スリット内にたくさんの天体が入っているため に夜光レベルを調べることはできない。そこで、 A_{sky} の値を-5%~+5%の範囲で1%ずつ変化させてからA を規格化し、A-B という操作を行なった。その結果を眺め、最もよいものを目視で探した。その結果が表 4.4 である。また、A-B, A/A_{sky} - B/B_{sky} , c^*A/A_{sky} - B/B_{sky} をした場合の一例を図 4.4 に示した。

File name	引き残りの夜光線の特徴
gp03_no04_ab_??.fits	陽線
gp08_no01_ab_??.fits	陽線
gp09_no05_ab_??.fits	陰線
$gp09_no06_ab_??.fits$	陰線
gp10_no01_ab_??.fits	陽線
gp10_no03_ab_??.fits	陰線
gp10_no04_ab_??.fits	陽線
$gp10_no05_ab_??.fits$	陰線

表 4.3: A/A_{sky} - B/B_{sky} をしても引き残った夜光の特徴。

表 4.4: c*A/A_{sky} - B/B_{sky} した結果、目視で もっともうまく夜光が引けているもの。解なし の gp03_no04_ab_??.fits は、以降の解析では使わ ない。

File name	一番いいもの
gp03_no04_ab_??.fits	解なし
gp08_no01_ab_??.fits	+1 %
gp09_no05_ab_??.fits	-4 %
gp09_no06_ab_??.fits	-3 %
gp10_no01_ab_??.fits	+1 %
gp10_no03_ab_??.fits	-2 %
gp10_no04_ab_??.fits	+1 %
gp10_no05_ab_??.fits	-3 %

gp03_no04 (chip 2)

図 4.4: 左から順に、A-B, A/A_{sky} - B/B_{sky}, c*A/A_{sky} - B/B_{sky} をした場合の例。上段が gp03_no04 の chip 2 側、下段が gp10_no05 の chip 2 側。c*A/A_{sky} - B/B_{sky} の部分では、gp03 が+5%、gp10 が-3%のものを 掲載。それぞれのスリットに夜光輝線によるしましまが見えている。gp03 については一番右の図でも消えて いないが、gp10 では真ん中の図でかなりうすくなり、右の図では完全に夜光が除去されているのがわかる。

4.7 二次元イメージの最終処理

4.7.1 バッドピクセルの補正

4.5 節で作成したバッドピクセルマップを使い、すべての観測データのバッドピクセルを補間する。これには、fixpix というタスクを用いる。バッドピクセルを補間した例を図 4.5 に示す。

4.7.2 歪みの補正

ここまで処理してきた二次元データには観測天体の分散イメージが載っているわけだが、この分散の方向は必ずしもまっすぐではない。そこで、一次元スペクトルを抽出する前にこの歪みを補正する。そのためには geotran というタスクを用いる¹。 歪みを補正する前と後の例を図 4.5 に示す。

図 4.5: 二次元イメージの最終処理として、バッドピクセルの補間と歪みの補正を行ったもの。gp03_no01_ab_01の図である。左:何も処理をしていないもの、中:バッドピクセルを修正した後、右:さらに歪みを補正した後。

4.7.3 宇宙線の除去

観測時の宇宙線入射が原因で、データの一部が異常な値を示すことがある。これを除去するために以下の 手順をとる。

- (1) median-filterd image の作成。
 - median というタスクを用いる。これにより、イメージの各ピクセルの値が近隣の 3×3 ピクセルの中 央値に置き換えられたもの (median-filtered image) が得られる。
- (2) イメージを (1) の median-filtered image で割る。
- (3) 値が異常なピクセルを修正する。
 - lineclean というタスクを用いる。このタスクは、イメージの各ライン (2048×2048 ピクセルのイメージならば、1×2048 ピクセルが1ライン)を関数でフィットし、値が異常なものだけ書き換えるという作業を行うことができる。ただし、このタスクは一方向にしか実行できないため、imtranspose というタスクでイメージの x, y 方向を変換 (x,y → y,x) してもう一度 lineclean をし、さらにもう一度 x, y 方向を変換しなおす必要がある。

¹タスクを実行するのに必要なデータベースファイルは、MOIRCS サポートチームから提供していただいた。

(4) lineclean をかけたイメージに median-filtered image をかける。

(5) (1) から (4) を obj、std、comp の全てのファイルに対して実行する。

4.7.4 重ね合わせ

ここまでで、同じ視野を観測したデータにさまざまな補正をしたものが大量にある。例えば、gp07 は gp07_no01_ab_??.fits - gp07_no10_ab_??.fits まであり、これは、同じ A-B という処理をした chip 1 のデー タが no01 - no10 の 10 枚あるということである。そこで、データの統計をあげるためにこれらを足しあわ せる。ただ、そのまま足しあわせることはできない。天体のスペクトルはスリット内の同じ位置にあるわけ ではなく、観測のたびにスリット方向にずれている可能性があるというのが理由のひとつである。また、ス ペクトルが観測できていない (天体がスリットからはずれた) ものもあるため、これを足しあわせてしまっ て統計をさげることも避けねばならない。そこでこれらを解決するために、各イメージ中の明るいスペク トルを用いた。手順は

(1) イメージ中心付近のなるべく明るいものを探し、代表とする。

(2) そのスペクトルの任意の場所の座標を記録。

(3) 他のファイルでは (1) と同じスリット、同じスペクトルを探す。スリット方向を y 方向とした場合、x 座標を (2) と共通にした上で y 座標を記録する。

(4) 暗くてピークがとれない場合は足しあわせるファイルリストから除外する。

(5) すべて確認できたら y 座標の平均値を求め、そこからのずれ量に応じて各ファイルのイメージ全体を ずらす。imshift というタスクを使う。

(6) 全てのファイルをずらしたら、足しあわせる。

位置合わせ前のものと、位置合わせして全て足しあわせたものの例を図 4.6 に示す。

gp07_no02_ab_01.fits (imshift 前)

gp07_no07_ab_01.fits (imshift 前)

各ファイルを imshift し 足しあわせもの

図 4.6: gp07 に関する位置合わせ前後の図。左:gp07_no02_ab_01.fits の位置合わせ前の図。 中:gp07_no07_ab_01.fits の位置合わせ前の図。右:位置合わせを行い、全てのファイルを足しあわせ たもの。ただし no05, no08 は除外している。

4.8 スペクトル抽出

4.8.1 一次元スペクトルの抽出

これまで処理をしてきたデータは二次元である。このデータから、一次元スペクトルを抽出するには apall というタスクを用いた。その結果、全部で16枚の二次元イメージから90本の一次元スペクトルを得た。

4.8.2 波長較正

apallで抜き出したままのスペクトルは、横軸が pixel である。これを実際の波長と対応させるために、波 長較正用ランプを観測したデータを利用する。

- (1) それぞれのスリットにおいて、観測天体のスペクトルを抜き出したのとまったく同じ領域から、波長 較正用ランプのスペクトルを抽出する。
- (2) 次に、波長較正用ランプのスペクトルの横軸を pixel から波長へと変換する。これは identify というタ スクを使い、あらかじめわかっているランプの輝線情報を元にすることで可能となる。

MOIRCS で用いた波長較正用ランプは Th-Ar ランプであるが、我々が観測した K バンドでは通常の Ar ラ ンプとして扱うことができる。図 4.7 にランプの輝線情報と、実際に波長較正した例を示す。

4.9 大気の吸収の除去

今後、得られたスペクトルから輝線や吸収線情報などを抽出し、星のタイプなどを判断していく。しかし 現状では、天体のスペクトルに地球大気の影響などが残っており、輝線や吸収線を正しく見積もることがで きない。そこで、あらかじめスペクトル型のわかっている星(標準星)のスペクトルを用意する。こちらに も、先ほどと同じような地球大気の影響が残っているため、後者で前者を割り算することでこの影響を取り 除くことができる。このためのタスクとして telluric というものを用いた。手順は以下の通りである。

- (1) 標準星のスペクトルには、星の大気による吸収線 (2.16 μm, Brγ) が存在している。そこで、星のスペクトルを標準星のスペクトルで割る前に、この吸収線を取り除いた。そのために splot というタスクを用いた。
- (2) telluric では、割り算をするときに2つのパラメータを調節することができる。
 - shift

星のスペクトルと標準星のスペクトルとの間では、数ピクセルのずれが生じることがある。そこで、大気の吸収のピーク位置などをもとにこのずれ量を見積り、割り算の際にずらしてから割る。

• scale

大気の吸収は Airmass によって度合いが変わる。理想的には、まったく同じ Airmass のときの データ同士で割り算すればいいのだが、事実上、それは不可能である。そこで、標準星のスペク トルをこの scale 値倍してから割り算を行う。

これら shift 量と scale 値を各スペクトルごとに調整しながら割り算を実行した。例を図 4.8 に示した。

ここまでで、基本的な処理は全て終了した。この段階で得られた、全ての天体のスペクトルを図 4.9 に 示す。

図 4.7: 波長較正の例。標準星のスペクトル (std3_no01) に対して実行。上段左:波長較正用ランプ (Ar ラ ンプ)のスペクトル情報。上段右:波長較正用ランプのスペクトル。横軸はピクセルだが、上段左図を利用 してピクセルと波長との対応がつけられる。下段左:波長較正する前のスペクトル。横軸がピクセルになっ ている。下段右:波長較正用ランプのデータを利用して、波長較正を行った後のスペクトル。横軸が波長に なっている。スペクトル情報は http://gemini.fcaglp.unlp.edu.ar/sciops/instruments/gcal/gcalIndex.html による。

図 4.8: telluric によって大気の吸収の影響を除去した例。上段左:標準星のスペクトル。上段右:標準星のス ペクトルから Brγ(2.16 µm) の吸収線を除去したスペクトル。下段左:gp03 で観測した天体のスペクトル。 Ebisawa et al.(2005) では 262 番。下段中:Brγ を除去した標準星のスペクトル。ここでは std3_no01。下 段右:元のスペクトルを標準星のスペクトルで割った後のスペクトル。大気の吸収が除去されているのがわ かる。

図 4.9:最終的に得られたスペクトル。図中の破線は、輝線、または吸収線を表しており、最初の図にはその元素名も示した。また、各図の中央上部には、Ebisawa et al.(2005)で定義されている天体の番号と、そのスペクトルを観測したマスク名、Hardness Ratio による分類 (Hard, Medium, Soft)を示してある。

第5章 議論

5.1 等価幅の測定

対象天体の正体を探るために、スペクトル中に輝線、または吸収線を探し、その波長と等価幅を測定する。これを行うために、splot というタスクを用いた。手順は以下の通りである。

(1) スペクトルを splot で表示させ、輝線、または吸収線を目視でさがす。

(2) 輝線、または吸収線をみつけたら、その両端で一回ずつ「e」を押す。

(2) までを実行すると、画面下にその輝線、または吸収線の波長、等価幅などが表示される。複数の輝線、 または吸収線がある場合はこれを繰り返す。

表 5.2 に、すべてのスペクトルに関する情報を示す。輝線、または吸収線の波長やその起源は ALLEN'S ASTROPHYSICAL QUANTITIES(FOURTH EDITION)を参考にした。表 5.2 の中では各元素はひとつ ずつしか書かれていないが実際は二重線を示す元素が含まれており、その詳細は表 5.1 に示した。しかし実 際に等価幅を求める際には、それら二重線の間にひとつだけピークが見つかることがほとんどであったた め、本論文中では各元素ごとにひとつの輝線、または吸収線として扱っている。また、目視で輝線、または 吸収線がみつからないものもあり、その場合は「-」とした。各天体の X 線フラックスや Hardness Ratio、赤外線等級などは Ebisawa et al.(2005) から抜粋。ただし、Ebisawa et al.(2005) で定義されている天体の 他に新たに加えた分の天体 (AE1_097 など) については、正確な X 線フラックスや Hardness Ratio、赤外 線等級の測定がまだ行われいないため「-」としてある。

波 長 [µm]	元素	遷移
2.1127	He_{I}	$4s^3S - 3p^3P^o$
2.13748	Mg_II	$5p^2P^o_{3/2} - 5s^2S_{1/2}$
2.14380	$\mathrm{Mg}_{\mathrm{II}}$	$5p^2P^o_{1/2} - 5s^2S_{1/2}$
2.16612	H_{I}	$n~=~7-4~(Br\gamma)$
2.18911	$\mathrm{He_{II}}$	n = 10 - 7
2.20624	Na_{I}	$4p^2 P^o_{3/2} - 4s^2 S_{1/2}$
2.20897	Na_{I}	$4p^2 P_{1/2}^o - 4s^2 S_{1/2}$
2.26311	Ca_I	$4f^3F_3^o - 4d^3D_2$
2.26573	Ca_I	$4f^3F_4^o - 4d^3D_3$
2.29353	CO	v = 2 - 0 band head
2.32265	CO	v = 3 - 1 band head
2.35246	CO	v = 4 - 2 band head
2.38295	CO	v = 5-3 band head

表 5.1: 観測された輝線、または吸収線の波長とその起源。

		Щ															
		Ks	[mag]	12.73	11.96	15.13	ı	14.24		14.60	13.29	15.17	14.38	ı	12.21	14.88	
	厅外線等 級	Н	[mag]	13.07	12.10	15.25	16.20	14.42	15.53	ı	13.49	15.77	14.57	ı	12.64	15.23	1 1 1 1
	4	ſ	[mag]	13.66	12.48	16.54	17.07	14.98	16.44	,	13.94	17.0	15.57	,	13.72	15.96	, , ,
マイナスが輝 ress Ratio は H とした場合		Hardness Ratio	(H-S)/(H+S)	-0.99 ± 0.11	-0.16 ± 0.30	-0.92 ± 0.11	-0.20 ± 0.31	-0.81 ± 0.21	-0.93 ± 0.22	0.69 ± 0.26	-0.77 ± 0.17	-0.63 ± 0.27	-0.39 ± 0.30	-0.43 ± 0.15	-0.67 ± 0.07	-0.55 ± 0.19	0.0
はÅ。ブラスが吸収線、)と同じ。また、Hardr でのカウントレートを J	X 線フラックス	$[ergs/s/cm^2]$	0.5-2 keV/2-10 keV	5.9E-16/2.4E-16	1.3E-16/3.9E-15	5.5 E- $16/2.2 E$ - 16	7.3E-17/2.2E-15	4.3E-16/1.7E-16	2.3E-16/9.2E-17	6.4E-18/4.6E-15	4.0E-16/1.7E-15	3.0E-16/1.2E-15	2.5 E-16/1.0 E-15	7.5E-16/3.1E-15	2.2E-15/9.1E-15	6.1E-16/2.5E-15	
5。単位 al.(2005 ⊦8 keV			CO	,	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	16	ı	
)等価幅 wa et ≋ を S、3 ■。			CO		ı	ı	ı	ı		ı	ı	ı	ı	ı	12	ı	
Ebisar			CO		ı	ı	ı	ı	·	·	ı	ı	ī	·	13	ı	
ョ り し し て に ろ に ろ に ろ に ろ に ろ に ろ ろ ろ ろ ろ ろ ろ ろ		元素。	CO		ı	ı	ı	ı		ı	ı	ı	ı	ı	12	ı	
天体の での力 ((H+S)		を示すう	Ca I		ŀ	ı	ı	·		·	ı	ŀ	ī	·	4	·	
良を表す。 .5-2 keV : (H-S)/		は吸収線	Na I	ı	ı	ı	ı	ı	·	ı	ı	ı	ı	ı	c C	ı	
y 缓 O ビ		[線、また	He II		,	·	,	,		·	·	·	ı	·	ı	ı	
		淮	ΗI	7	×	ı	ı	ъ	ı	ı	×	ı	ı	ı	ı	ı	
			=														

スが光	tio [た場合	
$\mathbf{+}$	Ба	5	
Ň	less	₹ H	
吸収線、	, Hardı	イトを	
が	また	ユ	
ID ID		У	
Ъ	じ 同	R	
ţÅ,	Ū	Б Ц	
位	(05)	2	
単	.(20	š. ke	
Ę	al	ц т	
御御	a et	ń	
Е́	awa	Т М	
ル縞	Ebis	Í	Ę
7	<u>±6</u>	7	れ縦
રે	唧	ÿ	[H
6	6	R	
葉	玉体	6	+
名玉		\geq	11/1
Ċ,	載す	2 ke	S H
5		<u> </u>	·

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{split} \hline \& \& \pi \neq \pi \\ \& \& \pi \neq \pi \\ \& \& \pi \neq \pi \\ \hline \& \& \pi \neq \pi \\ \hline \& \& \pi \\ \hline \hline$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		星の種類	¢ P	т р	F3	ı	I	G2	I	۲ ۲	ΓC		I	M3	I	I	I	F3	激变星	I		CIVI	- M3	I	I	K0	NU 後亦屈	₩XX K3	K5	K0	ı	I	I	K0	I	I	1	
X # 7 = y 7, T # 7 x # 7 = y 7, CO 0.5-2 keV/2-10 keV (H-S)/(H+S) $mag $ $mag $ - 5.9E - 16/2 2E-16 -0.99 ± 0.11 13.66 13.07 - 5.9E - 16/2 2E-16 -0.99 ± 0.11 13.66 13.07 - 5.5E - 16/2 2E-16 -0.92 ± 0.11 13.66 13.07 - 5.5E - 16/2 2E-15 -0.02 ± 0.31 17.07 16.20 - - -0.93 ± 0.22 16.44 15.53 - - -0.81 \pm 0.27 17.07 16.20 - - -0.81 \pm 0.27 17.07 16.20 - - -0.81 \pm 0.27 17.07 16.20 - - - -0.33 \pm 0.27 17.07 15.77 - - - - - - - - - - - - - - - - - - - - - 16 215 E-	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	X # $7 > y / 7$ X # $7 > y / 7$ $\pi 4$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	~~~	Ks [mao]	[IIIag]	12.73	11.96	15.13	ı	14.24	1	14.60	15.29	11.38		12.21	14.88	15.21	14.70	15.76	12.90	1	14.50	10.11	11.00	I	13.30	13.41	11 14	10.35	13.09	14.10	ı	14.93	13.51	13.68	13.34	14.30	- 11	14.04
X & Z $\supset y \uparrow \chi$ Hardness Ratio J CO 0.5-2 keV/2-10 keV (H-S)/(H+S) [mag] J - 5.9E-16/2.4E-16 -0.99 ± 0.11 13.66 - 5.9E-16/2.2E-16 -0.99 ± 0.11 13.66 - 5.3E-16/2.2E-16 -0.99 ± 0.11 16.54 - 5.3E-16/2.2E-16 -0.92 ± 0.11 16.54 - 7.3E-17/2.2E-15 -0.20 ± 0.21 14.98 - 6.4E-18/4.6E-15 -0.03 ± 0.22 14.98 - 2.3E-16/9.2E-15 -0.03 ± 0.23 17.09 - 2.3E-16/9.2E-15 -0.63 ± 0.27 17.09 - 2.3E-16/1.2E-15 -0.63 ± 0.27 17.0 - 2.3E-16/1.2E-15 -0.63 ± 0.27 17.0 - 2.3E-16/1.2E-15 -0.63 ± 0.27 17.0 - 2.3E-16/1.2E-15 -0.651 ± 0.19 15.57 - 2.3E-16/1.2E-15 -0.67 ± 0.17 13.72 - 2.3E-16/1.3E-15 -0.61 ± 0.17 13.72 - 2.3E-16/1.3E-15	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Bar = 1) X (AB = 5) Y (AB = 7) X (AB = 7) A (AB = 1) A (「国家(1) 「国家(1) 「国家(1) 「国家(1) 「国家(1) 「国家(1) 「国家(1) 「国家(1) 「III [III [IIII [IIIII [IIIII [IIIII [IIIII [IIIII [IIIII [IIIIII [IIIIIIII [IIIIIIIIII [IIIIIIIIIIIIII [IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	下外線等級	H [maơ]	[IIIag]	13.07	12.10	15.25	16.20	14.42	15.53	- 10	13.49 15 77	10.67		12.64	15.23	15.61	14.81	15.39	ı	ı	14.73	10.21	$^{-}_{11.26}$	14.83	13.53	14.20	10.04 19 55	10.71	14.89	14.47	16.15	15.38	15.69	14.01	13.66	14./1	15 13	01.01
X $(a) 7 = y 7 \chi$ Hardness RatioCO0.5-2 keV/2-10 keV(H-S)/(H+S)-5.9E-16/2.4E-16-0.99 \pm 0.11-5.5E-16/2.2E-15-0.92 \pm 0.11-7.3E-17/2.2E-15-0.92 \pm 0.11-7.3E-17/2.2E-15-0.92 \pm 0.11-7.3E-17/2.2E-15-0.93 \pm 0.22-6.4E-18/4.6E-150.69 \pm 0.26-9.3B-16/1.7E-15-0.77 \pm 0.17-2.3E-16/1.2E-15-0.77 \pm 0.17-3.0E-16/1.2E-15-0.77 \pm 0.17-2.5E-16/1.0E-15-0.77 \pm 0.17-2.5E-16/1.0E-15-0.77 \pm 0.17-2.5E-16/1.0E-15-0.77 \pm 0.10-7.1E-16/2.5E-15-0.77 \pm 0.10-7.1E-16/2.5E-15-0.77 \pm 0.10-7.3E-16/1.1E-15-0.70 \pm 0.19-7.3E-16/1.1E-15-0.77 \pm 0.10-8.2E-17/2.5E-15-0.62 \pm 0.27-1.8E-16/1.4E-16-0.90 \pm 0.19-8.3E-16/1.4E-16-0.90 \pm 0.19-3.7E-16/1.4E-16-0.62 \pm 0.11-3.7E-16/1.4E-16-0.62 \pm 0.11-3.7E-16/1.4E-16-0.62 \pm 0.11-3.7E-16/1.4E-16-0.62 \pm 0.12-3.7E-16/1.4E-16-0.62 \pm 0.12-3.7E-16/1.4E-16-0.62 \pm 0.11-3.7E-16/1.4E-16-0.62 \pm 0.11-3.7E-16/1.4E-16-0.62 \pm 0.11-3.7E-16/1.4E-16-0.62 \pm 0.11-3.7E-16/2.4E-15-0.62 \pm 0.11-3.7E-16/2.4E-15-0.62 \pm 0.12 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>歳を示す元素。 X 織プラックス Hardness Ratio Ca_1 CO CO</td> <td>取用 X欄フラックス T欄フラックス Hardness Ratio 1 Ca1 CO <t< td=""><td>과</td><th>J [maơ]</th><td>[IIIag]</td><td>13.66</td><td>12.48</td><td>16.54</td><td>17.07</td><td>14.98</td><td>16.44</td><td></td><td>17.0</td><td>15.57</td><td></td><td>13.72</td><td>15.96</td><td>16.51</td><td>17.29</td><td>17.85</td><td>ı</td><td>ı</td><td>15.37</td><td>11.61</td><td>-11.93</td><td>15.51</td><td>14.23</td><td>15.21</td><td>15.78 15.14</td><td>11.62</td><td>ı</td><td>15.25</td><td>16.95</td><td>16.42</td><td>16.40</td><td>14.74</td><td>14.35</td><td>70.01</td><td>- 16.06</td><td></td></t<></td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	歳を示す元素。 X 織プラックス Hardness Ratio Ca_1 CO	取用 X欄フラックス T欄フラックス Hardness Ratio 1 Ca1 CO CO <t< td=""><td>과</td><th>J [maơ]</th><td>[IIIag]</td><td>13.66</td><td>12.48</td><td>16.54</td><td>17.07</td><td>14.98</td><td>16.44</td><td></td><td>17.0</td><td>15.57</td><td></td><td>13.72</td><td>15.96</td><td>16.51</td><td>17.29</td><td>17.85</td><td>ı</td><td>ı</td><td>15.37</td><td>11.61</td><td>-11.93</td><td>15.51</td><td>14.23</td><td>15.21</td><td>15.78 15.14</td><td>11.62</td><td>ı</td><td>15.25</td><td>16.95</td><td>16.42</td><td>16.40</td><td>14.74</td><td>14.35</td><td>70.01</td><td>- 16.06</td><td></td></t<>	과	J [maơ]	[IIIag]	13.66	12.48	16.54	17.07	14.98	16.44		17.0	15.57		13.72	15.96	16.51	17.29	17.85	ı	ı	15.37	11.61	-11.93	15.51	14.23	15.21	15.78 15.14	11.62	ı	15.25	16.95	16.42	16.40	14.74	14.35	70.01	- 16.06	
X 繰 $7 = y \gamma Z$ X 繰 $7 = y \gamma Z$ Eegs/s/cm ²] [ergs/s/cm ²] - 5.9E-16/2.4E-16 - 5.9E-16/2.4E-16 - 5.5.9E-16/1.7E-16 - 5.5.9E-16/1.7E-16 - 5.5.9E-16/1.7E-16 - 2.3E-16/2.2E-15 - 2.3E-16/1.7E-15 - 4.0E-16/1.7E-15 - 4.0E-16/1.7E-15 - 2.3E-16/1.1E-15 - 2.2E-15/9.1E-15 - 2.2E-16/1.1E-15 - 2.2E-16/1.1E-15 - 2.2E-16/1.1E-15 - 2.2E-16/1.1E-15 - 3.4E-16/1.1E-15 - 3.4E-16/1.1E-15 - 3.5E-16/1.1E-15 - 3.5E-16/1.1E-16 - 3.5E-16/1.1E-16 </td <td>$\begin{array}{rcccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>元素。 X 線フラックス 元素。 X 線フラックス ergs/s/cm²] [ergs/s/cm²] CO CO CO CO - - - 5.9E16/2.4E-16 - - 5.5E16/2.2E-16 - - 5.5E16/2.2E-16 - - - 5.5E16/2.2E-16 - - - 4.3E-16/1.7E-16 - - - 2.3E16/1.7E-15 - - - 4.0E16/1.7E-15 - - - 2.3E16/1.0E-15 - - - 2.3E16/1.0E-15 - - - 2.3E16/1.0E-15 - - - 2.5E15/9.1E-15 - - - 2.5E16/1.0E-15 - - - 2.5E16/1.0E-15 - - - 2.5E16/1.4E-16 - - - 2.5E16/2.3E-15 - - - - - -</td> <td>業者示す元素。 X 線 7 5 γ 7. (ergs/s/cm²) Ca₁ CO CO</td> <td>は取U (線 を示す元素。 L (A) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</td> <td></td> <th>Hardness Ratio</th> <td>(c+u)/(c-u)</td> <td>-0.99 ± 0.11</td> <td>-0.16 ± 0.30</td> <td>-0.92 ± 0.11</td> <td>-0.20 ± 0.31</td> <td>-0.81 ± 0.21</td> <td>-0.93 ± 0.22</td> <td>0.69 ± 0.26</td> <td>-0.63 + 0.07</td> <td>-0.03 ± 0.27</td> <td>-0.43 ± 0.15</td> <td>-0.67 ± 0.07</td> <td>-0.55 ± 0.19</td> <td>-0.51 ± 0.18</td> <td>-0.62 ± 0.30</td> <td>0.26 ± 0.27</td> <td>0.71 ± 0.17</td> <td>-0.70 ± 0.28</td> <td>-0.90 ± 0.19</td> <td>-0.00 ± 0.00</td> <td>-1.00 ± 0.18</td> <td>-1.00 ± 0.13</td> <td>-0.62 ± 0.11</td> <td>-0.53 ± 0.17</td> <td>0.11 ± 0.05</td> <td>-0.38 ± 0.21</td> <td>0.77 ± 0.30</td> <td>-1.00 ± 0.15</td> <td>-0.82 ± 0.21</td> <td>-0.96 ± 0.19</td> <td>0.53 ± 0.10</td> <td>-0.07 ± 0.25</td> <td>-0.72 ± 0.20</td> <td>11.0 ± 20.0</td> <td>17.0 ± 17.0^{-1}</td> <td></td>	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	元素。 X 線フラックス 元素。 X 線フラックス ergs/s/cm ²] [ergs/s/cm ²] CO CO CO CO - - - 5.9E16/2.4E-16 - - 5.5E16/2.2E-16 - - 5.5E16/2.2E-16 - - - 5.5E16/2.2E-16 - - - 4.3E-16/1.7E-16 - - - 2.3E16/1.7E-15 - - - 4.0E16/1.7E-15 - - - 2.3E16/1.0E-15 - - - 2.3E16/1.0E-15 - - - 2.3E16/1.0E-15 - - - 2.5E15/9.1E-15 - - - 2.5E16/1.0E-15 - - - 2.5E16/1.0E-15 - - - 2.5E16/1.4E-16 - - - 2.5E16/2.3E-15 - - - - - -	業者示す元素。 X 線 7 5 γ 7. (ergs/s/cm ²) Ca ₁ CO	は 取U (線 を示す元素。 L (A) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		Hardness Ratio	(c+u)/(c-u)	-0.99 ± 0.11	-0.16 ± 0.30	-0.92 ± 0.11	-0.20 ± 0.31	-0.81 ± 0.21	-0.93 ± 0.22	0.69 ± 0.26	-0.63 + 0.07	-0.03 ± 0.27	-0.43 ± 0.15	-0.67 ± 0.07	-0.55 ± 0.19	-0.51 ± 0.18	-0.62 ± 0.30	0.26 ± 0.27	0.71 ± 0.17	-0.70 ± 0.28	-0.90 ± 0.19	-0.00 ± 0.00	-1.00 ± 0.18	-1.00 ± 0.13	-0.62 ± 0.11	-0.53 ± 0.17	0.11 ± 0.05	-0.38 ± 0.21	0.77 ± 0.30	-1.00 ± 0.15	-0.82 ± 0.21	-0.96 ± 0.19	0.53 ± 0.10	-0.07 ± 0.25	-0.72 ± 0.20	11.0 ± 20.0	17.0 ± 17.0^{-1}	
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CO CO CO CO CO CO CO CO CO CO CO CO CO C	CO C	元義。 CO CO C	線を示す 「「」」」 「「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」 「」」」 「」 「	は吸収線を示す活素。 Na ₁ Ca ₁ CO	X 線フラックス	$[ergs/s/cm^2]$ 0.5.2 keV/2.10 keV	U.J-Z KeV/Z-LU KeV	5.9E-16/2.4E-16	1.3E-16/3.9E-15	5.5E-16/2.2E-16	7.3E-17/2.2E-15	4.3E-16/1.7E-16	2.3E-16/9.2E-17	6.4E-18/4.6E-15	4.0E-10/1./E-13	3.UE-10/1.ZE-13 9 5E-16/1 0E-15	7.5F-16/3.1F-15	2.2E-15/9.1E-15	6.1E-16/2.5E-15	7.1E-16/2.9E-15	1.8E-16/7.2E-16	8.2E-17/2.5E-15	1.2E-17/8.4E-15	2.8E-16/1.1E-15	3.4E-16/1.4E-16	0.1 E-10/1.0E-14 7 3E-16/3 0E-15	3.5E-16/1.4E-16	5.6E-16/2.3E-16	5.5 E - 16/2.3 E - 15	5.7E-16/2.4E-15	3.9E-10/1.0E-10 1.6F 15/4.7F 14	6.3E-16/2.6E-15	$4.5 \text{E} \cdot 18/3.3 \text{E} \cdot 15$	2.8E-16/1.1E-16	$2.3E_{-16}/9.3E_{-17}$	2.5E-16/1.0E-16	1.8E-16/5.4E-15	6.4E-17/1.9E-15	1.5E-16/6.1E-16	0.2E-10/2.1E-10	3.0E_16/1.9E_10	
	0	COCOCO COCO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	消滅。 「 「 「 」 」 」 」 」 」 」 」 」 」 」 」 」	線を示す 「「」」」 「」」 「」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」 「	は吸収線を示す法案。 14吸収線を示す法案。 Nai Cai CO CO CO CO CO 		00	3	ı	1	ı	1	1	I	ı	ı		1	16	,	ı	ı	ı	ı	1	ı	1	່ ເບ	ı	ı	ı	I	6	x	ı		ı	1	1	I	ı	ı	
R または吸収線を示す元素。 He II Na I Ca I CO CO E = 1 Ca I CO CO E = 1 Ca I CO CO E = 1	田田 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Henden Anden	漢 田田 日日 	 田 		i	推 ; [1] ;		- ·	x	ı	,	5 2	I.	ı c	ø		ı	ı	,	ī	ı	6	-14	ı	ı			ı	ı	ı	4			9		ı	ī	4	I.	ı	ı	
1. 其一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	薄線、または吸収線を示す式素。 11 He II Na I Cat CO 7 - - - - 8 - - - - 5 - - - - 6 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - - 1 - - - - - - 1 - - - - - - 1 - - - - - - 1 - - - - - - 1 - - - - - - - 1 - - - - - - -		購換、または吸収 11 11 7 - 8 - - - - - - - - - - - - - - - - - - </td <td>王</td> <td></td> <td></td> <th>Ma</th> <td>II SIM</td> <td>·</td> <td>ı</td> <td>ı</td> <td>·</td> <td>ı</td> <td>I</td> <td>ı</td> <td>ı</td> <td></td> <td>ı</td> <td>ı</td> <td>ı</td> <td>,</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>'</td> <td>1</td> <td></td> <td>ı</td> <td>ı</td> <td>ı</td> <td></td> <td>- -</td> <td>ı</td> <td>I</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>I</td> <td>ı</td> <td>ı</td> <td></td>	王			Ma	II SIM	·	ı	ı	·	ı	I	ı	ı		ı	ı	ı	,	ı	ı	ı	ı	'	1		ı	ı	ı		- -	ı	I	ı	ı	ı	ı	I	ı	ı	
jigga, またはみい線を示す元素。 MgII HI Na. Col CO - 7 - - - - - 8 - - - - - - 8 - - - - - - - 6 - - - - - - - - 5 - - - - - - - -	捕線、または吸U線を示す元素。 通線、または吸U線を示す元素。 Mg II H I Na I Cai CO - 7 - - - - - 7 - - - - - 7 - - - - - 6 - - - - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -			補線、表花 補線、表花	図 		Нa	пеI	ı	ı	ı	ı	ı	ı	·	ı		ı	ı	ı	ı	ı	ı	ı	ī		D		ı	ı	1 (о г		ı	ı	ı	ı	ı	ı	ı	ı	ı	
相目 風線、または破似線を示す元素。 HeI MgII H I HeII Na I O OO	捕 其人は吸収線を示す元素。 Hei MgII H I Hei Na Col Col - <td>捕車」 捕虫, または吸収線を示す 指車」 孤乳, または吸収線を示す - 7 - - - 7 - - - - 7 - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< td=""><td>捕虫 捕虫、 進化は吸収器 Her MgII H I Her Na1 - - - - - - - - - 7 - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>相 通線、書称 相 一個 一 一 一 一 一 一 一 一 一 -<td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td><th>の番号</th><td>č</td><td>$\frac{21}{21}$</td><td>29</td><td>30</td><td>36</td><td>37</td><td>41</td><td>46</td><td>101</td><td>с х х с</td><td>60</td><td>64</td><td>67</td><td>68</td><td>72</td><td>74</td><td>79</td><td>80</td><td>81</td><td>708</td><td>85 85</td><td>87</td><td>91</td><td>94 20</td><td>98 100</td><td>104</td><td>105</td><td>106</td><td>107</td><td>112</td><td>113</td><td>114</td><td>116</td><td>771</td><td>124</td><td>07.1</td></td></td<></td>	捕車」 捕虫, または吸収線を示す 指車」 孤乳, または吸収線を示す - 7 - - - 7 - - - - 7 - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< td=""><td>捕虫 捕虫、 進化は吸収器 Her MgII H I Her Na1 - - - - - - - - - 7 - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>相 通線、書称 相 一個 一 一 一 一 一 一 一 一 一 -<td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td><th>の番号</th><td>č</td><td>$\frac{21}{21}$</td><td>29</td><td>30</td><td>36</td><td>37</td><td>41</td><td>46</td><td>101</td><td>с х х с</td><td>60</td><td>64</td><td>67</td><td>68</td><td>72</td><td>74</td><td>79</td><td>80</td><td>81</td><td>708</td><td>85 85</td><td>87</td><td>91</td><td>94 20</td><td>98 100</td><td>104</td><td>105</td><td>106</td><td>107</td><td>112</td><td>113</td><td>114</td><td>116</td><td>771</td><td>124</td><td>07.1</td></td></td<>	捕虫 捕虫、 進化は吸収器 Her MgII H I Her Na1 - - - - - - - - - 7 - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	相 通線、書称 相 一個 一 一 一 一 一 一 一 一 一 - <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td> <th>の番号</th> <td>č</td> <td>$\frac{21}{21}$</td> <td>29</td> <td>30</td> <td>36</td> <td>37</td> <td>41</td> <td>46</td> <td>101</td> <td>с х х с</td> <td>60</td> <td>64</td> <td>67</td> <td>68</td> <td>72</td> <td>74</td> <td>79</td> <td>80</td> <td>81</td> <td>708</td> <td>85 85</td> <td>87</td> <td>91</td> <td>94 20</td> <td>98 100</td> <td>104</td> <td>105</td> <td>106</td> <td>107</td> <td>112</td> <td>113</td> <td>114</td> <td>116</td> <td>771</td> <td>124</td> <td>07.1</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		の番号	č	$\frac{21}{21}$	29	30	36	37	41	46	101	с х х с	60	64	67	68	72	74	79	80	81	708	85 85	87	91	94 20	98 100	104	105	106	107	112	113	114	116	771	124	07.1

nontinition	d IIIO II	enor vo re	Page								X 線フラックス			赤外 線等級	4	
星の番号			光]	[線、ま 1	とは吸収約	泉を示す	元素。				$[ergs/s/cm^2]$	Hardness Ratio	, -	H	Ks	星の種類
_	He $_{\rm I}$	Mg II	ΗI	He II	Na $_{\rm I}$	Ca_{I}	CO	CO	CO	CO	0.5-2 keV/2-10 keV	(H-S)/(H+S)	[mag]	[mag]	[mag]	
148	ī	1	1	1	1		1	1			3.4E-16/1.4E-16	-0.91 ± 0.15	17.84	16.60	16.11	
149	ı	ı	x	ı	ı	ı	·	ı	ı	ı	4.0E-16/1.6E-15	-0.32 ± 0.17	15.46	14.64	14.45	GO
150	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	5.1E-16/2.1E-15	-0.64 ± 0.17	17.76	15.88	15.61	ı
156	ī	ı	ı	ī	ı	ı	ı	ı	ı	ī	3.9E-16/1.6E-15	-0.32 ± 0.24	14.67	14.02	13.75	I
158	ī	ı	ı	ī	ı	ı	ı	ı	ı	ı	4.5 E - 16/1.8 E - 16	-0.95 ± 0.12	15.75	14.74	14.44	I
161	ı	ı	4	ı	ı	ı	ı	ı	ı	ı	4.9E-16/2.0E-16	-1.00 ± 0.15	14.21	13.53	13.36	GO
164	·	·	'	'	ŝ	·	4	·	·	ı	2.0E-16/8.1E-16	-0.51 ± 0.29	15.42	14.14	13.38	$\mathbf{K2}$
169		·	,	,	4		14	11	9	ı	7.0E-16/2.9E-15	-0.58 ± 0.15	15.65	14.60	14.23	M4
172	ı	ı	ı	ı	ı	ı	ı	ı	1	I	$9.6E_{-16/3.9E_{-15}}$	-0.44 ± 0.12	15.70	14.84	14.66	ı
178	ı	ı	ı	ı	ę	ı	4	4	ę	ı	4.4E-16/1.8E-15	-0.35 ± 0.12	16.55	14.65	13.68	M0
185	,	,	9	,	,	,	,	,	,	ı	$2.6E_{-16/1.1E-16}$	-0.84 ± 0.24	14.97	14.37	14.13	GO
187	-	ı	4	,		,	,	ı	,	,	$2.4F_{c}15/9.8F_{c}16$	-0.98 + 0.02	1	10.90	1	050
188		ı	· c:	1			7	ьc	ьc	10	$9.2F_{-16/3.8F_{-15}}$	-0.62 + 0.10	14.93	14.01	13.54	65 5
190	ı	ı	, 1	,	ı	ı		, 1	, ,	1	4.4F~16/1.8F-15	-0.60 + 0.18	1	1	1	1
103	,	,	12	,	,	,	,	·	,	ı	5 3F-16/2 2F-15	-0.57 ± 0.14	13.47	12.93	12.71	Ц
108	I	I	1								6 OF 16 /9 5F 15	-0.0 ± 10.0^{-1}	15.67	14 70	14.93	0
004	I	ı			1	I		I		1	0.01-10/2/01-10 9.76.16/1.16.14	01.0 + 01.0	- 0.0T	16 OK	15 94	1
204	ı				I				·	ı	3.(E-10/1.1E-14	$c_{T.0} \pm s_{T.0}$	11.31	CU.01	10.34	1
206	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	5.8E-16/2.4E-15	-0.47 ± 0.15	ı	ı	ı	ı
208	·	·	,	'	,	·	,	·	,	ı	2.7E-15/1.1E-14	-0.66 ± 0.05	,	,	ı	ı
209	ī	ı	ı	ı	ı	4	ī	4	ī	ı	$5.5 E_{-}16/2.2 E_{-}16$	-1.00 ± 0.10	ı		ı	M1
212	'	·	9	,	,	,	,	,	,	ı	$2.0E_{-}16/6.0E_{-}15$	-0.14 ± 0.19	16.90	15.44	14.77	G5
221	Н	ı	ъ	ı	ı	ı	ı	1	ı	ı	1.7E-15/6.8E-16	-0.86 ± 0.08	9.30	8.93	8.76	GO
223	,	,	2	,	,	,	11	13	,	ı	$5.0E_{-}16/2.0E_{-}15$	-0.73 ± 0.17	13.59	12.37	11.91	G9
226		,	1	,			; •		,	,	1 7E-15/6 8E-16	-0.04 ± 0.04	14.18	13.41	13.15	5
2020											6 7 D 16 /0 D 14	0.02 ± 0.03	07.21	12.01 12.01	01.01	
0.07	ı	ı		ı				ı		ı	0./E-10/2.0E-14	et.u I eu.u	11.40	10.00	1 	ı
237	ı	ı	·	ı	·	1	ı.	1	ı	ı	3.8E-16/1.6E-15	-0.39 ± 0.26	14.98	14.31	14.07	I
238	ı	·		ı		က	ю	6	11	ı	1.1E-15/4.6E-15	-0.65 ± 0.11	16.59	15.28	14.87	K3
246	ī	ı	ı	ī	ı	ı	7	4	ī	ī	5.9E-16/2.4E-15	-0.45 ± 0.22	ı	15.35	13.97	K3
249	ī	ı	ı	ī	ı	ı	ı	ı	ī	ı	2.8E-16/1.1E-15	-0.42 ± 0.32	ı	ī	ı	I
252	ı	ı	ı	ı	4	ı	13	7	5 C	ı	1.6E-16/4.9E-15	0.14 ± 0.24	16.96	14.59	13.60	$\mathbf{K5}$
255	·	ı	S	,	·	ı	,	ı	,	,	8.8E-16/3.6E-15	-0.47 ± 0.16	13.54	12.59	12.11	F3
257		ı	,	,	,	ı	,	ı	,	,	$3.3E_{-}16/1.0E_{-}14$	0.03 ± 0.21	ı	15.35	14.57	ı
260	'	·	,	,	,	,	,	,	,	ı	$1.5E_{-15}/6.2E_{-15}$	-0.76 ± 0.09	14.80	13.52	13.57	I
262	,	ı	2	,	2	ę	×	6	×	14	7.0E-16/2.9E-15	-0.55 ± 0.15	14.36	13.39	12.52	K0
264	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1.8E-15/7.5E-15	-0.59 ± 0.09	13.59	12.69	12.37	ı
265	ı	ı	ı	ı	ъ	4	ъ	4	4	ı	7.7E-16/3.2E-15	-0.70 ± 0.16	16.00	14.70	13.83	M1
269	'	,	ĉ	,		,		,	,	ı	$1.2 E_{-15}/4.8 E_{-15}$	-0.75 ± 0.10		,	ı	GO
272	ı	,	, ,	·	·	ŝ	10	6	9	~	8.2E-16/2.5E-14	-0.20 ± 0.09	13.29	11.83	11.11	69
						,		,	,	,)
AE1_097	ī		6								1	1	,			F3
AE1_104	,	ı	,	,	,	,	,	ı	,	1	1	ı	'	,	1	ı
AE2_130	ı	ı	9	ı	ı	ı	ı	ı	ı	ı			ı	ı	ı	F8
AF:2 137	,	·	4	,	2	,	,	cr.	cr.	,	1	I	,	,	,	64
			•		1			,	,	-						-

14	
previous	
from	
ntinued	

5.2 星のタイプの決定

得られたスペクトルと等価幅とから、星の正体 (激変星か通常の星か)を推定する。Ali et al.(1995) に、 各スペクトル型におけるスペクトルの例が掲載されているため、実際に観測で得られたスペクトルと見比 べることでその星のスペクトル型を推定した。ただし、輝線も吸収線も見られない天体については不明と し、また、輝線を放射している天体 (2天体) については激変星だとした。その結果も表 5.2 に示した。

5.3 Hardness Ratio と等価幅

5.1 節で求めた等価幅と、Hardness Ratio(以下 HR と表記) との関係を調べた。HR とは、0.5-2 keV と 3-8 keV での X 線カウントレートをそれぞれ S、H とした場合に (H-S)/(H+S) で定義される量であり、-1 か ら+1 の間の値をとる。表 5.2 に掲載した全ての元素についての結果を図 5.1 に示す。それぞれ横軸が HR、 縦軸が等価幅である。

各元素ごとに見ていった場合、HR と等価幅とである程度相関が見られたのは $H_I(Br\gamma)$ である。 $Br\gamma$ は、 星の周囲の温度を反映している。星の表面からの温度の動径分布が正常 (外に行くほど温度が下がる) なら ば吸収線となり、逆転しているのならば輝線となる。したがって、吸収線を示すものは通常の星、輝線を 示すものは激変星のような、星の周りに電離された高温のガス (降着円盤)を持った天体だと考えられる。 Ebisawa et al.(2005) や Revnivtsev et al.(2006) では、X 線でハードな天体 (HR が大きい) は激変星、ソフ トな天体 (HR が小さい) は通常の星だと考えており、図 5.1 の HR が小さいものは吸収線、大きいものは輝 線を示すという傾向はこれと矛盾しない。ただし、1 つだけ HR が大きいのに吸収線を示している天体があ る。吸収線があるため通常の星と考えることができるが、この天体のように HR がこれほど大きなものは これまでに知られていない。そのため、この天体は未知の新天体である可能性が示唆される。Ebisawa et al.(2005) では天体 74 と定義されているため、今後は本論文中でも天体 74 と呼ぶ。

一方、他の元素に関しては HR とは無相関であるように見える。CO は星の有効温度のよいトレーサー として知られているが (Ali et al.1995)、その星周辺の温度分布に大きな影響を受ける。そのため、原始星 や X 線連星系などの通常の星とは異なった天体では、個々の天体ごとにその強度が大きく変わってしまう。 したがって、本研究のようなさまざまな種類の天体が入り交じった状態では、図 5.1 のように無相関となっ てしまうと考えられる。

5.4 X線フラックスと等価幅の関係

等価幅と X 線フラックスとの関係を調べた。 X 線フラックスは、表 5.2 に掲載したソフトな X 線フラックス (0.5-2 keV) とハードな X 線フラックス (2-10 keV) の値を単純に足しあわせた値を採用した。その結果を図 5.2 に示す。図中で、各天体は HR ごとに色分けされている。Ebisawa et al.(2005) と同様の分類であり、赤がソフト $(\text{HR} \leq -0.60)$ 、緑がミディアム $(-0.60 < \text{HR} \leq 0.1)$ 、青がハード (0.1 < HR) である。結果、図 5.2 によると、X 線フラックスと等価幅とでは、明確な相関はなさそうである。

5.5 カラーカラーダイアグラム

赤外線等級を用いて、各元素ごとのカラーカラーダイアグラムを作成した。横軸が J-H mag、縦軸が H-K mag である。ただし、表 5.2 において 3 バンド (J, H, K) 全ての赤外線等級がわかっているもののみを掲載した。また、等価幅との関係も同時に見たいので、各天体を表すドットの形とサイズを変化させた。輝線だ

図 5.1: Hardness Ratio と輝線、または吸収線の等価幅の関係。

と星型、吸収線だと丸型であり、サイズが小さいほど等価幅も小さく、大きいほど等価幅も大きい。さらに、図 5.2 と同様、HR ごとに赤、緑、青 (ソフト、ミディアム、ハード) と色分けしている。結果を図 5.3 に示す。

図 5.3 の $Br\gamma$ の図を見ると、輝線を出しているハードな 1 天体を除いて、左下ほど星を表すドットが大 きくなっている (等価幅が大きくなっている) ように見える。一方で CO は、右上に行くにしたがってドッ トが大きくなっている。これは、低温度な星ほど CO の等価幅が大きくなり、一方、高温度な星ほど $Br\gamma$ の等価幅が大きくなることを意味する。Ali et al.(1995) の星の型ごとのスペクトルを見ても、同じことが 読み取れる。さらに、特筆すべき点として、 $Br\gamma$ の図には 1 つだけ主系列にのっていないハードな天体が あるが、これが 5.3 で述べた天体 74 である。

5.6 GRXEのX線エネルギースペクトルの解釈

過去の「あすか」衛星 (Kaneda et al.1998) や Chandra 衛星 (Ebisawa et al.2005) による研究等により、 GRXE のエネルギースペクトルは ~0.6 keV の低温成分と ~6 keV の高温成分から成ることがわかってい る。前者の大部分は X 線で活動的な星で説明することができる。一方、~6 keV という高温を持つ X 線星 としては静穏状態の激変星 (白色矮星と晩期型星の連星系) がよく知られているが、その数は非常に少ない ため、高温成分を説明するには十分ではない。実際、Ebisawa et al.(2005) では ~2 keV より高エネルギー 側では GRXE の 10 %しか点源で説明することができず、さらにそのうち大部分が銀河系の背景にある活 動銀河であるため、残ったわずかな分しか激変星として分類していない。

5.6.1 新種のX線天体

今回の観測により、2つのハード天体 (HR=0.71、0.11) から輝線が観測されたが、これらはほぼ激変星に 間違いない。これは、GRXE の高エネルギー成分には激変星の寄与があるという今までの仮説を検証した ことになる。また、予測していなかったことであるが、HR=0.26 というハード天体から吸収線が見つかっ た。この天体は通常の星であると考えられるが、HR=0.26 とは温度にすると 2.5 keV であり、通常の星が これほど高温になれることは驚きである。また、この天体は赤外線のカラーカラーダイアグラム上で主系 列星には乗らず、今まで知られていなかった新種の X 線天体である可能性がある。

図 5.2: X 線フラックスと輝線、または吸収線の等価幅の関係。

5.6.2 超高温の激変星

昨今の INTEGRAL、Swift、すざく衛星による観測から、Intermediate Polar(IP) と呼ばれる激変星の存 在が知られてきた。この天体は、非常にハードな X 線スペクトルを示すことが特徴である。すざくアーカ イブスを利用して IGR J21335+5105、Swift J1010.1-5747 という 2 つの IP のスペクトルを調べてみたと ころ、~40 keV まで有意なカットオフが見られない (図 5.4 参照)。スペクトルはべきが ~1 のパワーローで 表わされ、熱的モデルを当てはめると、その温度は 30 keV 以上になる (表 5.3 参照)。ただし、これらの天 体の数はそれほど多くはないため、GRXE 成分の 2-10 keV の全てを説明するには不足であると考えられて いる。

表 5.3: IP のフィット結果。星間吸収 (N_H)、および、パワーロー成分のみ抜粋。

	IGR J21335+5105	SWIFT J1010.1-5747
$N_{\rm H} \ (10^{22} \ {\rm cm}^{-2})$	0.17	15.139
PhotonIndex	1.01	1.49
norm (photons $\mathrm{s}^{-1} \mathrm{cm}^{-2} \mathrm{keV}^{-1}$)	1.52×10^{-3}	2.70×10^{-3}
χ^2 (d.o.f)	$1980 \ (2280)$	269 (506)

5.6.3 新たなモデル

今回の 2.5 keV という高温を持つ星の発見と、INTEGRAL 等による >30 keV という超高温を持つ激変 星の発見をあわせて、新たな GRXE モデルを考えることができる。それは、低温度 (0.6 keV) の星、中間 温度 (2.5 keV) の星、高温 (> 40 keV) の激変星という 3 成分の重ね合わせで GRXE を説明するものであ る。星は、十分な数を稼げるため、前者二つで 10 keV 以下のフラックスの大部分は説明できる。一方、10 keV 以上のフラックスは超高温を持つ激変星が担うが、それにはそれほど大きな数は必要ない。実際、す ざくの GRXE エネルギースペクトルはこの 3 成分モデルでうまくフィットでき、高エネルギー成分の規格 化定数 (norm) は、2 成分モデルの場合に比べて一桁少なくなる (表 5.4 参照)。新たに中間温度を持つたく さんの星を導入することにより、それほど多くの激変星は必要ではなくなったのである。図 5.5 に、2 成分 モデルでフィットしたスペクトルと 3 成分モデルでフィットしたスペクトルとを示す。2 成分モデルのとき には、低温成分が ~0.6 keV、高温成分が ~5.3 keV であった。一方、3 成分モデルのフィットのときには、 図 5.3: 輝線、または吸収線ごとのカラーカラーダイアグラム。図中の黒い曲線は主系列、及び巨星を、点線はそれらが星間赤化された時に来る位置 (左下から右上)を表している。さらに、点線上の+印間の距離は A_V=10 mag に相当する。

図 5.4: 非常にハードな激変星 (IP) のスペクトル。右図:IGR J21335+5105 のスペクトル。左図:Swift J1010.1-5747 のスペクトル。

低温成分を~0.6 keV、中間温度成分を2.5 keV として固定し、高温成分の温度だけフリーとした。その結 果、高温成分の温度は~34.5 keV となり、IP で十分に説明できる温度であった。ただし、表 5.4 からわか るように、2成分モデルでフィットしたときよりも多少フィット結果が悪くなっている。これは、このよう に中温成分を 2.5 keV に無理矢理固定してしまったためである。

2 成分モデル			
	低温成分	高温	成分
$kT \; [keV]$	0.61	5.5	28
$norm [cm^{-3}]$	2.20×10^{-2}	$1.12 \times$	(10^{-2})
flux [erg s ⁻¹ cm ⁻² deg ⁻²]	$3.5{\times}10^{-12}$	5.8×10^{-10}	10^{-11}
$\chi^2({ m d.o.f})$		$1191 \ (989)$	
N N			
3成分モデル			
	低温成分	中温成分	高温成分
kT	0.61(fixed)	2.50(fixed)	34.5
norm	$2.20{ imes}10^{-2}$	$1.61{\times}10^{-2}$	1.12×10^{-3}
flux	3.5×10^{-12}	4.2×10^{-11}	1.0×10^{-11}

表 5.4: GRXE のフィット結果。

 χ^2 (d.o.f)

図 5.5: GRXE のスペクトルを、2成分と3成分モデルとでそれぞれフィットした結果。左図:2成分モデル でフィットしたときのスペクトル。右図:3成分モデルでフィットしたときのスペクトル。

1536 (1000)

5.7

5.6 で述べたような 2.5 keV の成分を加えて、 $\log N$ - $\log S$ プロットのシミュレーションを行い Chandra 衛 星の観測データと比較した。

5.7.1 数密度-光度関係

シミュレーションをするためには、天体がどのように空間分布しているかと、その数密度と光度との間の 関係を仮定する必要がある。

観測される天体は、銀河系内天体と銀河系外天体とに大別できる。まず銀河系外天体については、天体の フラックスSとSより明るい天体の数N(>S)との間に以下のような関係を仮定した (Ebisawa et al.2005)。

$$N(>S) = \begin{cases} 25(S/4.9 \times 10^{-14})^{-1.5} & \text{for } S \ge 2.6 \times 10^{-14} \text{ erg/s/cm}^{-2} \\ 1200(S/1.4 \times 10^{-15})^{-1.0} & \text{for } S < 2.6 \times 10^{-14} \text{ erg/s/cm}^{-2} \end{cases}$$
(5.1)

次に、銀河系内天体の分布を説明する。銀河系内天体の数密度-光度関係は

$$N_0 = \int_{L_{\min}}^{L^{\max}} A \ L^{-\alpha} \ dL$$
(5.2)

で与えられ、現在までの研究によりすでにモデルが提唱されている (Sazonov et al.2006)。それらを構成す る天体の種類は、明るいX 線源として低質量 X 線連星 (Low Mass X-ray Binary, LMXB)、暗いX 線源と して激変星 (CV) や X 線で活動的な星 (Active Binary, AB) などが挙げられる。それぞれの分布に対応す る A, α , L_{min}, L_{max} を表 5.5 に掲載し、また、その様子を図 5.6 に示した。ただし、Sazonov のモデルの数 密度は 1/10 倍した (5.7.3 節参照)。

本研究では、5.6 節で述べた 2.5 keV の星に当たる第三の成分 (New population) を、上記 Sazonov et al. (2006) のモデルに新たに追加した。この天体は通常の星であると考えられるため、激変星と違って数が 多くてもかまわないはずである。また、これまで発見されていなかったことから、X 線では暗いと考えられる。これらを考慮して決めたパラメータを表 5.5 に、その様子を図 5.6 に示した。

表 5.5: 数密度-光度関係の各パラメータ。これらの値は 5.7.3 節で点源が ほぼ 100 %の GRXE フラックスを説明できるように選んだものである。

	А	α	\mathcal{L}_{\min}	$\mathcal{L}_{\mathrm{max}}$
			[erg/s]	[erg/s]
LMXB	6.0×10^{-6}	1.1	10^{34}	10^{36}
CV	$1.5{\times}10^{32}$	2.2	10^{32}	10^{34}
AV	$1.5{\times}10^{16}$	1.7	10^{27}	10^{32}
New pop.	5.0×10^{3}	1.2	10^{27}	10^{30}

5.7.2 銀河円盤モデルの考慮

銀河系内天体は、銀河中心から遠ざかるほど密度が減っていく。したがって、シミュレーションでもこの 効果を考慮しなければならない。そこで、本研究では Sazonov et al.(2006) で用いられていた銀河円盤モデ ルを採用した。このモデルは、銀河中心からの距離を R、銀河面からの垂直方向の距離を z とした場合に以 下のように表される。

$$N(pc^{-3}) = N_0(pc^{-3}) \exp\left[-\left(\frac{R_m}{R}\right)^3 - \frac{R}{R_{scale}} - \frac{z}{z_{scale}}\right]$$
(5.3)

ただし、 $R_m = 3 \text{ kpc}, R_{scale} = 3 \text{ kpc}, z_{scale} = 150 \text{ pc}$ であり、また、 N_0 は数密度-光度関係 (式 5.2) である。

図 5.6: 数密度-光度関係をプロットしたもの。左:横軸光度、縦軸数密度の図。 $dN/dL = AL^{-\alpha}$ という関数系。右: 左図の積分系。横軸は光度、縦軸は光度Lより明るい天体の銀河系内での総和。

Chandra 衛星によって観測された領域は銀経 ~ 28.5、銀緯 ~ 0°である。よって、銀河系の半径を 20 kpc、銀河中心までの距離を 8.5 kpc とすると、この視野の方向では銀河の終わりまで 27 kpc となる。また、Chandra 衛星の視野は 17' × 17'であるため、銀河の終わりまでいっても垂直方向の距離は ~ 130 pc となり、 z_{scale} と同程度である。したがって、簡単のため、シミュレーションでは垂直方向の距離 z は考慮 せず、z=0の値を代表値として適用した。

5.7.3 結果

地球からの距離 x の場所における銀河中心からの距離 R を算出し、5.3 式に代入することでその場所での 星の数密度が求められる。それらによってもたらされるフラックスを足しあわせて図 5.7 のような logN-logS プロット、及び、その積分型を得た。ここで、銀河系外天体の数の見積りは Ebisawa et al.(2005) と同じも のを用いた。

図 5.7: シミュレーションによって得られた logN-logS プロット。左:横軸フラックス、縦軸にそのフラッ クスより明るい星の数をプロットしたもの。Chandra 衛星、及び、ASCA 衛星の観測結果を同じ図の中に 掲載。右:左図の積分系。ただし、10⁻¹³[erg/s/cm²] より明るい点源の寄与は除いてある。

ここで、銀河系内天体の数については Sazonov et al.(2006)のモデルを 1/10 倍したものを用いた。なぜなら、そうしないと、予想される銀河系外天体の数とあわせた場合に Chandra が観測した点源 (図 5.7 中の

赤線)の数を超えてしまうからである。これら2成分の他に、さらに新たな第三の成分を加えると、GRXE を 100%点源で説明できそうなことがわかった。このシミュレーション結果が正しいとするならば、限界感 度を 10^{-16} [erg/s/cm²] まで下げれば ~50%、さらにもう一桁 10^{-17} [erg/s/cm²] まで下げれば ~90%が点源 で説明できるようになるはずである。

5.7.4 点源説、拡散プラズマ説の違い

Ebisawa et al.(2005) は、Chandra 衛星の観測データを解析して拡散プラズマ説を提唱している。彼ら は、2-10 keV のエネルギー範囲で ~ 2 × 10⁻¹³ erg/s/cm² よりも明るい点源をのぞいた場合、銀河面上の X 線放射 (GRXE と背景の AGN の和) の ~10 %は ~ 3 × 10⁻¹⁵ erg/s/cm² よりも明るい点源で説明でき、 そのほとんどが銀河系外天体によるものだと主張している。さらに、現在の logN-logS プロットを外挿し ても 100 %GRXE には届かないだろうとも述べている。一方 Revnivtsev & Sazonov(2007) は、Ebisawa et al.(2005) と同じデータを再解析し、1-7 keV における銀河面上の X 線放射の ~25 %(19 %が銀河系内天 体、6 %が銀河系外天体) を ~ 1.2 × 10⁻¹⁵ erg/s/cm² よりも明るい点源で説明することができ、さらに、 logN-logS プロットを外挿すれば 100 %GRXE に到達する可能性が高いと主張している。両者とも本研究 と同様の logN-logS シミュレーションを行っており、それぞれの用いているモデルの違いが、結論の違いを 生み出していると考えられる。

本研究では、Revnivtsev & Sazonov(2007) と同じ Sazonov et al.(2006) による銀河系内天体の数密度-光 度関係を用いたが、銀河系外天体の分布については Ebisawa et al.(2005) で用いられているものを採用し た。ただし、Ebisawa et al.(2005) の銀河系外天体の分布と Sazonov et al.(2006) のモデルをそのまま用い ると、Chandra の観測結果を上回ってしまうことがわかった。そこで、Sazonov et al.(2006) のモデルを定 数倍 (~0.1) することで Chandra の結果をうまく再現できるようにした。一方 Revnivtsev et al.(2006) で は、Sazonov et al.(2006) のモデルをそのまま用いても Chandra 衛星の結果をうまく再現できているよう である。したがって、Revnivtsev et al.(2006) と Ebisawa et al.(2005) とで、用いている銀河系外天体の分 布に大きな違いがあることが本研究によって明らかになった。銀画面上における、強い吸収の影響を受けた 背景の銀河系外天体の数を正確に見積もることが、点源説と拡散プラズマ説の違いを理解する鍵である。

第6章 まとめと考察

- 6.1 本論文のまとめ
 - 世界最高級感度を誇るすばる望遠鏡/MOIRCS を用いて、GRXE の起源天体の赤外線分光観測を行った。観測した天体の総数は 102 個である。
 - 観測データの処理には IRAF を用い、地球大気の影響や宇宙線イベント、ダークの除去を行った上で、 対象天体のスペクトルを生成した。
 - 輝線、または吸収線があるスペクトルについてはその等価幅を調べ、また、スペクトルの形から星の スペクトル型を推定した。
 - Hardnes Ratio と等価幅との関係を調べたところ、Brγ については相関がありそうである。HR が大きいものからは輝線が見られ、小さいものからは吸収線が見られた。これは、HR が大きいものは激変星、小さなものは通常の星であるというこれまでの解釈を支持している。一方、通常の星では有効温度のよいトレーサーとなりうる CO については、相関が見られなかった。CO は星の周囲の温度分布に影響を受けやすく、激変星は通常の星とは周囲の温度分布が異なっていると考えられるため、本研究のように両者が混じっている場合は無相関になってしまうと考えられる。
 - X線フラックスと等価幅とは有為な相関が見られなかった。
 - 赤外線カラーカラーダイアグラムを作成したところ、激変星と考えられる天体を除くと、低温の星ほど Bry の等価幅が小さく CO の等価幅が大きくなる傾向が見られた。これは、すでに知られているように Bry と CO とは星の温度の良い指標になっていることを示している。
 - ハードな天体でも輝線を示すものと吸収線を示すものが見つかった。吸収線を示すものは通常の星と 考えられるが、そのハードな X 線スペクトルは、星としては高温な ∼2.5 keV に対応している。
 - これまでに、GRXEのエネルギースペクトルは低温成分(~0.6 keV)と高温成分(~6 keV)の2成分で 再現できるとわかっていたが、これだと、高温成分を担う激変星の数が足りないことが指摘されてい た。そこで、~2.5 keVを持つ通常の星が実はたくさん存在しているという仮定と、INTEGRAL 衛星 等の観測で発見された非常にハードな激変星(>40 keV)の存在とを合わせ、新たに低温(~0.6 keV)、 中間温度(2.5 keV)、高温(~40 keV)の3成分でのGRXEのスペクトルフィットを試みた。その結果、 それほど多くの激変星がなくても、GRXEのスペクトルを再現できることがわかった。
 - これまでの2成分モデルに加えて、新たに本研究で発見した第三の成分を加えて logN-logS シミュレーションを行ったところ、GRXE をほぼ 100%点源で説明できる可能性が見つかった。観測の限界感度を10⁻¹⁶[erg/s/cm²] まで下げれば~50%、10⁻¹⁷[erg/s/cm²] まで下げれば~90%を点源で説明できるようになるはずである。

6.2 GRXEの起源解明へ向けて

2節で述べたように、現状では X 線による観測のみでは GRXE の起源を探る上で限界があると考えられ ていた。しかし、Ebisawa et al.2008によって新たな可能性が指摘されている。彼らは、日本で五番目のX 線天文衛星「すざく」を用いて、Ebisawa et al.(2001, 2005) と同じ Chandra 領域を 100 ks 観測した。「す ざく」は、Chandra 衛星と比べて位置分解能は劣るものの、エネルギー分解能では一日の長がある。その 能力により、GRXEのエネルギースペクトルから、世界で初めて三本の鉄輝線(低電離鉄、ヘリウム様鉄、 水素様鉄)の分離に成功した。これにより、低電離鉄からの輝線については、まだ、その正体がわからない ものの、ヘリウム様鉄、水素様鉄の起源は、5-8 keV の衝突電離平衡にあるプラズマからのものだと考えら れると彼らは主張している。そして、彼らはさらなる可能性を指摘している。ヘリウム様鉄のラインは現 在のエネルギー分解能では一本にしか見えないが、実は共鳴線、禁制線、intercombination 線が重なってい る。これを個々のラインに分解することができれば、共鳴線と禁制線の強度比から、ラインを放射している プラズマの密度を見積もることができる。現在観測されている GRXE の光度を再現するためには、ライン を放射しているプラズマが銀河面全体に拡がっているならばその密度は希薄であり、一方、個々の天体の周 辺に束縛されているならばその密度は高いと考えられる(両者の密度の違いは~10桁!)。したがって、ヘリ ウム様鉄のライン強度比から求めたプラズマ密度によって、このどちらがもっともらしいかに強い制限を与 えることができる。2013年に打ち上げが予定されている NEXT 衛星のマイクロカロリメーターがこれを可 能にするため、その活躍が待たれる。

謝辞

本修士論文は、多くの方々の御指導・御協力により完成させることができました。

指導教官である海老沢研先生には、宇宙科学研究本部で研究する機会と数多くの助言をいただきました。 また、すばる望遠鏡での観測の機会とデータを与えてくださった辻本匡弘さんにも厚くお礼申し上げます。 さらに、小林尚人先生や大藪進喜さんにも赤外線データの処理方法や研究の上での貴重なアドバイスをい ただきました。この場を借りて、お礼申し上げます。

石田 学先生や前田 良知さん、岡田 俊策さん、井上 裕彦さん、中村 良子さんには、宇宙科学研究本部で 活動していく上で大切なことをたくさん教えていただきました。ありがとうございました。

同期の向井 一馬くん、小高 裕和くん、石川 真之介くん、 加藤 菜々子さん、鈴木 真樹くん、大澤 武幸くん、みんなのおかげで宇宙科学研究本部での生活がより楽しく、充実したものになりました。ありがとう。 この他にも、宇宙研の各研究室の秘書さんや同室だった先輩方など、たくさんの方々にお世話になりまし

た。厚くお礼申し上げます。

最後に、生活費及び学費の面で支えてくれた両親に感謝します。ありがとうございました。

参考文献

- [1] N. Cox, ALLEN'S ASTROPYSICAL QUANTITIES (Fourth edition), AIP press
- [2] Ali, B., John, S. Carr, Depoy, D. L., Jay, A. Frogel, & Sellgren, K. 1995, AJ, 110, 2415A
- [3] Ebisawa, K., Maeda, Y., Kaneda, H., & Yamauchi, S. 2001, Science, 293, 1633
- [4] Ebisawa, K., et al. 2005, ApJ, 635, 214
- [5] Ebisawa, K., et al. 2008, PASJ, 60, S223
- [6] Ichikawa, T., et al. 2006, SPIE, 6269E, 38I
- [7] Kaneda, H. et al. 1997, ApJ, 491, 638
- [8] Revnivtsev, M., Sazonov, S., Gilfanov, M., Churazov, E., & Sunyaev, R. 2006, A&A, 452, 169
- [9] Revnivtsev, M., & Sazanov, S. 2007, A&A, 471, 159
- [10] Sazonov, S. et al. 2006, A&A, 450, 117

付録A 使用したマスク

実際に使用したマスクの詳細を示す。

線の色

各マスクの chip 1 側で観測する部分を緑、chip 2 側で観測する部分を赤で表している。また、黄色の 線は chip 1, chip 2 それぞれの検出器 (四角) と分光可能範囲 (曲線) である。また、SKY と書かれて いるスリットがスカイスリットであり、各マスクに必ず一つある。さらに、スリットではなくただの 穴が空いており、そこに星が入っている部分はマスクの位置合わせ用のものである。

• Chandra 天体

Ebisawa et al.(2005) で定義されている天体を HR ごとに色分けして表示している。赤、緑、水色が、 それぞれ HR \leq -0.60, -0.60 < HR \leq 0.1, 0.1 < HR に対応している。また、Chandra 衛星のデータ を再解析して新たに追加した天体は、HR が不明なため、黄色で表した。

🗷 A.1: gp03

🛛 A.2: gp06

🗷 A.3: gp07

⊠ A.4: gp08

⊠ A.5: gp09

🛛 A.6: gp10

🗷 A.7: gp12

🛛 A.8: gp13