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Abstract

A black hole binary (BHB) is a binary system consisting of a black hole and a non-
degenerate star. The black holes came into existence with Cygnus X-1 in the 1970s, when
two pioneers of X-ray astronomy, Minoru Oda and Ricardo Giacconi, boldly speculated
that the rapid X-ray flux variability distinctively seen from this source could only be
attributable to a black hole. Since then, many features of BHBs have been identified, such
as spectral changes and transient behaviors, but the rapid variability from milliseconds
to seconds remains one of the most distinctive features of BHBs. The origin of the rapid
variability is still unknown, but it is believed to carry information about the accretion
and ejection processes and the strong gravitational field in the vicinity of a black hole.

X-ray observations of BHBs record the energy and arrival time of individual X-ray
photons from BHBs. Spectral and light curve analyses have been performed, but they
were done independently from each other. On the one hand, traditional spectral analysis
was performed for time-sliced spectra ignoring the correlation among them in time. On
the other hand, traditional light curve analysis was performed without considering the
changing contributions of spectral components in time. We need to develop a method
for the joint spectral and timing analysis.

The statistical modeling approach provides the answer. If we denote the observed
count in a time bin n ∈ {1, · · · , N} and an energy bin m ∈ {1, · · · ,M} as cnm, we regard
cnm as a realization of the probability variable Cnm. The goal is then to estimate the
joint probability distribution of p(C11, · · · , CNM). In this manner, timing and spectral
information can be modeled jointly. This approach also has advantages including noise
as a model component and using latent variables to describe the changes in the system
behind observed values.

The statistical modeling approach sounds straightforward and suitable for the anal-
ysis of BHB data but has been scarcely used. Several reasons hampered the application
to real data, including data quality, modeling techniques, computational resources, and
physical models to interpret joint probability. However, recent advances in all of them
are clearing these obstacles. It is high time to start using statistical modeling as the
norm of X-ray spectral and timing analysis. In this thesis, we demonstrate that this is
possible and even crucial in deriving new insights from BHBs by applying the method
to the actual data of a BHB.

We use the data of MAXI J1820+070 observed with The Neutron star Interior Com-
position ExploreR (NICER). MAXI J1820+070 is a transient BHB discovered in 2018.
The source exhibited many spectral and timing features common among BHBs in both
the hard and soft states. The low interstellar extinction and the proximity made the
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source extremely bright in flux reaching ∼4 Crab. NICER is the X-ray observing instru-
ment onboard the International Space Station. The unprecedented collecting area and a
large dynamic range of NICER and the brightness of the source resulted in an extreme
count rate of O(104 s−1), which is rich enough to apply statistical modeling. We focus
on a 50 s length of data during the hard state near the flux peak of the BHB.

We applied classical time series modeling to the X-ray light curves constructed at
0.5–2.0, 2.0–5.0, and 5.0–10 keV. We first used the autoregressive (AR) model for each
light curve, and a reasonable fit was obtained. Because noise is included in the AR model,
the univariate description functions (e.g., correlation function and power spectrum) are
less noisy than those made by the traditional analysis using the raw data. Next, we
used the vector autoregression (VAR) model. Because the mixture among the multi-
band light curves is included, the fitting improved from the AR model. This implies the
importance of the spectral mixture for the observed light curves.

We therefore proceeded with the linear Gaussian state-space modeling to the multi-
band X-ray light curves in five energy bands. The observed light curves are treated
as observation variables, whereas the intensity changes of the physical spectral compo-
nents (Comptionized, disk blackbody, and soft excess components) were treated as latent
variables. The system equation was described by the VAR model and the observation
equation was described by a linear matrix. In this manner, we included both the spectral
mixture and the correlation in time in a single model. As a result, we could derive the
multivariate description functions (e.g., cross-covariance, cross spectra, and coherence)
among the spectral components, not among the multi-band light curves. This is the
advantage of using the latent variable in a model.

We produced the spectrally-decomposed power spectra and derived the break fre-
quencies of the Comptionized, disk blackbody, and soft excess components. We also
produced the spectrally-decomposed cross spectra to derive the time lags among them.
From these results, we found that the three components affect each other in the causality
order of the disk blackbody, Comptonized, and soft excess emission. The different break
frequencies in the three components, the time lag between these components, and the
mutual power contribution all point to the geometry of the truncated accretion disk.

This work is one of the first successful applications of the state-space modeling ap-
proach to BHB data analysis. We demonstrated the possibility and utility of the joint
spectral and timing analysis by applying it to the actual data and obtaining new insights
into BHBs. We consider that this should be one of the standard approaches to analyzing
the data to come in the near future with advanced observing technologies.
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1.1 Rapid X-ray Variability of Black Hole Binaries
Cygnus X-1 (Cyg X-1) was the first to be recognized as a black hole binary (BHB) in
1970’s. The Uhuru satellite observed the source in the X-rays and discovered rapid flux
variability in the X-ray light curves from milliseconds to seconds. Based on this, Minoru
Oda and Riccardo Giacconi, the two pioneers of X-ray astronomy, speculated that the
source is a black hole (Oda, 1974). Figure 1.1 shows the X-ray light curve of Cyg X-1
taken with the ANS satellite, in which rapid variability is seen despite the paucity of
counts.

Figure 1.1: X-ray light curve of Cyg X-1 taken with the ANS satellite.
Figure taken from Oda (1977)

Since then, the rapid variability in the X-ray light curve has become one of the
defining characteristics of BHBs (Remillard and McClintock, 2006). The data quality
has improved drastically over the past 50 years. Figure 1.2 is the X-ray light curve of
MAXI J1820 + 070, which is a transient BHB discovered in 2018. This is the target
of this study, and we investigate the correlation of the variability among light curves
in different energy bands. At first glance, the rapid variability is strongly correlated
among all light curves. However, if we look closer, we recognize that some features (e.g.,
low-frequency hump at 46 s) are seen preferentially in the light curve of the softer energy
bands.

To better understand these differences, we turn to the energy spectrum, as shown
in Figure 1.3. The energy spectrum reveals that one component dominates the entire
spectrum, while several more subdominant components contribute to the softer bands.
These spectral components have different variability, which is the reason why we observe
different variability in different energy bands.
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Figure 1.4: Schematics of the relation between physical components and
energy bands.

On the one hand, light curve analysis has conventionally been performed for the
observed light curves in multiple energy bands. However, what we really want to know
is the variability of the spectral components, such as those shown in Figure 1.3. The
observed light curves are just a mixture of them. Figure 1.4 schematically depicts the
relationship between the spectral components and the multiband light curves. The goal
of this study is to demonstrate how we can construct the light curves of the spectral com-
ponents based on the statistical modeling approach. We treat the spectral components
as latent variables and model the observed multiband light curves as a superposition of
these latent variables.

On the other hand, the spectral analysis has traditionally been performed without
considering the correlation in time. The spectra were constructed either by using the
entire observation duration or a piece of it without introducing the correlation between
them in time. In reality, the spectral components are correlated in time.

The goal of this thesis is to fill these gaps using statistical modeling.
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1.2 Light Curve Analysis vs Time Series Modeling
Throughout this thesis, we use the following distinction.

Light curve analysis to derive features of the observed light curve without statistical
modeling.

Time series modeling to estimate the probability distributions of the variability based
on statistical modeling.

Classical time series modeling for statistical modeling without latent variables.

State-space time series modeling for statistical modeling with latent variables.

Traditionally, light curve analysis has been the norm for studying the X-ray vari-
ability of BHBs since the pioneering work by Oda (Oda et al., 1971). In this thesis, we
demonstrate the need for the statistical modeling approach for further investigation.

Below, we clarify the differences between the light curve analysis and the time series
modeling, and give an example to show why the statistical modeling approach is nec-
essary. Through X-ray observations of BHBs, we obtain the arrival time and energy of
individual X-ray photons, which we refer to as raw data hereafter. For demonstration,
we synthesized 10,000 raw data of time and energy in panel (a) of Figure 1.5. These
synthetic data represent 10,000 realizations from a constant distribution in time and a
power-law distribution of an index of −2 in energy.

1.2.1 Light Curve Analysis
The traditional light curve analysis starts with constructing the light curve. We bin the
raw data in the grid over time and energy. In panel (b) of Figure 1.5, the synthetic raw
data are binned with the grid outlined with red lines in panel (a), and their counts per bin
are shown with a color code. A plot depicting the time variation of the power spectrum
is commonly called a spectrogram. Here, we refer to panel (b) as “energy spectrogram”
by analogy. By labeling the binned time as n = {1, · · · , N} and the binned energy as
m = {1, · · · ,M}, we denote the observed counts per bin as c11, · · · , cNM . Integrating
c11, · · · , cNM over energy produces the light curve (panel (d) in Figure 1.5)

xn =
M∑

m=1

cnm, (1.1)

and integrating over time yields the time-averaged spectrum (panel (c) in Figure 1.5)

ym =
1

N

N∑
n=1

cnm. (1.2)

The light curve analysis consists of extracting the features of xn by numerically
manipulating them. It can be done in either the time domain or frequency domain after
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energy.

Fourier conversion. In the time domain, techniques such as autocorrelation functions or
shot analysis are used. In the frequency domain, techniques such as power spectra are
used. This is good enough to derive basic characteristic features such as the mean and
standard deviation of the count rates or the coherence signals of a pulsar. Some results
of BHBs obtained through such techniques are summarized in § 4.

This approach is prone to noise. Looking at the light curve (panel (d) in Figure 1.5),
it is tempting to suggest that the light curve exhibits variability with a characteristic
time scale of O(1 s). This is not true, as the data are synthesized from the non-variable
model. In addition, there is no way to introduce latent variables, which is essential to
access changes in the spectral components behind the variation of the light curve.

In the realm of the statistical modeling, the light curve analysis corresponds to what
is known as exploratory data analysis (EDA). This is typically a step performed before
starting the statistical modeling. Features identified with EDA are incorporated into the
subsequent statistical model.

1.2.2 Time Series Modeling
In the statistical modeling approach, we view c11, · · · , cNM as realizations of random
variables following particular probability distributions C11, · · · , CNM . The essence of
statistical modeling is to estimate the joint probability distribution p(C11, · · · , CNM)

from the raw data c11, · · · , cNM that are realizations of the distribution. In this manner,
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we can include noise into the model and separate observation and latent variables. We
can exploit the established methods to do so in the statistical modeling approach.

If we model the entire data directly in panel (a) of Figure 1.5, we need to model the
joint probability distribution of 10, 000 dimensions, which is unrealistic. By integrating
the energy spectrogram Cnm over energy, we obtain the random variable as

Xn =
M∑

m=1

Cnm. (1.3)

This defines the set {X1, · · · , XM} corresponding to the light curve. The process of
estimating the probability distribution p(X1, · · · , XM) and modeling the light curve is
known as time series modeling.

By integrating the energy spectrogram Cnm over time, we obtain the random variable

Ym =
1

N

N∑
n=1

Cnm (1.4)

This defines the set {Y1, · · · , YM} corresponding to the time-averaged energy spectrum.
The process of estimating the probability distribution p(Y1, · · · , YM) and modeling the
energy spectrum would be called energy spectral modeling.
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1.3 Joint Spectral and Timing Modeling
What we aim is to model Cnm, not Xn in Equation (1.3) nor Ym in Equation (1.4). We
have the observed light curve in multiple energy bands (Figure 1.2) in our hands. The
joint probability distribution for the multiband light curves is equivalent to the one for
the energy spectrograms as shown below. If we represent the multiband light curve at
time n as a vector random variable Xn, its joint probability distribution is expressed as

p(X1, · · · , XN) (1.5)

On the other hand, the joint probability distribution of the energy spectrogram Cnm can
be expressed using the random variable vector Xn = [Cn1 · · ·CnM ]T as

p


C11 C21 · · · CN1

C21 C22 · · · CN2

... . . . . . . ...
CM1 CM2 · · · CNM

 = p(X1, · · · , XN). (1.6)

It is evident that they share the same structure. We will focus on estimating the joint
probability distribution for the multiband light curves in this thesis, which we term as
the “joint spectrum and timing modeling”.

This approach improves the modeling of not only the light curve but also of the
energy spectrum. In the traditional energy spectrum analysis, the energy spectra are
constructed in each time slice as ym in Equation (1.2) and fitted independently from each
other. From the statistical modeling point of view, this implicitly assumes conditional
independence. To simplify conditional independence, consider three variables a, b, c. If a
and b are conditionally independent given c, their joint probability distribution satisfies

p(a, b|c) = p(a|c)p(b|c).

For the counts in the energy spectrum bin at a time n, Xn = [Cn1, · · ·CnM ]T , with the
energy spectrum model ME, the conditional independence assumes

p(Xn−1, Xn|ME) = p(Xn−1|ME)p(Xn|ME).

This assumption is invalid in reality as the random variables are correlated in time.
Since there is no link between Xn−1 and Xn, the random variables are assumed to be
independent and identically distributed. In the joint modeling approach with the model
MJ , the correlation between their variables Xn and Xn−1 is included as

p(Xn|Xn−1, · · · , X1,MJ), (1.7)

hence the conditional independence assumption is invalid. Here, we restrict the model in
Equation (1.7) in a particular form, which is called the Markov models (Bishop, 2006).
This is a common choice for the estimation of the joint probability distribution, which we
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Figure 1.6: Graphical model of the energy spectrum (left) and the joint
model (right). A gray-filled circle represents an observable variable. The
random variables of the energy spectrum is independent and identically
distributed. The joint model follows the markov model.

adopt in this thesis. The graphical model of the energy spectrum and the joint models
are indicated in Figure 1.6.
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1.4 Advances for Statistical Modeling
The statistical modeling approach appears very straightforward and intuitive, and the
advantages over conventional analysis are obvious. However, this approach has not been
explored in X-ray astronomy, including BHB data (Pottschmidt et al., 1998). If we
retrieve the literature using the Astrophysics Data System (ADS) database, the number
of papers including the keywords “black hole” and “autoregressive” model, which is a
representative time series model, is only 22 as of writing. This should be compared with
the entire volume of the literature by retrieving the keywords ”black hole” and ”power-
law” model, which is a representative energy spectrum model, of 4893. Why is this? We
point out three reasons in the following that hampered the extensive use of statistical
modeling and recent advances to clear these obstacles.

1.4.1 Observation Data Quality
One reason is the lack of photon counts to explore the utility of the statistical modeling.
The paucity of counts is evident in the early days (Figure 1.1) withO(10 counts s−1). The
situation gradually improved over the years, and a giant leap was made with the advent of
the Neutron star Interior Composition Explorer (NICER) in 2017. The unprecedented
collecting area and precision in arrival time determination of X-ray photons make it
possible to accumulate observed data of BHBs uncompromised by the detector dynamic
range and the Poisson statistics up to the frequency of O(1 kHz). The count rate in
Figure 1.2 is O(104 counts s−1), which is a 103-fold increase from the early days. With
this improvement in the data quality, it has now become practical to apply the statistical
modeling approach even including the joint spectral and timing modeling.

1.4.2 Development of Modeling and Computational Resources
Statistical modeling requires massive computer resources. With recent advances in com-
puting technology, it is now feasible to experiment with multiple models and parameters
of statistical models, unless they are very complex. Parallel CPUs and GPUs are avail-
able for end users, which are indeed used in this work. This hardware availability is
further enhanced by software development that allows the construction of statistical
models. Languages such as R and Python provide access to statistical analysis libraries
and probabilistic programming languages, making statistical model analysis straightfor-
ward.

A field that recognized this change early is the field of economics, in which a large
knowledge base is being built upon application of the statistical modeling to the ac-
tual data, including multivariate time-series data. We should follow this in the field of
astronomy to open new avenues for data exploration.
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1.4.3 Physical Interpretation
Yet another reason against the time series modeling is the difficulty in relating the results
with physical models, unlike energy spectral analysis (Gilfanov, 2010). Both light curve
analysis and time series modeling are predominantly phenomenological, lacking a direct
derivation from specific physical models. Nevertheless, some aspects of the BHB can only
be achieved by analyzing the variability. The quasi-periodic oscillation (QPO) and the
time lag are the two most important examples (reviewed in Remillard and McClintock,
2006; Uttley et al., 2014). We should explore them more seriously on the basis of physical
models; after all, the rapid variability is a distinctive feature of BHBs from other sources.

Recently, physical models have been developed for these well-known phenomena (e.g.,
Fabian et al., 1989; Remillard and McClintock, 2006). In the near future, these physical
models will be able to predict both the spectral and timing behaviors of BHBs, which we
can compare with observations. The parameters of the physical models will be treated as
random variables in the statistical modeling approach and their probability distribution
will be derived through application to the actual data.

Given these advancements in data quality, modeling techniques, computational re-
sources, and theories, it is high time to overcome the difficulties of statistical model-
ing and make it a new norm of data analysis in X-ray astronomy. We are going to
demonstrate this to be possible with the joint spectral and timing modeling of a BHB,
MAXI J1820 + 070, observed with NICER.
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2.1 Purpose
As outlined in Chapter 1, the conventional spectral and light curve analyses of BHBs
have many limitations. On the one hand, energy spectral analysis is powerful for deriving
spectral components of physical entities, but it is often performed for time-slice spectra
without considering their correlation in time. On the other hand, the light curve analysis
describes the correlation in time, but ignores the spectral changes that make varying
contributions of spectral components in time. These limitations can be overcome only
by the joint modeling of the spectra and light curves. The statistical modeling presents a
comprehensive approach that leverages all available information on the subject, including
raw data, theories, and rules of thumb, to achieve tasks such as information extraction,
knowledge discovery, and prediction. This is the approach that we should take.

The time series counterpart of the statistical modeling is commonly referred to as time
series modeling. This is typically accomplished through the use of a state-space model,
which describes the phenomena using system equations and observation equations. The
system equation describes the development of the states, whereas the observation equa-
tion describes the process of observing these states. The novel idea for this research
is to relate the former with the traditional light curve analysis and the latter with the
traditional spectral analysis, so that we can model both in a single framework. The
primary goal of this research is to demonstrate that such a method is possible and even
useful in obtaining new insights into BHBs by applying the method to actual data.

2.2 Scope
To achieve the purpose, the investigation will be made up of the following steps.

a. Application of the classical time series modeling: In this step, we employ the
classical time series models, such as the autoregressive model and its variant, to
model the observed time series data. This method has not been widely used for
studying the X-ray light curves of BHBs. The goal is to gain insight into the
information obtained from these models and understand their limitations. This
step serves as a preliminary exploration before constructing more advanced models.

b. Development of the state-space models for the joint spectral and timing analysis:
In the state-space models, the state and observation variables are distinguished.
The success of state-space modeling lies in the appropriate choice of these vari-
ables, especially the state (or latent) variables. We use the physical components
as the state variable and multiband light curves as the observation variables. We
demonstrate that this method works efficiently for the joint spectral and timing
models.

c. Demonstration of the method using actual data of BHBs and gain insight into their
physical nature: We applied the joint spectral and timing models to real astronom-
ical data. Specifically, we apply the model focusing on the rapid variability of a
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BHB observed with NICER in the low hard state and show that we can extract
new insights based on the joint spectral and timing modeling.

In this research, we focus on the best and minimum data set to achieve the goals.
We do not distract ourselves by dealing with all the available data. We focus on one
BHB taken with one instrument for a short period. This alone contains sufficiently rich
information that can only be unveiled through the joint spectral and timing analysis.

2.3 Structure
The rest of the thesis proceeds as follows.

Chapter 3. Time Series Analysis
We provide a concise review of the time series analysis. This includes the general
considerations of statistical modeling (such as model inference, selection, inspec-
tion, and classification) in § 3.1, and description functions in § 3.2. In this thesis,
we call cross spectra, cross correlation functions, etc all together as “description
functions”. They are defined mathematically and used throughout the thesis to
present the results of various modeling. We also describe the mathematical back-
ground of the classical time series modeling (autoregression model and its variant)
in § 3.3 and the state space modeling in § 3.4.

Chapter 4. X-ray Variability of BHBs
We review the X-ray variability of BHBs. We show that BHBs have several typ-
ical states depending on the physical nature of the accretion disk, which can be
distinguished by the spectral and timing characteristics (§ 4.1). We present some
results obtained by the traditional light curve analysis focusing on time lags. We
clarify the limitations of the traditional approach and argue for the need for latent
variables. (§ 4.2).

Chapter 5. Observing Facility and Target
We describe the observing facility NICER (§ 5.1) and the target MAXI J1820+070

(§ 5.2). We summarize the result of MAXI J1820+ 070 observations mainly made
with NICER. We pick up one data set that is best suited to demonstrate our joint
spectral and timing analysis.

Chapter 6. Analysis and Results
This is the main part of this thesis. We start with the generation and description
of the time series data (§ 6.1). We then apply the statistical modeling for both
the classical modeling (§ 6.2) and the state-space modeling (§ 6.3). Description
functions are derived based on these approaches. We will show that the joint
spectral and timing approach successfully decomposes the spectral and timing
variations mixed in the data.
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Chapter 7. Discussion
We extract information from the joint spectral and timing modeling and translate
it into the physics of BHBs. In particular, we focus on the geometrical structure of
BHBs in the low hard state, such as the accretion disk and accretion flow. From the
variability time scale and time lags of individual spectral components, we give an
interpretation to consistently explain the observed findings based on the truncated
accretion disk geometry.

Chapter 8. Summary
We summarize the key findings of this work and conclude the successful application
of the joint spectral and timing analysis. We also present some perspectives for
future extensions of the statistical modeling approach.
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3.1 Statistical Modeling
In this section, we describe the statistical modeling framework that incorporates prior
information, focusing on the design, estimation, and interpretation of statistical models.
We provide a concise overview of probability distributions and statistical models, which
form the fundamental basis for statistical modeling. We also discuss model estimation
and selection. More technical descriptions can be found in Kitagawa (2022) and Bishop
(2006).

3.1.1 Pre-processing of Data
When analyzing data with time series models, the observed data often do not meet the
conditions assumed by the model. In such cases, pre-processing of data is effectively for
successful modeling. Some of the commonly-used pre-processing are shown below.

Normalization Standardization in time series analysis refers to the process of trans-
forming the values of a time series to a common scale, making it easier to compare and
analyze different variables or series. This is important because time series data often
have different units or scales. The standardization process typically involves subtracting
the mean µ of the series and dividing by the standard deviation σ, that is zn = (yn−µ)/σ.

Scale Transformation For data with fluctuations that span multiple orders of magni-
tude, the scale transformation is useful for consistent treatments of both large and small
variations. A frequently used technique involves applying a logarithmic transformation
to the data yn, such as zn = log yn.

Differencing For time series data with a linear trend, it is useful to remove the trend
by taking the differences. When a time series yn with a linear trend is expressed as
yn = a+ bn. The resulting difference series zn is given by:

zn = yn − yn−1

= b,
(3.1)

where a is canceled. The same repeats for higher order trends.

Signal Filtering To smooth a highly fluctuating time series, low-pass filtering is often
used. The most simple low-pass filter is the moving average. The moving average tn for
a time series yn, comprising 2k + 1 terms, is calculated as the average of the sum of k
terms both preceding and following yn:

tn =
1

2k + 1

k∑
j=−k

yn+j (3.2)
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3.1.2 Probability Distribution and Statistical Model
A random variable is a variable whose values follow a probability distribution. If we
denote a random variable as Y and its value as y, the probability distribution function
is defined as:

G(y) = Prob(Y ≤ y) (3.3)

In the case of continuous random variables, the probability distribution function G(y)

can be expressed as the integral of the probability density function g(t) over the interval
(−∞, y):

G(y) =

∫ y

−∞
g(t)dt. (3.4)

Here, g(y) is referred to as the probability density function. The probability that the
random variable Y falls within the interval a ≤ Y ≤ b is calculated as:

Prob(a ≤ Y ≤ b) = G(b)−G(a) =

∫ b

a

g(t)dt (3.5)

Various probability distributions are used to describe the characteristics of data.
Values generated in accordance with the magnitude of the probability density function
are referred to as realizations of a random variable. The probability density function of
the Gaussian distribution is given by:

g(x) =
1√
2πσ2

exp
{
−(x− µ)2

2σ2

}
, −∞ < x < ∞. (3.6)

Here, µ is the mean and σ2 is the variance, both of which are parameters of the dis-
tribution. This distribution is denoted as N (µ, σ2). The probability density function
of the Gaussian distribution forms a bell-shaped curve centered around the mean, and
realizations of this distribution are more likely to be found near the mean (Figure 3.1).

When a probability distribution is given, realizations of that distribution can be gen-
erated from random numbers. In statistical analysis, when observations y1, · · · , yN are
obtained, they are considered realizations from a certain random variable. The distribu-
tion g(y) that characterizes this random variable is referred to as the true distribution.
Typically, the true distribution is not known. Estimating the true distribution from
observed data is called statistical modeling. In the example of the Gaussian distribution
illustrated in Figure 3.1, this corresponds to estimating the parameters µ and σ2 of the
true Gaussian distribution from the observed data.

When observations are considered as realizations from the same distribution inde-
pendently from each other, it is sufficient to estimate a single probability distribution.
However, for the time series analysis, the data are not independent. It is thus necessary
to determine the joint probability distribution f(y1, · · · , yN).

Representing a time series y1, · · · , yN by a sample mean µ̂ and sample auto covariance
matrix Ĉk assumes that yi is the realization from a multivariate normal distribution with
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Figure 3.1: Gauss distribution and its realization. The mean and
variance are zero and one. Twenty realizations are generated from the
distribution.

a mean vector (µ̂, · · · , µ̂)T and a covariance matrix

Ĉ =


Ĉ0 Ĉ1 · · · ĈN−1

Ĉ1 Ĉ0 · · · ĈN−2

... ... . . . ...
ĈN−1 ĈN−2 · · · Ĉ0

 . (3.7)

Here, Ĉk = E[(yn − µ̂)(yn−k − µ̂)], in which E[ · ] is the expected value. This requires
estimating N + 1 values from N data points. This approach does not efficiently capture
the information in the data for too many parameters. Therefore, we often use more
constrained modeling in the time series analysis. For example, in the m-dimensional
autoregressive model (§ 3.3.1) with the variance of the error term following a Gaussian
distribution, the time series information is aggregated into m+ 1 values.

3.1.3 Model Inference
The goal of statistical modeling is to estimate a statistical model that approximates the
true distribution. To achieve this, we need criteria to measure how close the model is
to the true distribution. In this context, we use the Kullback-Leibler (K-L) information
as a criterion. Using this criterion, we naturally derive the log-likelihood as a measure
of the relative goodness of fit for models. Here, we define the K-L information and
transform it into an estimable form to derive the log-likelihood, which can be used in
model estimation.
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The K-L information is a measure of the difference between two distributions g(y)

and f(y). It is calculated as follows:

I(g; f) = EY

[
log g(Y )

f(Y )

]
=

∫ ∞

−∞
log
{
g(y)

f(y)

}
g(y)dy, (3.8)

where EY ( · ) is the expected value over Y . The second equation is applicable when
the random variable is continuous. Essentially, it computes the expected value of the
logarithmic difference between g(y) and f(y) weighted by g(y). K-L information equals
zero when g(y) = f(y), and it takes positive values when g(y) 6= f(y). Smaller K-
L information values indicate that g(y) and f(y) have distributions that are closer to
each other. The negative of the K-L information is known as the Boltzmann entropy
B(g; f) = −I(g; f). The model that maximizes this entropy is considered the best
approximation of the true distribution, which is referred to as the entropy maximizing
principle in statistical modeling.

Let’s calculate the K-L information for two Gaussian distributions. Suppose the true
distribution g(y) and the model distribution f(y) are both Gaussian distributions defined
as follows:

g(y|µ, σ2) =
1

2πσ2
exp−(y − µ)2

2σ2
(3.9)

f(y|ξ, τ 2) = 1

2πτ 2
exp−(y − ξ)2

2τ 2
(3.10)

In this case, the KL information can be calculated as:

I(g; f) = EY

[
log g(y)

f(y)

]
=

1

2

{
log τ 2

σ2
− EY [(Y − µ)2]

σ2
+

EY [(Y − ξ)2]

τ 2

}
=

1

2

{
log τ 2

σ2
− 1 +

σ2 + (µ− ξ)2

τ 2

} (3.11)

It is evident that when the distributions are the same, i.e., µ = ξ and τ = σ, then
I(g; f) = 0. As an example, if the true distribution g(y) follows a standard normal
distribution N (0, 1) and the model distribution f(y) is chosen to be N (0.1, 1.5), then
I(g; f) = 0.03940.

It is possible to evaluate the quality of a model using the K-L information. In real
problems, however, the true distribution is rarely known. We only have observed data
y1, . . . , yn, which can be considered as realizations of the true distribution. Let’s consider
how to compute K-L information using these data. K-L information can be decomposed
as follows:

I(g; f) = EY[log g(Y )]− EY[log f(Y )] (3.12)

The first term on the right-hand side cannot be calculated without knowing the true
distribution. However, since it does not depend on f(y), we can ignore it. The K-L
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information is minimized when the second term on the right-hand side is maximized, so
a model that maximizes this term is considered a good model. This term is known as
the average log-likelihood. For continuous models with the probability density function
g(y), it can be expressed as:

EY[log f(Y )] =

∫
log f(y)g(y)dy (3.13)

This allows us to assess the goodness of the model in terms of its capability to capture
the data distribution.

This integral includes the true model, g(y), making it impossible to compute directly
from the data. However, due to the fact that the data yn are generated according to the
true model g(y), the law of large numbers tells us that, as the number of data points N
approaches infinity,

1

N

N∑
n=1

log f(yn) −→ EY[log f(Y )] (3.14)

In other words, when we maximize
∑N

n=1 log f(yn), we can minimize the K-L informa-
tion. This quantity is known as the log-likelihood when observations are independently
obtained. It can be denoted as ` =

∑N
n=1 log f(yn).

When the model is a parametric model with parameters θ and is represented as
f(Y ) = f(Y |θ), the log-likelihood becomes a function of the parameters θ. This is
referred to as the log-likelihood function of θ, and finding θ that maximizes ` is considered
a way to select a good model.

3.1.3.1 Frequentist Inference

In this research, we employ both frequentist and Bayesian approaches to estimate statis-
tical models, taking into account various factors, including the availability of information
and computational resources. We now provide a summary of these two approaches.

The maximum likelihood method aims to maximize the likelihood function, which
is obtained by taking the exponent of the log-likelihood function. This is the frequen-
tist approach that involves estimating parameters that maximize the probability of the
observed data. The likelihood function, which is a conditional probability of the model
parameters θ given the observed data Y , is represented as p(Y |θ). In the frequentist per-
spective, θ is considered as fixed parameters, and it is assumed that the observed data Y

are obtained from the probability distribution governed by these parameters. In many
cases, optimization is performed to find the parameters that maximize the log-likelihood.

One computational method for maximum likelihood estimation is the quasi-Newton
method. This method starts by selecting an initial value for the parameters θ0 and using
this value to compute the log-likelihood function. The parameters θ are updated using
the first derivative of the log-likelihood, ∂`/∂θ, as follows:

θk = θk−1 + λkHk−1
∂`

∂θ
(3.15)



3.1. Statistical Modeling 23

where the step size λk and the Hessian matrix Hk−1 are determined automatically. If the
first derivative of `(θ) can be analytically computed, the process is relatively straight-
forward. However, in many cases, `(θ) takes a complex form, which makes direct com-
putation difficult. In practice, numerical differentiation is often used.

To estimate the uncertainty of the maximum likelihood estimates, one can consider
the probability distribution of the available data set Y while taking into account the
distribution of the parameters. One approach is bootstrapping, which involves repeated
random sampling, with replacements, of N data points from the original data set Y =

y1, · · · , yN a total of L times. Maximum likelihood estimation is performed for each of
the bootstrap samples of a size N , and the distribution of the estimated parameters is
used to assess the error.

3.1.3.2 Bayesian Inference

Bayesian model estimation is a method that involves interpreting the data and the
parameters based on the Bayes’ theorem to estimate the probability distribution of the
parameters. In Bayes’ theorem, when we have two random variables, A and B, and we
want to find the probability of B given that A has occurred, it is expressed as follows:

p(B|A) = p(A|B)p(B)

p(A)
(3.16)

Here, p(B|A) and p(A|B) represent the conditional probability of B given A and that of
A given B, respectively. Now, if we consider B as the model parameter θ and A as the
observed data Y , we can rewrite Bayes’ theorem as follows:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
(3.17)

In this context, p(Y |θ) represents the probability of obtaining the observed data Y when
the model parameters θ are known, which is reffered to as the likelihood function. p(θ|Y )

represents the conditional probability of the model parameters θ after observing the data,
which is referred to as the posterior distribution. p(θ) is called the prior distribution,
which is the probability distribution of the model parameters before observing any data.
These terms, such as the prior distribution and the posterior distribution, are named to
reflect the Bayesian idea that we want to find the distribution of the model parameters
θ given the observed data Y .

In the frequentist maximum likelihood estimation, we seek to maximize the likelihood
function p(Y |θ) to find θ. In the Bayesian approach, we aim to estimate θ that maximizes
the posterior distribution p(θ|Y ). Since the denominator in Equation (3.17) represents
the probability of the observed data, which becomes constant once the data are obtained,
we only need to maximize the numerator. The numerator is the product of the likelihood
function and the prior distribution, so we consider not only the likelihood of the data,
but also the prior knowledge of the parameters θ. This can be advantageous in cases
where incorporating prior knowledge is important. For example, if one tosses a coin three
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times, and it comes up with the head all three times, the frequentist maximum likelihood
estimation suggests that the probability of the head is 1. In the Bayesian approach, we
can avoid such extreme conclusions by imposing a prior that represents fairness.

The process of estimating θ that maximizes the posterior probability is known as
Maximum A Posteriori (MAP) estimation. However, the MAP estimation focuses on
finding the maximum value of the posterior, and thus is not a full Bayesian approach.
A full Bayesian approach involves calculating the entire posterior distribution, which
can be achieved using techniques such as the Markov Chain Monte Carlo (MCMC).
These calculations involve integrating probability densities and sums, and they often re-
quire significant computational resources. Consequently, traditional statistical analyzes
have mainly relied on frequentist approaches. In recent years, however, the advances in
computing power and algorithms have made it feasible to estimate posterior probability
distributions, and methods such as variational inference have been developed, making
the Bayesian estimation more accessible.

The Metropolitan-Hastings (MH) algorithm is a basic technique in the MCMC meth-
ods, employing any distribution as its proposal distribution (Hastings, 1970). It calcu-
lates the acceptance probability of the proposed samples, determining acceptance or
rejection in a single step using random numbers. Hamiltonian Monte Carlo (HMC)
takes advantage of the principles of the Hamiltonian mechanics in physics (Duane et al.,
1987). Notably, HMC allows for more efficient sampling by facilitating jumps to more
distant samples compared to the MH algorithm. An extended version of HMC is the
No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014). HMC requires adjustment
of parameters such as step size and number of steps, and suboptimal values can hinder
convergence. NUTS addresses this by dynamically adjusting these parameters during the
sampling process. Additionally, NUTS automatically avoids U-turn sampling, enhancing
the efficiency of estimation for subject experts.

3.1.3.3 Choice between Frequentist and Bayesian Approaches

There are no simple criteria for choosing between a frequentist and a Bayesian approach.
It should be based on factors such as the desired level of interpretation and computational
costs. Here, we will discuss general points to consider when deciding which approach to
adopt.

One distinguishing feature of the Bayesian approach is its ability to incorporate
prior knowledge as a prior distribution. If there is substantial prior knowledge, such
as strong theoretical predictions for the problem at hand, the Bayesian approach might
be preferable. However, it is essential to note that the posterior probability includes
prior knowledge as a prior distribution, requiring careful consideration. Conversely, in
cases with limited prior knowledge or significant impact from the prior distribution, the
frequentist approach can be more practical.

The degree of interpreting the results obtained can be another deciding factor between
the two approaches. In the Bayesian approach, estimated parameters are expressed as
probability distributions, simplifying interpretation by representing uncertainty through
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the spread of the distribution. In contrast, the frequentist approach relies on the point
estimation, and assessing uncertainty usually involves more complex procedures like
confidence intervals.

Computational costs play a role in choosing between the two approaches. Generally,
Bayesian computations to determine the posterior distribution can be intricate, often
requiring numerical approximations or sampling methods. Conversely, the frequentist
approach, with methods like maximum likelihood estimation, tends to have lower com-
putational costs. The availability of software tailored to the problem is crucial. The
frequentist approach are often better supported than the Bayesian approach. However,
the advent of the “probabilistic programming languages” (e.g., Stan (Stan Development
Team, 2024), PyMC (Salvatier et al., 2015), TensorFlow Probability (Dillon et al., 2017))
has made the Bayesian approach more accessible. These languages often incorporate
features such as automatic differentiation and GPU utilization, facilitating fast compu-
tation. However, due to their unique syntax and the need to understand the Bayesian
statistics in detail, the learning cost of users is high.

3.1.4 Model Selection
The Akaike Information Criterion (AIC) is one of the commonly used model selection
criteria used to choose the most appropriate model among multiple candidate models
to explain the data. It might seem logical to compute the log-likelihood function for
each model and compare them, selecting the model that maximizes it. However, in the
case of models defined by the maximum likelihood estimates θ̂, the quantity N−1`(θ̂)

exhibits a positive bias as an estimate of EY[log f(Y |θ̂)], making it unsuitable for model
comparison. This bias arises from the use of the same data twice for parameter estimation
and evaluation.

To address this issue, AIC was developed, and it is expressed as:

AIC = −2`(θ̂) + 2k (3.18)

Here, `(θ̂) represents the maximum log-likelihood, and k is the number of parameters.
In this research, we use AIC as the criterion to compare different statistical models when
selecting models.

3.1.5 Model Inspection
To assess the accuracy of the estimated model in describing the observed data, many
methods have been developed. We review some of the commonly used methods below.

3.1.5.1 White Noise Tests for Residuals

For the best model, the residual of the data from the model follows white noise; no further
useful information is obtained from the white noise to improve the model. To assess
whether the residuals follow white noise, it is crucial to verify that their autocorrelation



26 Chapter 3. Time Series Analysis

(see § 3.2) is zero. White noise is examined by testing the null hypothesis Rk = 0 against
the alternative hypothesis Rk 6= 0 for the autocorrelation coefficient R̂k at the desired lag
k. The asymptotic distribution of R̂k follows a normal distribution N (0, 1/N), where
N represents the number of data points used for the sample autocorrelation function
calculation. For example, with N = 100, the standard deviation is 0.1. The critical value
for a two-sided 95 % confidence interval is 1.96 for the normal distribution. Therefore, if
|R̂k| > 0.196, the null hypothesis Rk = 0 is rejected, indicating a significant correlation
at a 5 % significance level.

It should be noted that the earlier test examines whether each autocorrelation coef-
ficient is zero individually for k. When testing if all k’s are zero, which we really want
to investigate, different types of tests are required. The objective is to test the null
hypothesis R1 = R2 = · · · = Rm = 0 against the alternative hypothesis that Rk 6= 0 at
least for one k ∈ [1,m]. This test, known as the portmanteau test, can be performed
using various statistics (Hamilton, 1994). A commonly employed test in this context is
the Ljung-Box test. The statistic defined as

Q(m) = N(N + 2)
m∑
k=1

R̂k
2

N − k

∼ χ2(m)

(3.19)

asymptotically approaches to a chi-square distribution (Ljung and Box, 1978). Here, χ2

represents the chi-square distribution. By comparing the 95 % point of Q(m) with that
of χ2(m), if Q(m) is greater, the null hypothesis is rejected at a 5 % significance level.
The portmanteau test allows the evaluation of whether the residuals follow white noise,
offering insight into the accuracy of modeling.

3.1.5.2 Q–Q Plot

A Q–Q plot is a graphical tool used in statistics to assess the similarity between the
distribution of a sample dataset and a theoretical distribution, such as the normal dis-
tribution. In a Q–Q plot, the quantiles of the observed data are plotted against the
quantiles of the expected theoretical distribution. The x-axis of the Q–Q plot represents
the quantiles of the theoretical distribution, while the y-axis represents the quantiles of
the observed data. If the data follow the theoretical distribution, the points on the Q–Q
plot align along the diagonal line. Deviations from this line indicate departures from
the expected distribution. Especially, when the theoretical distribution is the normal
distribution, the Q–Q plot is called a normal Q–Q plot.

Q–Q plots are particularly useful for identifying deviations from normality in a
dataset. For example, if the points in the Q–Q plot systematically deviate from the
straight line, it suggests that the data may not be normally distributed. This graphical
method provides a visual assessment of the assumption for the distribution of given data
sets.
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Figure 3.2: Samples from the normal and Cauchy distribution. The
parameterization of both distributions is identical, with a location
parameter of 0.0 and a scale parameter of 1.0.

In the Python context, SciPy offers the function to compute and plot Q–Q plot as
scipy.stats.probplot (Virtanen et al., 2020). As an example, using the standardized
samples from the normal and Cauchy distributions (Figure 3.2), we compute the normal
Q–Q plots (Figure 3.3). In the normal Q–Q plot of samples from the normal distribution,
the data points align closely with the diagonal line. However, in the normal Q–Q plot
of Cauchy samples, noticeable deviations occur, especially in the distant part from the
center. This characteristic highlights that while the center of the Cauchy distribution
resembles the normal distribution, the tail parts differ.

3.1.6 Model Classification
Time series analysis involves various aspects. Each aspect leads to a specific classification.
Understanding the unique features of the time series analysis is crucial for conducting
suitable analyses and developing effective models. In this context, we provide an overview
of some of the classification of time series modeling (Kitagawa, 2022).

Linear Time Series versus Non-Linear Time Series Linear time series analysis
deals with sequences of observations generated by linear models. When the observed
time series does not follow a linear model, it falls into the category of non-linear time
series.

Stationary Time Series versus Non-Stationary Time Series A stationary time
series is a sequence of observations that appears to have random fluctuations but can be
seen as values derived from a probability distribution that remains unchanged over time.
Stationary time series can be categorized as either weak stationary or strong stationary.
In the weak stationary time series, the mean, variance, and covariance remain constant
across time; i.e.; they only depend on the relative time shifts. In the strong stationary
time series, the probability distribution remains unchanged even with time shifts. Time
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Figure 3.3: Normal Q–Q plots for the samples generated from the
normal and Cauchy distributions.

series that deviate from these stationary characteristics are referred to as non-stationary
time series.

Gaussian Time Series versus Non-Gaussian Time Series A Gaussian time series
is the one in which the distribution of random variables follows a Gaussian (normal)
distribution. Conversely, if the distribution deviates from a Gaussian form, it is termed
a non-Gaussian time series.
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3.2 Description Functions
In this thesis, we call functions that characterize the data as “description functions”,
which we define below separately for univariate and multivariate cases. The description
functions calculated directly from the data are called “sample description function”,
hereafter.

3.2.1 Univariate
Autocovariance Function and Autocorrelation Function For weak stationary
time series, the mean function µn remains constant over time and is defined as

µn = E[yn], (3.20)

representing the mean of the time series. The covariance between yn and yn−k, denoted
as Ck, is a function solely dependent on the lag k and can be expressed as

Ck = Cov(yn, yn−k)

= E[(yn − µ)(yn−k − µ)],
(3.21)

This function is known as the autocovariance function, which is an even function C−k =

Ck satisfying |Ck| ≤ C0. The autocorrelation function is defined by

Rk = Cor(yn, yn−k)

=
Cov(yn, yn−k)√
Var(yn)Var(yn−k)

=
Ck

C0

,

(3.22)

where Var(yn) is the variation of yn defined as Var(yn) = Cov(yn, yn).

Partial Autocorrelation Function In the autocorrelation function, the correlation
between e.g., yn and yn−3 incorporates the effects of intermediate correlations such as
between yn and yn−1 or yn−2, thus it is not a pure correlation function between yn and
yn−3. The partial autocorrelation refers to the correlation between yn and yn−k after
excluding the effects of the intermediate correlations. This is known as the Partial
Autocorrelation Function (PACF), which is a function of the lag k.

The PACF can be computed by decomposing the covariance between yn and yn−k

into the covariance with all intermediate observations. Consider the scenario where
the standardized time series is represented by a noise-free k-th order autoregressive
representation given by:

yn = ak1yn−1 + ak2yn−2 + · · ·+ akkyn−k (3.23)
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Here, aki denotes the i-th coefficient in the k-th order AR model. Multiplying both sides
by yn−k and taking the expected value, we have:

E[ynyn−k] = ak1E[yn−1yn−k] + ak2E[yn−2yn−k] + · · ·+ akkE[yn−kyn−k] (3.24)

This expression decomposes the covariance between yn and yn−k into covariances with the
intermediate observations, providing the desired form. Using covariances Ci = E[ynyn−i],
the above equation can be expressed as:

Ck = ak1Ck−1 + ak2Ck−2 + · · ·+ akkC0 (3.25)

This equation involves k unknown variables, making it unsolvable. However, by ap-
plying the same procedure to Equation (3.23) and multiplying both sides by yn−i for
i = 1, · · · , k, we obtain:

C1 = ak1C0 + ak2C1 + · · ·+ akk−1Ck−1

C2 = ak1C1 + ak2C0 + · · ·+ akk−1Ck−2

...
Ck = ak1Ck−1 + akk−2Ck−2 + · · ·+ akk−1C0

(3.26)

This allows us to compute the values for k. In the matrix form,
C1

C2

...
Ck

 =


C0 C1 · · · Ck−1

C1 C0
. . . ...

... . . . . . . C1

Ck−1 · · · C1 C0



ak1
ak2
...
akk

 (3.27)

Thus, the partial autocorrelation is calculated by


ak1
ak2
...
akk

 =


C0 C1 · · · Ck−1

C1 C0
. . . ...

... . . . . . . C1

Ck−1 · · · C1 C0


−1 

C1

C2

...
Ck

 . (3.28)

Power Spectrum When the condition

∞∑
k=−∞

|Ck| < ∞,
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is met signifying the rapid decay of the autocovariance function Ck, the Fourier transform
of Ck can be computed. The function defined over the range −1/2 ≤ f ≤ 1/2

p(f) =
∞∑

k=−∞

Cke
−2πikf (3.29)

is denoted as the power spectrum. Since the autocovariance function is an even function
with Ck = C−k, (3.29) can be reformulated as

p(f) =
∞∑

k=−∞

Ck cos 2πkf = C0 + 2
∞∑
k=1

Ck cos 2πkf. (3.30)

Conversely, the autocovariance function is reconstructed from the power spectrum p(f)

as
Ck =

∫ ∞

−∞
p(f)e−2πikfdf =

∫ ∞

−∞
p(f) cos 2πikfdf. (3.31)

3.2.2 Multivariate
More generalized description functions are used for multivariate cases. This is particu-
larly relevant for this work, in which we analyze the multiband X-ray light curves. We
introduce covariance and cross-spectrum below, which are commonly used as description
functions for multivariate time series. It is important to note that they can also be ap-
plied to univariate cases, yielding results like autocovariance and power spectrum. For
further details, refer to Kitagawa (2022).

Cross-Covariance and Cross-Correlation Functions Covariance serves as a basic
analytical function to explore the characteristics of time series. For a multivariate time
series yn = [yn(1) · · · yn(M)]T , the mean function is defined as

µ(i) = E[yn(i)], (3.32)

resulting in the mean vector µ = [µi · · ·µM ]. The covariance between yn(i) and yn−k(j)

is given by

Ck(ij) = Cov(yn(i), yn−k(j))

= E[(yn − µ(i))(yn−k − µ(j))].
(3.33)

The M ×M matrix

Ck =

 Ck(1, 1) · · · Ck(1,M)
... · · · ...

Ck(M, 1) · · · Ck(M,M)

 (3.34)

represents the covariance for the lag k. Ck as a function of the lag k is known as the
cross-covariance function. The diagonal elements Ck(i, i) of this function are referred to
as the autocovariance function. Introducing the correlation coefficient between yn(i) and
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yn−k(j) as

Rk(ij) = Cor(yn(i), yn−k(j))

=
Cov(yn(i), yn−k(j))√

C0(i, i)C0(j, j)
,

(3.35)

the matrix

Rk =

 Rk(1, 1) · · · Rk(1,M)
... · · · ...

Rk(M, 1) · · · Rk(M,M)

 (3.36)

is given, which is known as the cross-correlation function. The diagonal elements Rk(i, i)

are the autocorrelation function. Note that, for univariate time series, only autocovari-
ance functions and autocorrelation functions are applicable.

Autocovariance functions and autocorrelation functions exhibit symmetry, making it
necessary to calculate only positive values. However, this symmetry does not apply to
the cross-covariance functions and the cross-correlation functions. Yet, a useful property
is

Ck = CT
−k, Rk = RT

−k (3.37)

which means that we can focus on computing only for the positive k part of these
functions as well.

When we have a set of observed values yn, · · · , yN , the following calculations are
performed using these values:

µ̂ =
1

N

N∑
i=1

yi (3.38)

Ĉk(i, j) =
1

N

N∑
n=k+1

(yn(i)− µ̂(i))(yn−k(j)− µ̂(j)) (3.39)

R̂k(i, j) =
Ĉk(i, j)√

Ĉ0(i, i)Ĉ0(j, j)
(3.40)

We refer these as the sample mean, sample autocovariance function, and sample auto-
correlation function, respectively.

Cross-Spectrum and Coherency The Fourier transform of the covariance matrix
Ck(s, j) is called the cross-spectral density function and is expressed as:

psj(f) =
∞∑

k=−∞

Ck(s, j)e
−2πikf

=
∞∑

k=−∞

Ck(s, j) cos 2πkf − i

∞∑
k=−∞

Ck(s, j) sin 2πkf.
(3.41)
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When we define

P (f) =

p11(f) · · · p1`(f)
... . . . ...

p`1(f) · · · p``(f)

 (3.42)

as the matrix of the cross-spectra for every pair of time series data, the relation between
Ck and P (f) can be expressed as:

P (f) =
∞∑

k=−∞

Cke
−2πikf

Ck =

∫ 1
2

− 1
2

P (f)e2πikfdf

(3.43)

The cross-spectrum is also represented as:

pjk(f) = αjke
iφjk(f), (3.44)

where

αjk(f) =
√

(<{pjk(f)})2 + (={pjk(f)})2

φjk(f) = arctan ={pjk(f)}
<{pjk(f)}

.
(3.45)

Here, < and = represent the real and imaginary parts. αjk(f) is called the amplitude
spectrum and φjk(f) is called the phase spectrum. The coherency is an equivalent value
to the square of the correlation coefficient between the frequency components of yn(j)
and yn(k) at frequency f , which is expressed as

cohjk(f) =
αjk(f)

2

pjj(f)pkk(f)
. (3.46)
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3.3 Autoregressive Models
In this section, we provide a concise overview of the classical time series model with
examples. We refer to Kitagawa (2022) as a reference for this section.

3.3.1 Autoregressive Model
3.3.1.1 Definition

The autoregressive (AR) model is a phenomenological model that uses a linear combi-
nation of observed values in the past to express the observed value yn at the time n. It
is given by the equation:

yn = a1yn−1 + · · ·+ yjxn−j + vn (3.47)

=
m∑
j=1

ajyn−j + vn, (3.48)

where, aj is the AR coefficient that corresponds to the j-th past value, and vn is the
white noise error term that is assumed to be normally distributed with a mean of zero
and a constant variance. The AR model is a weakly stationary model, which implies
that its mean and autocovariance are constant. The AR coefficients are estimated by
autocovariance using observed data.

Stationarity The characteristic equation of the AR model is given by:

1−

(
m∑
j=1

ajz
j

)
= 0, (3.49)

The roots of this equation, termed characteristic roots, are closely related to the sta-
tionarity of the AR model. If these roots lie outside the unit circle, the AR model is
non-stationary. For example, in the case of the first-order AR model, the characteristic
equation is expressed as:

1− a1z = 0, (3.50)

leading to the stationarity condition:

|z| = |a−1
1 | > 1, (3.51)

or |a1| < 1.

Random Walk and Stationarity Test In the first-order AR model, the model with
a1 = 1.0 is specifically called random walk. It is expressed as yn = yn−1 + wn, where wn

denotes white noise. This type of random walk is termed a unit root process because
its characteristic equation has a root on the unit circle. The Dickey-Fuller (DF) test
exploits the fact that the root of a stationary time series lies within the unit circle.
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The null hypothesis of the test asserts that the time series follows a unit root process,
specifically with a1 = 1.0. Rejecting the null hypothesis implies that the time series is
likely stationary.

Although the DF test is designed for time series following first-order AR models, the
augmented Dickey-Fuller (ADF) test is applicable to time series following higher-order
AR models. Readers interested in a thorough understanding of the DF and ADF tests
can refer to Hamilton, 1994.

3.3.1.2 Description Functions

In the AR model, various information can be extracted by transforming its coefficients
into description functions. Here, we introduce representative examples including impulse
response function, autocovariance function, partial autocorrelation function, and power
spectrum.

In the traditional light curve analysis, these description functions, except for the
impulse response function, are calculated from the data and commonly used to examine
the characteristics of time series data. However, with this approach, the functions are
influenced by noise, which can obscure the true features of the signal. In contrast, the
AR model incorporates noise as model parameters, thus the AR coefficients create results
that are less influenced by the noise than those directly computed from the data. In this
section, we provide examples of these calculations using synthetic data.

Impulse Response Function The impulse response function quantitatively evaluates
the impact of an impulse at a specific time point upon the data at subsequent time points.
In the AR model, it can be expressed as an infinite sum of the product of previously
added noise and impulse response function gi, as follows:

yn =
∞∑
i=0

givn−i (3.52)

where gi is calculated iteratively using the following recursive formulas:

g0 = 1 (3.53)

gi =
i∑

j=1

ajgi−j, i = 1, 2, · · · (3.54)

By performing sequential substitutions, we obtain the value of gi.

Autocovariance and autocorrelation functions By multiplying yn−k to Equa-
tion (3.48) and taking expectation, we obtain:

E[ynyn−k] =
m∑
j=1

aiE[yn−iyn−k] + E[vnyn−k]. (3.55)
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Using the equation of

E[vn−iyn−k] =
∞∑
j=0

gjE[vn−iyn−k−j] =

{
0, i > k

σ2gi−k, i ≤ k
(3.56)

and defining Ck ≡ E[ynyn−k] with a mean of zero (according to Equation (3.21)), the
autocovariance function of the AR model can be expressed as:

C0 =
m∑
i=0

aiC−i + σ2 (3.57)

Ck =
m∑
i=0

aiCk−i (3.58)

These equations are known as the Yule-Walker equations.

Partial Autocorrelation function We denote the AR coefficient ai of them-th order
AR model as ami . The PACF measures the effective correlation between yn and yn−k while
removing the influence of correlations with intermediate observations yn+1, · · · , yn+k−1,
which corresponds to amm. Typically, computing the PACF involves estimating aii for
i = 1, · · · . However, an efficient method exists by using equations that link ami and
am−1
i . Specifically, this relation holds:

ami = am−1
i − amma

m−1
m−i , i = 1, · · · ,m− 1. (3.59)

Rearranging this equation yields:

ami = am−1
i − amm(a

m
m−i + amma

m−1
i ) (3.60)

am−1
i =

ami + amma
m
m−i

1− (amm)
2

. (3.61)

Using these relations, we can compute am−1
1 , · · · am−1

m−1 from am1 , · · · , amm. By repeating
this process iteratively, we can calculate all PACF values, a11, · · · , amm.

Power Spectrum The power spectrum represents the strength of fluctuations at dif-
ferent frequencies. Using the AR coefficients, it can be expressed as

p(f) =
σ2∣∣∣1−∑m

j=1 aje
−2πijf

∣∣∣2 (3.62)

In the power spectrum of the AR models, the number of peaks is determined by the
AR order, and their locations are determined by the minima of

∣∣∣1−∑m
j=1 aje

−2πijf
∣∣∣.

The model can create peaks equal to half of the order. The fact that the AR model can
generate peaks in the power spectrum means that it is possible to utilize it for periodicity
search in astronomy. This allows us to examine periodic signals that may be buried in
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noise, making it a valuable tool for detecting and studying periodic phenomena in time
series data.

3.3.1.3 Example

In this example, synthetic data are generated using an AR model given by the equation
yn = 0.9yn−1+vn, where vn represents white noise following a Gaussian distribution with
a mean of 0 and a variance of 1.0 (Figure 3.4). Here, we assume that the sampling rate
is 1 Hz.

The impulse response function and the autocorrelation function of this AR model
exhibit exponential decay (panels (a) and (b) of Figure 3.5). However, even after a lag
of 30, a significant power remains in the autocorrelation function. This is because the
large coefficient ai = 0.9 allows yn to retain past information for a long period. On the
other hand, the PACF shows a value of 0.9 at lag 1 and 0 for the lags greater than 1 as
we modeled (panel (c) of Figure 3.5). This indicates that the prolonged correlation in
the autocovariance function is not real.

In the power spectrum (Panel (d) of Figure 3.5), a flat shape is observed in the low-
frequency range, which decays towards higher frequencies. This behavior, known as a
“broken power law,” is often seen in the power spectrum of random fluctuations such as
accretion phenomena. It implies that the AR model can be utilized for these time series
models. The functions, except for the impulse response function, are calculated directly
from the data (shown in blue lines), but they are noisy due to the influence of the noise.
In contrast, the AR model provides smooth curves, as noise is included in the modeling.
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Figure 3.4: Synthetic data generated by the AR model with an order 1.

In summary, the AR model parameters allow us to calculate the description functions
without being affected too much by noise. Here, we should note that this approach
assumes that the noise follows a Gaussian distribution.
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Figure 3.5: (a) Impulse response function, (b) covariance function, (c)
partial-autocorrelation function, and (d) power spectrum for the
synthetic data. The black curves indicate the description functions
calculated from the true model parameters, while the blue curves are
those calculated from the data directly.

3.3.2 Vector Autoregressive Model
3.3.2.1 Definition

The Vector Autoregressive (VAR) model is a regressive model for multivariate time series
yn = [yn(1), · · · , yn(`)]T , which utilizes previous values yn−1, · · · , yn−M and `-dimensional
white noise vn, expressed as:

yn = A1yn−1 + · · ·+ Ajyn−j + vn

=
m∑
j

Ajyn−j + vn,
(3.63)

where Aj is the coefficient matrix and m is the order of the VAR model.

Stationarity The characteristic equation for the VAR model is derived from the gen-
eralization of the one for the AR model (Equation (3.49)) as:∣∣∣∣∣I −

(
m∑
j=1

Ajz
j

)∣∣∣∣∣ = 0, (3.64)

where I represents the identity matrix with the same dimensions as Aj. Similar to the
AR model, the stationary condition for the VAR model requires that all characteristic
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roots exceed 1, i.e., |z| > 1. For example, the characteristic equation of a first-order
VAR model:

|I − A1z| = 0 (3.65)

This can be reformulated as:
|z−1I − A1| = 0 (3.66)

Essentially, this equation aligns with the eigen equation for A1, indicating that the
stationary condition for a first-order VAR model is met when the absolute values of all
eigenvalues of A1 are less than 1.

3.3.2.2 Description Functions

The cross-covariance of the VAR model is calculated as

C0 =
M∑
j=1

AjC−j +W

Ck =
M∑
j=1

AjCk−j, k = 1, 2, · · · ,

(3.67)

which is called the Yule-Walker equation in the same manner as the AR model. The
cross-correlation function can be calculated using Equation (3.35).

The cross-spectrum can be calculated as:

P (f) = A(f)−1W (A(f)−1)
∗ (3.68)

Here, A(f) is the matrix whose element (j, k) is expressed as:

Ajk =
M∑

m=0

am(j, k)e
−2πimf , (3.69)

where

a0(j, k) =

{
−1 (j = k)

0 (j 6= k)
(3.70)

Thus, pii corresponds to the power spectrum. The amplitude spectra, phase spectra, and
coherence are calculated using Equations (3.45) and (3.46) by the cross-spectra P (f).



40 Chapter 3. Time Series Analysis

We define A(f)−1 as B(f) = (bjk(f)). When the variance-covariance matrix is the
diagonal matrix W = diag(σ1, · · · , σ`), the i-th power spectrum can be transformed as:

pii(f) =
∑̀
j=1

bij(f)σ
2
j bij(f)

∗

≡
∑̀
j=1

|bij(f)|2σ2
j

(3.71)

This means that the i-th power spectrum can be decomposed into the ` noise effects
represented as |bij(f)|2σ2

j , (j = 1, · · · , `). Therefore, by dividing Equation (3.71) by
pii(f), we obtain:

rij(f) =
|bij(f)|2σ2

j

pij(f)
. (3.72)

rij(f) represents the ratio of the variation originating from vn(j) to the variation of yn(i)
at frequency f and is thus called the relative power contribution.

3.3.2.3 Example

Let’s examine the description functions using synthetic data, which is generated from
the VAR model with an order of 2. The sampling rate of the synthetic data is assumed
to be 1 Hz. We define the model with coefficient matrices of

A1 =

[
a1,11 a1,12
a1,21 a1,22

]
=

[
0.7 0.2

−0.1 0.3

]
,

A2 =

[
a2,11 a2,12
a2,21 a2,22

]
=

[
−0.3 0.1

0.1 0.2

]
,

(3.73)

and the variance-covariance matrix of

W =

[
0.3 0.0

0.0 0.2

]
. (3.74)

The simulated multivariate time series data are shown in Figure 3.6. While refer-
ring to the VAR coefficient matrix, let’s briefly touch upon the characteristics of the
time series generated by the model. Examining the autoregressive coefficients for yn(1)
from Equation (3.73) (a1,11, a2,11), we observe that one lag in the past provides positive
feedback, while two lags in the past provide negative feedback. As a result, a some-
what periodic signal is generated. In fact, yn(1) exhibits a somewhat periodic variation
with a period of around 10 samples, which will also be confirmed as peaks in the power
spectrum later. On the other hand, the autoregressive coefficients for yn(2) (a1,22, a2,22)
are both positive, indicating that this variable tends to retain the memory of past val-
ues. However, in this model, since the values of these coefficients have values similar to
the regression coefficients of yn(1) (a1,21, a2,21), the realization of yn(2) exhibits similar
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variations to yn(1). It is possible to interpret some characteristics of the observations
with autoregressive coefficients of the VAR model, but this is not always straightforward
as we need to consider contributions from other series. We need to use the descrip-
tion functions below to facilitate an easier and more quantitative understanding of these
features.
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Figure 3.6: Generated sample curves from the VAR model.

The cross-correlation function is shown in Figure 3.7, and the amplitude spectrum,
phase spectrum, coherence, and power decomposition are shown in Figures 3.8, 3.9 and
3.10. The functions are calculated based on the VAR coefficients. In the power spectrum,
which is shown in the diagonal panels of Figure 3.8 and Figure 3.9, it is evident that
yn(1) exhibits prominent power around 0.1 Hz, as previously mentioned.

Let’s examine the cross-correlation functions. Compared to Cor(yn(2), yn−k(2)),
Cor(yn(1), yn−k(1)) exhibits a more rapid decay and shows weak oscillations attributable
to periodic signals. These oscillations are not observed in the autocorrelation of yn(2),
reflecting a smaller influence of the periodic signal upon it. The cross-correlation func-
tion Cor(yn(1), yn−k(2)) displays a peak in correlation at a lag of 2 samples, indicating
the detection of a time lag signal. This can be attributed to the fact that both a1,12 and
a2,12 in Equation (3.73) have positive values, which contribute to the presence of this
time lag signal. On the other hand, Cor(yn(2), yn−k(1)) shows a small peak created by
this peak and periodic signals, but the correlation is close to zero.

The amplitude spectrum shows a decrease in amplitude as we move to higher frequen-
cies. However, there is a local increase at around 0.1 Hz, corresponding to the increase in
power of the periodic signal. In the phase spectrum, we observe significant phase shifts
at higher frequencies, which is likely due to the time lag indicated by Cor(yn(1), yn−k(2))

in Figure 3.7. The coherence also exhibits a pattern similar to that of the amplitude
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Figure 3.7: Cross-correlation function calculated from the VAR
coefficient matrix. The diagonal panels are the autocorrelation functions.
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spectrum, but the maximum value is around 0.2, indicating that the realizations do not
show a similar behavior.
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Figure 3.8: Amplitude and phase spectrum calculated from the VAR
coefficient matrix. The power spectra are shown in the diagonal panels.
The panel above the diagonal is the amplitude spectrum and the one
below the diagonal is the phase spectrum.

Using these functions, we can examine the power contributions and relative power
contributions (Equation (3.72)). For yn(1), we can see that most of the variations can
be explained by yn(1), and yn(2) has some contribution, particularly at low frequencies.
Similarly, for yn(2), most of the variations are attributed to yn(2), while yn(1) has a
minor contribution. In the frequency band where yn(1) exhibits a periodic signal, yn(1)
contributes to yn(2) although it is relatively small.

These functions reveal that yn(1) and yn(2) exhibit largely independent variations,
the periodic signal originating from yn(1) has a weak correlation, and there is a weak
time lag from yn(2) to yn(1). This example shows the potential of the VAR model for
understanding the relationships among different components of a system.
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Figure 3.9: Coherence calculated from the VAR coefficient matrix. The
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.
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3.4 State-Space Model
The state-space model is a time series model that represents an observed data using
two equations: the system equation and the observation equation. The system equation
models the transition process of latent variables, while the observation equation models
the observation process of these variables. The algorithm for likelihood estimation of the
model differs depending on whether the equations are linear or nonlinear, and whether
all probability distributions follow Gaussian or not. When the equations are linear and
the probability distributions are Gaussian, it is referred to as the Linear Gaussian State-
Space Model (LGSSM), which is most often used in time series modeling. This is because
it allows efficient filtering, prediction, and likelihood calculation using the Kalman filter
algorithm. In this chapter, we explain the concepts separately for linear and nonlinear
state-space models.

3.4.1 Linear Gaussian State-Space Model
We start with the Linear Gaussian State-Space Model (LGSSM), where the equations
are linear, and the variables follow Gaussian distributions. Let xn be a k-dimensional
vector, which is called the state (or latent) variable, and yn represent a `-dimensional
vector at time n, which is called the observation variable. The LGSSM is expressed as
follows:

xn = Fxn−1 +Gvn

yn = Hxn + wn

(3.75)

Here, vn represents the system noise, which is an m-dimensional vector of the Gaussian
white noise with a mean of 0 and a covariance matrix of Qn. wn is the observation noise,
which is an `-dimensional vector. The matrices F , G, and H have dimensions k × k,
k×m, and `×k, respectively. F and H are called a transition matrix and an observation
matrix.

3.4.1.1 Kalman Filter

All variables in LGSSM become Gaussian distributions because the noise follows Gaus-
sian and the equations are linear. Using the Kalman filter algorithm, it is possible to
perform sequential state estimation and prediction, along with simultaneous likelihood
estimation. The Kalman filter estimates the simultaneous joint distribution of all ob-
served data and states by repeating filtering and prediction for each observation. The
process of estimating the state is called filtering. This corresponds to estimating the con-
ditional probability distribution p(xn|yn). Prediction involves determining the state one
time step ahead, xn+1, given the observation yn at time n, which is essentially estimating
p(xn+1|yn).
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We give an overview of the algorithm for estimating the probability. Hereafter, the
conditional expectation of a certain variable X is denoted as:

Xn|j ≡ E[Xn|yj]. (3.76)

Let xn|j and Vn|j represent the conditional mean and conditional covariance matrix
of the state when the observation yj is given. The one-step-ahead prediction of these
variables can be calculated as follows:

xn|n−1 = Fnxn−1|n−1 (3.77)
Vn|n−1 = FnVn|n−1F

T
n +GnQnG

T
n . (3.78)

In the filtering step, the following calculations are performed to estimate the proba-
bility distribution of the state at time n when an observation is obtained:

Kn = Vn|n−1H
T
n (HnVn|n−1H

T
n +Rn)

−1 (3.79)
xn|n = xn|n−1 +Kn(yn −Hnxn|n−1) (3.80)
Vn|n = (I −KnHn)Vn|n−1 (3.81)

Here, Kn is called the Kalman gain, which serves as a coefficient to adjust the discrepancy
between prediction and observation. It plays the role of weighting when correcting the
prediction based on the observation.

Smoothing is the process of estimating the past states when all observations Yn =

{y1, . . . , yN} are obtained. Since the estimation is performed using all observations, the
variability is reduced, and the errors are minimized. This is why it is called smoothing.
In this process, the results of the Kalman filter are used, and the following calculations
are performed:

An = Vt|tF
T
t+1V

−1
t+1|t (3.82)

xn|N = xn|n + An(xn+1|n − xn+1|n) (3.83)
Vn|N = Vn|n + An(Vn+1|N − Vn+1|n)A

T
n . (3.84)

From these equations, it can be observed that smoothing involves estimating xN |N and
VN |N using the Kalman filter for the final observation and then using these estimates to
infer xN−1|N and VN−1|N . This process is repeated in reverse chronological order from
time N to 1, thus smoothing.

Let’s see an example of filtered and smoothed states with synthetic data (Figure 3.11).
The filtered state exhibits more fluctuations with a wide confidence interval than the
smoothed state. This confirms that obtaining all observation data improves the accuracy
of estimating past states.

In the Kalman filter algorithm, it is possible to perform a prediction even when obser-
vations are missing. This process can be considered as missing value interpolation when
intermediate observations are absent, and as long-term forecasting when predictions are
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Figure 3.11: Example of synthetic data and its filtering and smoothing.
Synthetic data are generated using a random walk with system noise and
observation noise variances of 1 and 5, respectively. In the state-space
representation of the random walk, we used F = [1], G = [1], and
H = [1] in Equation (3.75). The observed data are represented by the
black points. The true state time series is denoted by the red curve. The
95% interval of the distributions for filtering and smoothing states are
shown by the blue and orange areas, respectively.

iteratively made for future time points. Observations of missing data are quite common
in astronomy. The state estimation for LGSSM with the Kalman filter is well suited due
to its ability to handle missing values and perform long-term predictions in a natural
way.

3.4.1.2 State-Space Form of AR model

Up until now, we have discussed state estimation in the general form of LGSSM. Now,
let’s consider a specific example of the state-space representation of an AR model. By
extending this representation, we can obtain the state-space representation of a VAR
model. In this research, we often assume that the system equation follows an AR or
VAR model for its flexibility. The state and likelihood calculations are computed using
the representation introduced here.

Consider the state-space representation of an AR model. By defining F , G, H, and
xn as follows:

F =


a1 a2 · · · ak
1

. . .
1 0

 , G =


1

0
...
0

 , H =
[
1 0 · · · 0

]
, xn =


yn−1

yn−2

...
yn−m−1

 . (3.85)

We can confirm that they become equivalent equations to the original AR model. There
are efficient methods to approximately estimate the maximum likelihood values of the AR
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model, which require less computational effort compared to state-space models. Thus,
the LGSSM of the AR model should be used when precise likelihood estimation is needed
or tasks such as missing value interpolation and long-term forecasting are required. In
the former cases, it is important to use appropriate parameters as the initial values for
the Kalman filtering.

The state-space model representation of the VAR model can be obtained by replacing
the coefficients ai of the AR model with the matrices Ai as

F =


A1 A2 · · · Ak

I
. . .

I 0

 , G =



1
...
1

0
...
0


, H =

[
1 · · · 1 0 · · · 0

]
xn =


yn−1

yn−2

...
yn−m−1

 , (3.86)

where I is the identity matrix. It should be noted that yn is the vector variable. An
efficient method exists to approximately estimate the maximum likelihood for the VAR
model, which can be used for deriving the initial values for Kalman filtering when needed,
similar to the AR model.

3.4.1.3 Dynamic Factor Model

The dynamic factor model is a model that represents observations using fewer latent
variables than the number of observed variables. It can be interpreted as a time series
version of factor analysis. As we show later in this thesis, this modeling approach is
highly relevant in astronomy. In astronomy, flux variation, or light curve, is measured at
many different energy bands. They form a multivariate time series in the form of vectors.
They are the superposition of the flux of different physical spectral components. If the
number of observed energy bands is larger than the number of the spectral components,
the dynamic factor model can be utilized. By modeling this way, the states correspond
to the light curves of individual spectral components.

Similar to the factor analysis, the dynamic factor model suffers from the issue of
rotational indeterminacy, which requires processing in a context somewhat closer to the
factor analysis than the state-space models. In the factor analysis, the observation model
in the state-space model is a model of how observations are changed by states over time.
When the assumption is made that the probability variables are non-time-varying, it is
expressed as a factor analysis model:y(1)y(2)

y(3)

 =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

x(1)x(2)

x(3)

+

w(1)w(2)

w(3)

 (3.87)

This is essentially the equation for factor analysis. The transformation by an arbitrary
regular matrix corresponds to the rotation of the factor axes, and the same rotation
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methods used in factor analysis can be applied here.
In the Gaussian linear state-space model, there is also flexibility in scaling. This arises

from the assumption that both the observation and the system models are affected by
Gaussian noise with scaling-free covariance. In practice, we need to impose constraints
to ensure that the model remains identifiable.

Similar to the factor analysis, the dynamic factor model has rotational indeterminacy.
By multiplying with a regular M from left to the system, we can perform the following
transformation:

Mxn = MFxn−1 +Mvn (3.88)
Mxn = MFM−1Hxn−1 +Mvn (3.89)

x′
n = M ′x′

n−1 + v′n (3.90)

where x′
n = Mxn, w′

n = Mwn. Also, by multiplying M by the observation equation, we
obtain

yn = HM−1Mxn + wn (3.91)
yn = H ′x′

n + wn (3.92)

where A′ = HM−1. These transformations show that the equivalent LGSSM can be
defined using M as the original. In practice, in order to reduce the degrees of freedom
due to rotational indeterminacy, one may assume, for example, a lower triangular matrix
with diagonal elements of 1 for H during estimation. After estimation, interpretations
can be made by introducing any arbitrary rotation matrices.

3.4.2 Other State-Space Models
We use the linear Gaussian models for the state-space model in this thesis, but for
the sake of completeness and future outlook, we briefly touch upon more generalized
state-space models.

Linear Non-Gaussian State-Space Models We have outlined state estimation us-
ing the Kalman filter algorithm, assuming that all probability distributions follow Gaus-
sian distributions. However, it is possible to consider linear state-space models where the
probability variables do not follow Gaussian distributions. In such cases, the model is
referred to as a linear non-Gaussian state-space Model. Although the Kalman filter is no
longer applicable to this model, an alternative algorithm called the “Extended Kalman
filter” has been proposed, which estimates the approximated distributions. However, it
is used in limited cases, including low-dimensional variations.
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Non-Linear Non-Gaussian State-Space Models The non-linear non-Gaussian state-
space model for the time series yn is expressed as (Kitagawa and Gersch, 1996):

xn = F (xn−1, vn)

yn = H(xn−1, wn).
(3.93)

Here, xn and yn represent the state and observed variables, respectively. vn and wn are
white noise following density functions q(v) and r(w), respectively. This formulation
encompasses the linear Gaussian state-space model, as defined in Equation (3.75), as a
special case. In the linear Gaussian case, F (xn−1, vn) = Fxn−1+Gvn and H(xn−1, wn) =

Hxn + wn.

Generarized State-Space Model A more general form of the state-space model is
known as the generalized state-space model, defined by the following equations (Kitagawa
and Gersch, 1996):

xn ∼ Q( · |xn−1)

yn ∼ R( · |xn).
(3.94)

In these equations, Q and R represent the conditional distribution functions for the
states xn−1 and xn, respectively. This form becomes particularly valuable when dealing
with discrete states or when observed values follow a binomial or Poisson distribution.

As an illustration, let’s examine a scenario where observed values are obtained as
counts and need to be modeled using the Poisson distribution. One common model
takes the following structure:

xn = Fxn−1 +Gvn, vn ∼ N (0, Q)

αn = Hxn

yn ∼ exp (α′
nyn − b(α) + c(yn)),

(3.95)

Here, F , G, and H denote arbitrary matrices, and Q is the covariance matrix. The
functions b(·) and c(·) are arbitrary functions. The distribution of yn follows the general
form of the exponential family, encompassing the Poisson distribution and multinomial
distribution (e.g. West and J. Harrison, 1989).



51

Chapter 4

X-ray Variability of BHBs
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4.1 Overview of BHBs

4.1.1 Observational Features
Four major observational features distinguish BHBs from other celestial sources: their
transient nature, the X-ray spectrum, short-term variability, and the hardness-intensity
ratio. These characteristics of BHBs are summarized in Remillard and McClintock
(2006). We briefly review each of them below.

Transient nature BHBs are distinctively classified into two classes based on the mass
of the companion star: high-mass BHBs when the companion star is larger than ≈ 3M�

and low-mass BHBs when it is smaller than ≈ 3M�.
In high-mass BHBs, there is a constant mass loss from the companion star via stellar

winds, a part of which is captured by the gravitational potential of the black hole. This
results in steady mass accretion. In low-mass BHBs, matter from the surface of the
companion star filling the Roche lobe accretes through a Lagrangian point. The mass
accretion rate changes and the state of the accretion disk changes. The state changes
abruptly, and the X-ray luminosity increases suddenly. In this manner, low-mass BHBs
are often discovered as a transient X-ray source. Most BHBs are of the low-mass type,
and those of the high-mass BHBs are rare (e.g., Cygnus X-1, LMC X-1, and LMC X-3).
The subject of our study, MAXI J1820+070 falls in the category of low-mass BHBs.

X-ray spectra The X-ray spectra of BHBs consist of two major components: a ther-
mal component described by a multi-temperature blackbody and a non-thermal com-
ponent represented by a power-law distribution. The non-thermal component usually
extends to high energies, sometimes with and without a cutoff energy. The characteristic
temperature of the thermal component is ∼1 keV and it does not typically extend to
higher energies. Some BHBs also show the Fe Kα emission line in the 6–7 keV range.
The relative strength of these components changes depending on the states of the BHBs.

Power spectrum Short-term flux variability is also a characteristic feature of BHBs.
The variability exhibits a unique pattern in the power spectra. Many BHBs are known
to have significant power in a specific frequency range known as the quasi-periodic
oscillations (QPOs), typically falling between 0.01–450 Hz. These patterns are ana-
lyzed using a Lorentzian (Cauchy) distribution, with the coherence parameter defined
as Q = ν/FWHM, where ν is the frequency and FWHM is the full width at the half
maximum (Remillard and McClintock, 2006). Empirically, there is a known relationship
between the coherence parameter and the state of the BHB. QPOs are classified into
three types; Type A, B, and C, based on the presence of shifts and the leading energy
band (van der Klis, 2006; Remillard and McClintock, 2006).

Hardness Intensity Diagram The Hardness Intensity Diagram (HID) is a plot that
shows the flux intensity and the flux ratio of two bands called the hardness ratio (HR).
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Figure 4.1: Schematics of hardness intensity diagram of BHBs (Figure
taken from Remillard and McClintock, 2006)

This diagram is useful for tracking state changes in a system. For BHBs, the HID follows
a distinctive cyclic pattern, as shown in Figure 4.1 (Remillard and McClintock, 2006).
The relative positions of the hard and soft states are generally well-known in BHBs,
with a higher HR indicating the hard state and a lower HR indicating the soft state.
The typical evolution process in the HID transition for BHBs can be summarized as
follows: immediately after an outburst, BHBs exhibit characteristics of the hard state.
During this phase, the HR remains relatively constant and the intensity sharply increases,
causing the HID to move almost vertically upward from the bottom right. After reaching
the peak of the outburst, there is a gradual decrease in HR, resulting in a shift to the
left. Once in the soft state, the intensity gradually decreases, leading to a nearly vertical
downward shift from the top left. However, as the decay progresses, BHBs may return
from the soft state to the hard state, resulting in an increase in HR and a rightward
shift. The intensity continues to decrease, eventually returning to the quiescent state.
Although there may be subtle differences depending on the energy bands, BHBs are
generally known to undergo such cycles (Remillard and McClintock, 2006).

4.1.2 Definition of States
BHBs undergo abrupt changes in observational characteristics. A set of characteristics
defines a state. Two major states are the low hard state and the high soft state. These
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terms were coined based on the flux and spectral hardness, but some other features
accompany them as described below. There are several additional states.

Soft State In the soft (thermal; Remillard and McClintock, 2006) state, the energy
spectrum is characterized by a dominance of radiation in the soft X-ray band, as the name
suggests. The spectrum is primarily composed of a thermal component from a multi-
temperature blackbody from the accretion disk, with a presence of a weak non-thermal
component. In Figure 4.2, the soft (thermal) state of low-mass BHB GRO J1655− 40 is
illustrated in the middle section. Up to 10 keV, the accretion disk component dominates,
and beyond that, radiation from a weak non-thermal component becomes visible. The
power spectrum in the soft state does not show particularly distinctive features, and
QPOs may be either absent or very weak (see the middle left panel).

Hard State In the hard state, the energy spectrum stands out for its substantial flux
extending to high energies, which is in sharp contrast to the soft state. The majority
of the flux is in the form of a power-law distribution (with an index of ∼ 1.7), and
a weak disk component is introduced to explain the subdominant emission in the soft
energy band. The power spectrum displays a frequency break, indicating a characteristic
time scale of variations, and QPOs are frequently observed. In Figure 4.2, the energy
spectrum and the power spectrum of GRO J1655− 40 in the hard state are depicted in
the lower section. The energy spectrum is modeled with a non-thermal component, a
weak thermal component, and a Fe emission line. The power spectrum shows a break at
1 Hz, representing a typical time scale of 1 s, while a dominant QPO is evident around
5.0 Hz.

Other States In addition to the two states above, BHBs showcase several other states.
These encompass a notably dim quiescence state, intermediate state during the transition
between hard and soft states, the very high state featuring similar flux from both disk and
non-thermal components, and the steep power-law state characterized by a significant
increase in the power-law index of the energy spectrum. For more in-depth information
on these states, refer to Remillard and McClintock (2006).
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Figure 4.2: Energy spectra and power spectra of GRO J1655− 40 in
different states. (Figure taken from (Remillard and McClintock, 2006))



56 Chapter 4. X-ray Variability of BHBs

4.2 Time Lags
Among various observational tools, the time lags between two spectral components are
keys to understanding the accretion geometry of BHBs. We summarize some of the
findings from the past (§ 4.2.1), point out the inherent difficulties of time lag analysis in
traditional light curve analysis (§ 4.2.2), and argue for the need to introduce the latent
variable (§ 4.2.3).

4.2.1 Observed Lags
4.2.1.1 Hard Lag

The hard lag, observed when signals in the hard band lag behind those in the soft band,
is a common feature in the hard state of most BHBs (Uttley et al., 2014). These signals
have been studied using both cross-correlation functions and phase-lag spectra, with
timescales typically ranging from subseconds to seconds. While the presence of hard
lags was initially suggested by the asymmetry in cross-correlation functions between the
hard and soft bands (e.g., Brinkman et al., 1974), evaluating them was challenging due
to the autocorrelation function of a dominant component in both bands.

Subsequently, quantitative estimation became possible by analyzing frequency-specific
phase-lag spectra, a method introduced by studies such as van der Klis et al. (1987) and
Miyamoto et al. (1988). Consequently, phase-lag spectra became a primary tool for the
time lag analysis. However, given multiple components contributing to the observed flux
in an energy band, careful consideration is necessary to determine whether the values in
the phase-lag spectrum accurately represent the lag amplitude of the desired signal.

As for the physical origins of the hard lag signal, it is too long for a light propagation
time across a BHB system as the lag amplitudes range from submilliseconds to a few
seconds. It is more likely associated with the time for matters to move within the
accretion disk (Kotov et al., 2001; Arévalo and Uttley, 2006). The observed variations
in the amplitude of the hard lag signal hint at some temporal changes in the structure
of the accretion disk.

4.2.1.2 Soft Lag

The soft lag is a time lag signal where the soft band emission lags behind the hard band
emission. The pioneering work of Uttley et al. (2011) first reported a soft lag in BHBs.
They investigated delays in different energy bands using the phase-lag spectrum of cross-
spectra, referred to as the phase-lag energy spectrum. The findings indicated that the
soft band consistently lags behind other bands on a millisecond scale (Figure 4.3). Soft
lags are also recognized as common characteristics in the hard states of BHBs

In the work by Uttley et al. (2011), they associated the soft lag signal with thermal
reverberation due to Comptonization, a process that heats the disk. The lag amplitude
was explained as the light-crossing time.
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Figure 4.3: Phase-lag energy spectra of GX 339− 4 with different
frequency ranges. The insets are covariance spectra of the same
frequency ranges. Figure taken from Uttley et al. (2011) .

4.2.1.3 Iron K Lag

The iron K lag in BHBs was first identified using data from the NICER observation of
the hard state of MAXI J1820 + 070 (Kara et al., 2019). Figure 4.4 illustrates positive
values around the energy of the iron K line, approximately 6.4 keV.

4.2.2 Spectral Dilution
4.2.2.1 Definition of Spectral Dilution

The time lag analysis is to derive the time lag in the time correlation between two light
curves of different energy bands. Each band contains emission from the same spectral
component to varying degrees. In the X-ray light curves of BHBs, it is often the case that
a single spectral component dominates the emission in both energy bands. Figure 4.5
is an example of the multiband light curve of the BHB MAXI J1820 + 070. X-ray
light curves of three energy bands (0.5–2.0, 2.0–5.0, and 5.0–10.0 keV) are shown. It
can be seen that there is a common dominant signal in all bands. As a result, the
cross-correlation functions for all combinations of these bands are dominated by the
autocorrelation of the dominant signal (Figure 4.6).

As the cross-correlation function is heavily influenced by the dominant signal, delving
into detailed time lag analyses is challenging. Consequently, the analysis of time lags in
BHBs has predominantly shifted toward the use of cross spectra, specifically the phase
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Figure 4.4: Phase-lag energy spectra of MAXI J1820 + 070 under various
periods. Further details can be found in Kara et al. (2019). Figure taken
from Kara et al. (2019). .

250
500
750

yt(1): 5.0-10.0 keV

2500

5000

co
un

t r
at

e yt(2): 2.0-5.0 keV

0 10 20 30 40 50
time (s)

10000

20000

30000 yt(3): 0.5-2.0 keV

Figure 4.5: multiband light curve of BHB MAXI J1820 + 070. The
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spectra derived from them. The phase shift can be converted into the time shift or the
lag amplitude, by multiplying the phase spectra by (2πf)−1 for each frequency f . In
simpler terms,

τjk(f) =
1

2πf
φjk(f) (4.1)

Here, τjk(f) is the phase lag spectrum between the band j and k.
This metric suffers the spectral dilution. Consider two observed light curves, yn(1)

and yn(2), in the energy band 1 and 2, which can be expressed as

yn(1) = xn

yn(2) = c1xn + c2xn−k

(4.2)

Here, we assume that the band 1 light curve is purely made of the spectral component
x and the band 2 light curve includes both x and the time-lagged signal of x with the
lag amplitude of k. This is the situation common in X-ray light curves of BHBs as in
Figure 4.5. The phase lag spectrum is given by:

τ12(f) =
1

2πf
arctan

(
(c2/c1) sin 2πfk

1 + (c2/c1) cos 2πfk

)
(4.3)

When the contribution of the second term of yn(2) is dominant (c2/c1 � 1), τ12(f) = k.
When the contribution of the first term is dominant (c2/c1 � 1) in the band 2, τ12(f) = 0.
In reality, c2/c1 is in between, which means that τ12(f) is always smaller than k. At the
f → 0 limit,

lim
f→0

τ12(f) =
c2

c1 + c2
k (4.4)

This is the spectral dilution. The derived time lag τ12 cannot be used as a measure of
the actual time lag k (Poutanen, 2002; Uttley et al., 2014).

4.2.2.2 Workarounds

Some workarounds are used to address the spectral dilution. One is the zero crossing
time and the other is the differential cross-correlation function.

Zero-Crossing Time Figure 4.7 illustrates the result of calculations with specific
numbers in Equation (4.3) (Uttley et al., 2014). Here, the ratio is denoted as R = c2/c1.
The left panel shows the relation between τ12(f) and f for selected R. As expected,
τ12(f → 0) decreases as R decreases. Also, τ12(f) oscillates as a function of f . However,
the frequency at which the lag first crosses the zero does not depend on the value of R
and coincides with 1/2k. This occurs because the frequency at which the numerator of
Equation (4.3) first becomes zero (zero-crossing point) is given by

2πfk = π

f =
1

2k

(4.5)
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In the right panel of Figure 4.7, the time lag is represented by τ0. It is confirmed that,
regardless of the value of R, the zero-crossing point is at 1/(2τ0). This is used to avoid
the spectral dilution in some studies (e.g., Mizumoto et al., 2019; De Marco et al., 2021).

Figure 4.7: Theoretical phase-lag spectra with different situations. Left:
the blue, red, and green curves represent spectra with R ≡ c2/c1 values
of 0.5, 1.0, and 1.5, respectively, given an original time lag of 1000 s.
Right: the red curve corresponds to R = 1000 s with a time lag of 1000s,
and the blue curve corresponds to R = 500 s with a time lag of 500s.
Despite their different original time lag amplitudes, the computed
spectra are identical in the low-frequency range due to dilution. Figure
taken from Uttley et al. (2014).

Differential Cross-Correlation Function Another approach is to stick to the cross-
correlation function but use its asymmetry, which is noticeable in Figure 4.6. This is
developed by Omama et al. (2023). The asymmetry in the cross-correlation function is
likely a result of combining the autocorrelation function of the dominant signal plus the
cross-correlation function of the time lag signal. Given the symmetry of the autocor-
relation function, we can indirectly assess the cross-correlation function of the time lag
signal by subtracting the negative lag from the positive lag correlation function, which is
called the differential cross-correlation function. The method revealed the estimated time
lag amplitude for the hard lag signal, ranging from sub-milliseconds to several seconds
(Figure 4.8).

4.2.3 Need for Latent Variable
The time lag analysis so far replies on the correlation between X-ray light curves of
two energy bands (§ 4.2). Each band has varying contributions of physical components.
Therefore, the spectral dilution (§ 4.2.2) is an inherent problem that cannot be avoided
whatever tools are used in the time and frequency domains. Some workarounds were
proposed, but both of them reveal the actual time lag only as a subtle feature.

What we need to know is the variation of each spectral component, not the X-ray flux
in an energy band. We cannot directly derive the variation of each spectral component
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Figure 4.8: Cross-correlation function and differential cross-correlation
function of MAXI J1820 + 070. Soft and hard bands are 0.5–1.0 keV and
1.0–10.0 keV. Figure taken from Omama et al. (2023).

from X-ray light curves. But what if we can estimate them indirectly, as in Figure 1.4?
This is exactly the assumption of the state-space model. The state-space model, a
statistical framework considering both observed and latent variables, offers a promising
avenue to estimate the variability of the physical components from the observed light
curves. In this study, we embark on a novel analysis using this approach.
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5.1 Observing Facility: NICER

5.1.1 Mission & Operation
The Neutron Star Interior Composition Explorer (NICER; Gendreau et al., 2016) is an
X-ray observing instrument led by NASA Goddard Space Flight Center. It was launched
on July 3, 2017, and was installed in the International Space Station (ISS). NICER’s
primary scientific goal is to elucidate the internal structure and physics of neutron stars
by capturing their fast-timing behaviors. For this purpose, it realizes a high timing
resolution and a large effective area, as well as a moderate spectral resolution.

Despite the specific mission goal, NICER’s unique capabilities are useful for a much
wider range of astrophysical applications that require simultaneous analysis of both
energy spectra and timing features. In particular, time-resolved spectra uncompromised
by the photon statistics and the detector dynamic range have been unavailable with
preceding instruments with a similar concept, such as the Rossi X-ray Timing Explorer.

Figure 5.1 shows a schematic view of NICER. NICER’s observing strategy is to track
3-6 targets during a ∼91 minute orbit of the ISS. The observation continues until it
deviates from effective conditions, influenced by factors like the sun’s position and the
ISS’s attitude. Once the conditions are met again, the operation resumes tracking new
targets. This results in high-cadence observations of a target with a short duration
per observation. NICER’s unique aspect is its installation on the ISS, allowing for
fast pointing and immediate observations of unexpected celestial events. The target
command list is typically created twice a week to plan observations for dozens of celestial
objects. When a transient source appears, the Target of Opportunity observation is
activated, and new command sequence is swiftly updated and uploaded to NICER for
immediate observations. If the staff is present, observations begin within 4 hours upon
request (NICER Mission Guide 2023).

5.1.2 Instrument
The primary observing instrument onboard NICER is the X-ray Timing Instrument
(XTI). To achieve the NICER’s scientific objectives, XTI has the following features.

• Large effective area: 1900 cm2 at 1.5 keV (Figure 5.2)
• Broad bandpass: 0.2 < E < 12.0 keV
• Time-tagging resolution: < 300 ns
• Moderate spectral resolution: 6 < E/∆E < 80 from 0.5 keV to 8 keV
• Restricted field of view: 30 arcmin2

The XTI is made up of 56 sets of the X-ray Concentrator (XRC; Okajima et al.,
2016) and the Silicon Drift Detector (SDD). Incoming X-rays are reflected by the XRC
mirrors and collected by the SSD in the Focal Plane Module (FPM) located on XTI’s
backplane. Each FPM consists of an SDD, a pre-amplifier, and a housing. These FPMs
are designed with a 2 mm aperture, allowing them to transmit X-rays from celestial
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Figure 5.1: Schematic view of NICER (Okajima et al., 2016).

Figure 5.2: Effective area of NICER compared to the pn-type CCD
camera onboard XMM-NewtonNICER Mission Overview 2023
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sources while reducing the influence of background radiation. This design also aims to
improve timing performance.

In SDD (Prigozhin et al., 2016), the cathode electrodes are arranged in an onion-like
shape, making the electric field in the radial direction. The electrons are generated in
the X-ray photoelectric absorption with Si, which move along the radial gradient of the
electric field and are collected by the anode electrode at the center. The amount of
charge is proportional to the incoming energy, thus it works as an X-ray spectrometer.
The detector also features a low noise by small capacitance and low leak current, which
results in fast time of event discrimination, enabling high-time resolution.

The 56 FPMs are divided into seven groups, and each group containing eight FPMs.
Electrical control and data readout for each group are managed by a single Measurement
and Power Unit (MPU). Each FPM is assigned a unique Science Detector ID based on
its sequential number within its group and the sequential number of the corresponding
MPU (Figure 5.3). In data analysis, events are recorded and stored separately for each
of these seven MPUs. Among them, four FPMs (11, 20, 22, and 60) are dysfunctional
and are not used.

Figure 5.3: Detector layout of NICER. Figure from NICER Mission
Guide (2023)

5.1.3 Data Processing
5.1.3.1 Onboard Processing

MPU is responsible for the onboard signal processing. For each detected X-ray as an
analog electrical signal, its pulse is shaped with two different time constants, referred
to as the “slow” and “fast” chains. The “slow” chain has a peak time of 465 ns and is
optimized for energy measurement. On the other hand, the “fast” chain has a peak time
of 85 ns and is optimized for timing measurements. When both fast and slow chains
detect an event, the time stamp of the fast chain is used. However, the fast chain has a
lower signal-to-noise ratio than the slow chain and cannot reliably detect lower energy
events (≤ 1.0 keV). In such cases, the time stamp of the slow chain is utilized (Prigozhin
et al., 2016). This switching of time stamp usage enhances the overall timing accuracy
of the X-ray Timing Instrument (XTI), ensuring excellent timing precision.
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5.1.3.2 Ground Processing

After receiving the data from the ISS, the data are processed through the pipeline on the
ground. Event data from the X-ray Timing Instrument (XTI) are typically processed
through three main levels:

1. Unfiltered File(UF): These are the raw data detected by XTI and are organized
into seven groups, one for each MPU. The term uf is contained in the file name of
this stage. Although these files contain events distributed over seven MPUs, they
are not suitable for scientific analysis. Note that in the UF file, the pulse heights
are stored in PHA and PHA_FAST of the EVENTS extension, but these values are not
corrected for different energy gains for each MPU.

2. Calibrated Unfiltered File (UFA): The events from the UF are merged, and
an energy calibration is applied. The term ufa is contained in the file name of this
stage. These files still contain particle and background events and are not used for
scientific analysis. However, they can be use to set observatory parameters such
as dead time and high background intervals.

3. Cleaned Events (CL): In this stage, events relevant to the appropriate energy
range for NICER analysis are extracted and processing steps, such as the removal
of background and particle events, are performed. The term cl is contained in the
file name of this stage.

For actual scientific analysis, it is recommended to use data processed with the
NICER Level 2 (NICERL2) pipeline. NICERL2 is a task within the NICER Data Anal-
ysis Software (NICERDAS) designed specifically for NICER data analysis. It applies the
latest pipeline processes to the data. The key difference between archived CL files and
NICERL2-processed data is that CL files undergo standard filtering processing defined at
the start of the mission, whereas NICERL2 processes the data with the latest pipeline
algorithms and calibration database. Therefore, data processed with different versions
of NICERL2 may exhibit subtle differences.
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5.2 Target: MAXI J1820+070

5.2.1 Observational Properties
MAXIJ1820+070 is a transient low-mass BHB discovered in March 2018 using MAXI(Kawa-
muro et al., 2018). Initially observed in the hard state, it stayed in this state for about
100 days before transitioning to the soft state. This long period in the hard state made
MAXI J1820+ 070 an excellent candidate for studying BHBs in the hard state. Its out-
standing properties, summarized in Table 5.1, made it an ideal source for BHB studies.
At its brightest, it reached up to 4 Crab in the 2–6 keV energy range (Shidatsu et al.,
2018). The estimated distance is 2.96± 0.33 kpc based on the radio parallax, consistent
with the optical parallax (3.46+2.18

−1.03 kpc; Gandhi et al., 2019). This proximity results in a
low galactic absorption (NH ∼ 10−21 cm−2; Uttley et al., 2018), which facilitates studies
in the low X-ray energy band. The inclination, estimated at 66–81 based on the projected
rotational velocity of the donor star, also constrains the donor-to-black hole mass ratio
to 0.072± 0.012. These values lead to a black hole mass estimate of 5.73–8.34M� and a
donor star mass estimate of 0.28–0.77M�. Due to these favorable conditions, intensive
observations were made using a suite of X-ray telescopes with MAXI (Matsuoka et al.,
2009), NICER (Gendreau et al., 2012), Swift Niel Gehrels Observatory (Burrows et al.,
2005), NuSTAR (F. A. Harrison et al., 2013), as well as those in other wavelengths.

Table 5.1: Observed properties of MAXI J1820+070.

Parameter Value Unit Method Reference
Distance 2.96± 0.33 kpc Radio parallax Atri et al., 2020
Galactic absorption 1.5× 1021 cm−2 X-ray spectra Uttley et al., 2018
Mass (Black Hole) 5.73–8.34 M� Doppler measurement of donor Torres et al., 2020
Mass (Donor) 0.28–0.77 M� Doppler measurement of donor Torres et al., 2020
Inclination 66–81 degree Doppler measurement of donor Torres et al., 2020

5.2.2 State Changes
Figure 5.4 shows the X-ray light curve acquired by MAXI in the soft (S(t); 2–6 keV) and
hard (H(t); 6–20 keV) bands, along with the spectral hardness defined as H(t)/S(t) (Shi-
datsu et al., 2019). Figure 5.5 illustrates the HID of the same duration. As explained
in § 4.1, it shows the characteristic state transition pattern of BHBs, moving circularly
counterclockwise from the bottom right. Based on this observed behavior, three funda-
mental states were identified: low/hard state (LS), high/soft state (HS), and intermediate
state (IM) (Done et al., 2007), as indicated in Figure 5.4.

Figure 5.6 illustrates the energy spectra of representative data in the soft and hard
states. In the soft state, the dominant disk component peaks at 2 keV, while it diminishes
in the hard state, where the power-law component takes precedence. These patterns fol-
low typical features of the soft and hard states of BHBs (§ 4.1.2). The periodograms
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Figure 5.4: Light curve and hardness ratio of MAXI J1820 + 070
obtained by MAXI. Figure is taken from (Shidatsu et al., 2019).

Figure 5.5: HID of MAXI J1820 + 070 observed by MAXI. Figure is
taken from (Shidatsu et al., 2019).
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further confirm that the defined states align with the state definition (Figure 5.7). Specif-
ically, in the soft state, there are no distinctive powers across all frequency ranges, while
in the hard state, noticeable power breaks and locally significant QPOs are observed.

Figure 5.6: Energy spectra of MAXI J1820 + 070 in the soft and hard
states. The red and blue curves correspond to the energy spectra of the
soft band and hard bands. Figure taken from (Kalemci et al., 2022)

Figure 5.7: Periodograms of MAXI J1820 + 070 in different states.
Figure is taken from (Kalemci et al., 2022)

5.2.3 Geometry in the Hard State
The geometry of the accretion disk and accretion flow of BHBs is in intense debate. The
most important parameter is the inner radius of the accretion disk, which depends on
the gravitational field of the black hole governed by the general relativity. In the soft
state, it is well established that the inner edge of the accretion disk extends very close to
the innermost stable orbit of the black hole. This is also the case for MAXI J1802+070
(Fabian et al., 2020).
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In the hard state, there are two main competing ideas. In one model, the inner edge
of the accretion disk remains close to the black hole as the soft state. The lamppost
configuration is proposed. This assumes that the source of the X-ray emission is located
just above the rotational axis of the black hole. The X-ray emission from the lamppost
is reprocessed on the surface of the accretion disk, which produces time lags and heavily
distorted Fe K emission lines. This theory is employed to explain some of the observed
features of MAXI J1802+070 (e.g., Kara et al., 2019, Buisson et al., 2019).

The other idea is that the accretion disk is truncated, and the inner radius is far
away from the black hole. From the inner radius of the truncated disk, the matter
accretes in the form of the accretion flow, which is much more tenuous (Esin et al.,
1997). This theory is alternatively employed to explain the same observed features of
MAXI J1802+070 (e.g., Zdziarski et al., 2021; De Marco et al., 2021; Axelsson and
Veledina, 2021; Kawamura et al., 2022; Omama et al., 2023).

For estimating the inner disk radius, the time lag analysis is often used. Two main
features are studied— the soft lag and the Fe K lag. In the soft lag, the soft band emission
is delayed in time in comparison to the emission in the hard band. In the Fe K lag, the
Fe K band emission is delayed from the others. These lags are considered to reflect the
physical distance between the corona and the accretion disk (Uttley et al., 2014; Kalemci
et al., 2022). Although the phase spectrum of the cross-spectrum is commonly used for
the estimation, this method suffers the spectral dilution issue when naively applied (see
§ 4.2.2).

Using the NICER observation data of MAXI J1820 + 070, Kara et al. (2019) found
that the Fe K emission lags behind other bands by a time scale of sub-milliseconds based
on the cross-spectral phase spectrum amplitudes (§ 6.1.3.2) and translated it to be a
distance of ∼ 10rg, where rg is the gravitational radius. Using this and the shape of
the Fe K line emission, they argued for the lamppost geometry with the accretion disk
extending close to the black hole with an inner radius of a few rg (Figure 5.8).

Figure 5.8: Schematics of the lamppost model. Figure is take from Kara
et al., 2019)

In contrast, De Marco et al. (2021) used the cross-spectral timing analysis of the
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same data set. They estimated the time lag amplitude of the soft lag using the zero-
crossing frequency. They found that the lag amplitude is an order of magnitude larger
than the one estimated by Kara et al. (2019), supporting the truncated disk model.
They also observed a decrease in the amplitude of the soft lag signal and interpreted
it as evidence that the inner disk radius is reduced, indicating the development of the
disk. Evidence for a truncated disk is strengthened by results of frequency-resolved
spectroscopy (Axelsson and Veledina, 2021). In this method, the energy spectrum is
compared to sliced energy spectra, called frequency-resolved energy spectra, at various
frequencies. The frequency-resolved energy spectra align well with the truncated disk
model, rather than the lamppost model.

Different conclusions were drawn from the same data set. The data analysis of the
previous studies was all based on the conventional light curve analysis in our definition.
A new approach to data analysis is necessary.

5.2.4 Data Definition
Figure 5.9 shows the X-ray light curve in the soft (0.5–1.0 keV) and hard (1.0–10.0 keV)
bands (S(t) and H(t), respectively) and the spectral hardness is defined as
{H(t)− S(t)} / {H(t) + S(t)} using NICER. The light curve during the first hard state
can be divided into four distinctive phases following De Marco et al. (2021): the rise,
plateau, bright decline, and hard-soft transition phases in chronological order. After the
rapid brightening at the beginning, the flux change was slow with a noticeable break
between MJD 58240 and 58260. The source started a transition to a new state in the
last part after MJD 58280.

In this study, we selected the data taken at an epoch immediately after the outburst
on March 21, 2018, which is indicated by the red line in Figure 5.9. This epoch is
within a typical low hard state with extreme statistics in counts. This dataset was
investigated intensively in many papers (e.g., Kara et al., 2019, Buisson et al., 2019,
De Marco et al., 2021, Zdziarski et al., 2021), thus we can compare results. The NICER
observation sequence number is 1200120106. We now call this dataset “O106” hereafter.
We summarize the observation properties of MAXI J1820 + 070 used for this study in
Table 5.2.

Table 5.2: NICER Observation of MAXI J1820 + 070.

ObsID Date Time (UT) Exposure (s)
1200120106 2018-03-21 09:15:20 5437.54
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Figure 5.9: Entire light curve in the hard state (taken from Omama
et al., 2023). The soft band (a) and hard band (b) are defined as 0.5–1
keV. The red vertical dashed line is the date when O106 data was
obtained.
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6.1 Time Series Data

6.1.1 Generation
We start with the X-ray event list of the O106 data set. Each event has the energy and
arrival time of individual X-ray photons and background, which is almost negligible for
this bright source. From the data, we generated multiple time series data (light curves)
in different energy bands. We need to determine the energy bands, time bin, and data
length for generating the time series.

Energy Band Using the entire duration of the O106 data, we constructed the time-
averaged energy spectrum in Figure 6.1. We fit the spectrum with a phenomenological
model commonly used for BHBs:

1 phabs * (powerlaw + diskbb + gauss + gauss + gauss)

Here, phabs represents the interstellar photoelectric absorption, powerlaw represents
a power-law component for the Comptonized emission, diskbb represents the multi-
temperature disk blackbody emission from the accretion disk, the first gauss represents
a broad excess emission around 0.1 keV, and the remaining two gauss components rep-
resent the broad and narrow components of the Fe Kα line emission. We used the energy
range of 0.7–10 keV and obtained a reasonable fitting result (Table 6.1).

Table 6.1: Reasonable fitting result of the energy spectrum fitting. The
asterisk after the value indicates a frozen parameter. The colors in the
energy spectrum (Figure 6.1) are denoted next to the component names.

Component Parameter Unit Value
phabs nH 1022 0.15*
powerlaw (blue) PhoIndex 1.63

norm 3.77
diskbb (red) Tin keV 0.33

norm 2.06× 10+4

gaussian (green) LineE keV 1.02× 10−7

Sigma keV 0.47
norm 18.0

gaussian (yellow) LineE keV 6.61
Sigma keV 0.56
norm 1.76× 10−2

gaussian (yellow) LineE keV 6.39
Sigma keV 5.09× 10−2

norm 1.58× 10−3

reduced χ2 22.2

Some structures are recognized in the residuals, but this is good enough as the goal
is not to devise a physically-motivated spectral model but to determine the energy band
for light curves. The Comptonized component dominates the entire energy band, but the
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Figure 6.1: Energy spectrum of O106 and the best-fit model (upper
panel) and residuals (lower panel). The different components, including
Comptonization (powerlaw), disk black body (diskbb), soft excess
(gauss), and broad and narrow Fe lines (gauss and gauss), are
represented by the blue, red, green, and yellow curves, respectively. The
residuals are computed by taking the ratio of the observation to the
model.

other two broad components (disk blackbody and soft excess) contribute differently in
different energy bands. The disk blackbody component contributes up to ∼5 keV, while
the soft excess component is only up to ∼2 keV. We thus define three energy bands:
10.0–5.0, 5.0–2.0, and 2.0–0.5 keV.

Time Bin Next, we consider the appropriate bin size of the light curve. We want the
noise to behave close to Gaussian for the convenience of modeling. We set the criterion
to have an average count of ∼ 30 per bin and chose a bin size of 0.1 s. BHBs exhibit
variations over a wide range of time scales with noise. The bin size limits our ability to
investigate the variation above the Nyquist frequency of 5 Hz, but this is much wider
than other data sets thanks to the extreme brightness of the source and the large effective
area of NICER.

Data Length We chose 50 s for the data length, thus the total number of bins is 500.
We can access the frequency down to 1/50=0.02 Hz. When determining the data length
of the multiband light curve to be analyzed, it is necessary to consider the assumptions
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Table 6.2: Band definition used for the AR and VAR model.

Band Name Lower edge (keV) Higher edge (keV) p-value AR order
1 hard 5.0 10.0 0.002 6
2 medium 2.0 5.0 0.005 6
3 soft 0.5 2.0 0.000 7
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Figure 6.2: multiband light curve of O106.

made for the system as well as the computing time. We use 50 s, which we believe is
short enough to ensure that the system remains stationary, which is the premise of the
modeling described below.

We now obtained the three light curve y = [yn(1) yn(2) yn(3)]
T to represent the bands

10.0–5.0, 5.0–2.0, and 2.0–0.5 keV, respectively (Table 6.2). Figure 6.2 shows the light
curves for these three bands. The variability in the three bands is correlated, but some
variations (like the one observed at 45 s) are distinctive in a particular band.

6.1.2 Inspection and Pre-Processing
Stationary Check The approach to time series modeling varies significantly depend-
ing on whether the time series is stationary or non-stationary. Here, we test the station-
arity of the generated multiband light curves using the ADF test (§ 3.3.1). We utilize
statsmodels.tsa.stattools.adfulle1 for the test (Seabold and Perktold, 2010).

For each of the light curves in the three bands, we derived the optimum AR order
that minimizes the AIC. The AR model was constructed and the residuals were tested
with the ADF test. Table 6.2 tabulates the AR order and the p-values of the ADF test.

1https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.adfuller.html

https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.adfuller.html
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A significance level of 5% is considered as the rejection point. As all bands have p-values
below the threshold. We thus conclude that the null hypothesis that the time series is a
unit root AR model is rejected for the three bands.

Normalization The AR and VAR models assume a zero mean for time series. Ad-
ditionally, as shown in Figure 6.2, the count rates vary widely among different energy
bands, which makes the modeling biased. We thus normalizes the individual light curves
so that the mean is 0 and the variance is 1. We hereafter use the normalized light curves.

6.1.3 Description Functions
We characterize the given time series using the sample cross-correlation functions and
sample cross-spectrum before modeling the time series.

6.1.3.1 Sample Cross-Corelation Function

We explore the correlations within each band and among the three bands using the
sample cross-correlation function (Figure 6.3) using Equation (3.40) . For computing
the sample cross-correlation function, we use
scipy.signal.correlate2 and scipy.signal.correlation_lag3 functions (Virtanen
et al., 2020). As often seen in other BHBs, a strong correlation is found at the time
lag = 0 made by the most dominant emission component. As the lag increases, the
correlation decreases. The shape is asymmetrical, though, with the positive lags being
more enhanced than the negative lags, indicating the presence of a hard lag signal. The
correlation of this hard lag signal is particularly evident by comparing Cor(yn(1), yn(3))
and Cor(yn(3), yn(1)).

6.1.3.2 Sample Cross-Spectrum

We next calculate the sample cross-spectrum from the light curve. As explained in
Chapter 3, the cross-spectrum essentially behaves like a power spectrum. Using the
scipy.signal.csd4 function, where the Welch’s method is used, we compute the sample
cross-spectrum for the observations of O106. These observations, comprising 500 data
points, are segmented into 100 points, and we calculate the mean of nine segments with
a 50-point shift.

The periodogram exhibits some characteristics commonly seen in BHBs (Figure 6.4).
The power spectra of BHBs typically have a curvature (Remillard and McClintock, 2006)
with the slope of the powers gradually decreasing with increasing energy. This makes a
difference in different energy bands.

The panels below the diagonal line in Figure 6.5 illustrate the sample phase spectra.
These spectra are mostly close to zero across frequencies, indicating a dominant signal

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlation_

lags.html
4https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.csd.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlation_lags.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlation_lags.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.csd.html
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Figure 6.3: Sample cross-correlation functions of O106. The correlations
between the two out of three light curve data are displayed. The
diagonal panels are autocorrelation functions. A positive correlation
indicates that the y-axis band is delayed compared to the x-axis band.
Note that the panels below the diagonal line are the time-inverted
version of those above the diagonal line, and thus are omitted.
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Figure 6.4: Periodogram of MAXI J1820 + 070.

with zero phase shifts. The spectra above ∼1 Hz are too noisy to interpret. Around
0.1 Hz, there is a slight positive deviation, likely due to the hard lag signal identified in
Figure 6.3. The panels above the diagonal line in Figure 6.5 show the sample amplitude
spectra. They all share a similar shape without notable differences.

The panels below the diagonal line in Figure 6.6 display the sample coherency com-
puted using Equation (3.46). Notably, the coherency between yn(1) and yn(2) is higher at
low frequencies compared to the other two. Although high-frequency coherencies across
all combinations exhibit noise, the decreasing trends appear to be common features.
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(middle), and yn(3) (right). The minimum AIC is subtracted from the
others to emphasize the differences.

6.2 Time Series Modeling I: Classical Approach

6.2.1 AR Model
6.2.1.1 Model Construction

As the classical approach, we start with the AR modeling of the light curve defined in
§ 6.1. Given that the AR model is univariate, this model ignores the correlation between
different bands.

We first define the AR order based on the AIC. As shown in Figure 6.7, the optimum
order for the light curve yn(1), yn(2), and yn(3) is 7, 7, and 8, respectively. For the
optimum order, we derived the AR coefficients based on the least squares method using
the statsmodels.tsa.ar_model.AutoReg5 module.

Figure 6.8 presents the light curves of the observation, the AR model, and the resid-
uals. The success of the AR modeling can be judged by examining that the residual
follows the normal distribution, indicating that all useful information is incorporated
into the modeling. We use the Q–Q plot here (§ 3.1.5).

In the Q–Q plot (Figure 6.9), the quantiles of the standard normal distribution and
the residual time series are compared. The points are distributed along the diagonal, in
particular around 0 line. However, the data away from 0 exhibits some departure. This
shows the limitation of the AR modeling particularly in the low and high count rates.

6.2.1.2 Description Functions

Based on the constructed AR model, we derive the description functions of the univariate
models.

Autocorrelation Function and Partial Autocorrelation Function The autocor-
relation and partial autocorrelation functions are shown in Figure 6.10. In all bands, the

5https://www.statsmodels.org/dev/generated/statsmodels.tsa.ar_model.AutoReg.html

https://www.statsmodels.org/dev/generated/statsmodels.tsa.ar_model.AutoReg.html
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Figure 6.9: Q-Q plot of the residuals from the observation and estimated
values of the AR model.

autocorrelation function decays rapidly and monotonically. The partial autocorrelation
function exhibits a significant correlation around 0.1–0.2 s in all bands, but then rapidly
drops beyond the point.

Power Spectrum We calculated the power spectrum in Figure 6.11. For all three
bands, the power decreases as a function of increasing frequency. Up to ∼1.0 Hz, the
slopes of all bands are similar. Beyond that point, the hard band (yn(1)) shows higher
power than the other bands. This suggests that variation of shorter timescales con-
tributes more to the hard band.

Impulse Response Function The impulse response function provides insight into
the noise impulse that is added at some point. We compute this function using the AR
coefficients (Figure 6.12). The impulse response functions for all energy bands exhibit an
exponential decay. The exponential decay timescales are shorter for the higher energy,
implying that physical phenomena at higher energies settle faster than those at lower
energies.



6.2. Time Series Modeling I: Classical Approach 87

1.0

0.5

0.0

0.5

1.0

ac
f

yn(1) yn(2) yn(3)

0 2 4
1.0

0.5

0.0

0.5

1.0

pa
cf

0 2 4 0 2 4
lag (s)

Figure 6.10: Autocorrelation (top) and partial autocorrelation (bottom)
functions computed from the AR model.

10 1 100

10 1

100

101

sc
al

ed
 p

ow
er

yn(1)

10 1 100

yn(2)

10 1 100

yn(3)

frequency
Figure 6.11: Power spectra computed from the AR coefficients.



88 Chapter 6. Analysis and Results

0 2 4
1.0

0.5

0.0

0.5

1.0

im
pu

lse
 re

sp
on

se

yn(1)

0 2 4

yn(2)

0 2 4

yn(3)

lag (s)

Figure 6.12: Impulse response functions estimated from the AR
coefficients.



6.2. Time Series Modeling I: Classical Approach 89

0 20 40
order

0.0

0.2

0.4

0.6

ai
c 

- a
icm

in

Figure 6.13: Order of the VAR model versus AIC. The lowest AICs are
subtracted from the other ones to emphasize the differences.

6.2.2 VAR Model
6.2.2.1 Model Construction

Up to this point, we used the AR model to model the light curve of O106. The strong
correlation observed among different energy bands in the data requires a multivariate
time series model. To address this, we use the VAR model, which allows us to include
correlation among different energy bands.

We also use the AIC to determine the appropriate order of the VAR model as well as
the AR model (Figure 6.13). The AIC exhibits a monotonically decreasing trend until
the 5th order, after which they start to increase. The behavior is smoother than the AR
model (Figure 6.7), suggesting that the application of the multivariate time series model
is more appropriate for the multiband light curve analysis of BHBs. Based on the AIC,
we selected the 5th-order VAR model.

The VAR model (Figure 6.14) yielded a closer fit to the observed data for all energy
bands in comparison to the AR model (Figure 6.8). As for the AR model, we used
the Q–Q plot to assess the quality of the model by inspecting if the residuals follow a
normal distribution (Figure 6.15). Some systematic deviations from the diagonal line are
noticeable at both ends, but it is improved in comparison to the AR model (Figure 6.9).

6.2.2.2 Description Functions

Based on the constructed VAR model, we derive the description functions of the multi-
variate model.

Cross-Correlation Function We constructed the VAR cross-correlation function cal-
culated from the estimated VAR coefficients (Figure 6.16). In comparison to the sample
cross-correlation (Figure 6.3), the trend is similar but is more smooth, which is the
benefit of the model-based VAR cross-correlation function.
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Figure 6.14: Observed values and VAR model curve with residuals. The
order is the same as Figure 6.8.
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Figure 6.15: QQ-Plot of the residuals from the observation and
estimated values of the VAR model.

Cross-Spectrum We computed the VAR cross-spectrum in Figure 6.17 using the VAR
model, which shows the power spectra in the panels in the diagonal line, the amplitude
spectra in the upper right panels, and the phase spectra in the lower left panels.

In the power spectra, all energy bands show that constant power is up to ∼ 0.1 Hz,
followed by a gradual decline. Excess powers at 2.0 Hz and 4.0 Hz are discernible,
suggesting some periodic signals of these frequencies.

Regarding the amplitude spectra, a similar profile to that of the power spectra was
obtained. Regarding the phase spectrum, which mostly arises from a common dominant
component, it is almost zero in all frequencies for all combinations. Yet, intriguingly, the
phase spectra between yn(1) and yn(2), as well as the one between yn(1) and yn(3), reveal
positive signal around 4.0 Hz, indicating the presence of a phase shift. The positive shifts
suggest a delay on the high-energy side, implying the propagation of the periodic signal
from the low-energy side to the high-energy side. Importantly, this shift is absent in the
phase spectrum between yn(2) and yn(3), implying that the propagation occurs from the
component present in all bands to the one in yn(2) and yn(3).

Using Equation (3.46), coherencies were computed (Figure 6.18). While the coheren-
cies between yn(1) and yn(2), as well as yn(1) and yn(3), follow a similar trend, the latter
consistently shows smaller values. As we move toward higher frequencies, the coherency
tends to decrease with local increases around 2.0 Hz and 4.0 Hz at which periodic signal
was observed in the power spectrum. On the other hand, the coherency between yn(2)

and yn(3) shows a different trend.



92 Chapter 6. Analysis and Results

1.0

0.5

0.0

0.5

1.0 Cor(yn(1), yn k(1)) Cor(yn(2), yn k(1)) Cor(yn(3), yn k(1))

1.0

0.5

0.0

0.5

1.0 Cor(yn(1), yn k(2)) Cor(yn(2), yn k(2)) Cor(yn(3), yn k(2))

0 2 4
1.0

0.5

0.0

0.5

1.0 Cor(yn(1), yn k(3))

0 2 4

Cor(yn(2), yn k(3))

0 2 4

Cor(yn(3), yn k(3))

lag (s)

co
rre

la
tio

n

Figure 6.16: VAR cross-correlation functions. The diagonal panels are
the autocorrelation functions for the energy bands. The blue curves are
the sample cross-correlation functions shown in Figure 6.3.
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band on the x-axis. The blue curves are counterparts computed from the
sample cross-spectra.



94 Chapter 6. Analysis and Results

10 1

100

101

y n
(1

)

yn(1)

0.0

0.5

1.0

y n
(2

)

10 1

100

101
yn(2)

10 2 10 1 100
0.0

0.5

1.0

y n
(3

)

10 2 10 1 100
0.0

0.5

1.0

10 2 10 1 100
10 1

100

101
yn(3)

frequency (Hz)
Figure 6.18: Coherencies computed from the VAR coefficients. The
diagonal panels are power spectra. The blue curves are the periodograms
and coherencies.



6.3. Time Series Modeling II: State-Space Model 95

6.3 Time Series Modeling II: State-Space Model

6.3.1 Definition of Variables
The largest distinction between classical modeling (§ 6.2) and a state-space modeling
is that the observation and state (or latent) variables are separated in the latter. We
thus need to define the state variables as well as the observation variables. Amongst
the state-space modeling, we use the linear Gaussian state-space model (LGSSM). This
requires two things. One is that the noise should behave Gaussian, thus we need to set
the minimum number of counts per bin for generating the time series data. The other is
that the observation variables should be expressed as a linear combination of the state
variables. Therefore, they need to be in the same unit; i.e., counts s−1. If we want to
use physical values of BHBs, such as the black hole mass and the inner radius of the
accretion disk, as state variables, we need to use a ”non-linear” state-space model, which
is out of the scope of this section. We also consider the number of variables; it is often
considered that a robust model is obtained when the number of the observation variables
is larger than the number of the state variables. Considering these points, we define the
observation and state variables below.

Observation Variables As in the classical modeling (§ 6.2), the observation variables
are the light curves of different energy bands. The generated time series (§ 6.1.1) meets
the requirement of &30 counts bin−1 to ensure Gaussian approximation of the noise. In
addition, we want to satisfy that the number of the observation variables is larger than
the state variables. Fortunately, the soft-band light curve is richer in photon statistics
than the hard-band light curve, which drives the bin size. Therefore, we decided to
divide the soft band further into three; i.e., 0.5–1.0, 1.0–1.5, and 1.5–2.0 keV. A total of
five bands are thus defined. The multiband light curves are shown in Figure 6.19.

As we redefined the energy bands and generated new time series data, we repeated
the inspection and pre-processing (§ 6.1.2). We performed a stationarity test using
the ADF test. The p-values and the order of the AR model used for the ADF test,
which minimizes the AIC, are presented in Table 6.3. Although the number of bands is
increased from 3 to 5, the p-values remain below 5 %, resulting in the rejection of the
null hypothesis that the time series follows a unit root AR model for all bands. We also
pre-process the data for normalization to have a mean of 0 and variance of 1 as in the
classical approach.

State Variables As we need to have the same physical units for the observation and
state variables, we use the count rate of the physical spectral component (Comptoniza-
tion, disk blackbody, and soft excess) bolometric emission as the state variables. This
appears a reasonable choice as observed variables can be expressed by a linear combina-
tion of the state variables.

The number of state variables is a key to a successful application of the state-space
model. We used three state variables for two reasons. One reason is from the spectral
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Figure 6.19: Multivand light curves used for the linear state-space
modeling.

Table 6.3: Band definition used for LGSSM and details for the
stationarity test.

Band Lower edge Higher edge p-value AR order
(keV) (keV)

1 5.0 10.0 0.002 6
2 2.0 5.0 0.005 6
3 1.5 2.0 0.001 8
4 1.0 1.5 0.001 6
5 0.5 1.0 0.000 7
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Figure 6.20: Eigenvalue spectrum (left) and distortion measure (right).
The different lag results (up to 10) are shown with different levels of
transparency. More transparent curves indicate larger lag values.

fitting result, which requires three broad components (Figure 6.1). The other is from
the principal component analysis (PCA) of the observation variables, investigating the
number of eigenvalues, or independent components, to explain the time series data.
Bishop (2006) discusses the approach for determining the number of state variables using
probabilistic PCA within the Bayesian framework. Based on this idea, Pena and Box
(1987) presented how we apply the method to the time series using the cross-covariance
function (Equation (3.33)) instead of the cross-covariance matrix.

Following their method, we computed the cross-covariance function of the five ob-
servation variables with a lag of up to 10. We derived the eigenvalues and eigenvectors.
Figure 6.20 shows the eigenvalue spectrum (left), in which the eigenvalues are sorted in
descending order, and the distortion measure (right), in which the sum of the truncated
eigenvalues (sum of leftover eigenvalues when the larger ones are discarded) are shown.
In both panels, from the fourth lag onward, the metrics are nearly zero, indicating that
the number of significant components to explain the observation variable is 3. This is in
agreement with the first reasoning.

6.3.2 Model Specification
Observation Model Next, we relate the observation variables and the state variables
with a linear combination, which is called the observation model. We represent the state
variables as a vector xn = [xn(1) xn(2) xn(3)]

T and the observation variables as a vector
yn = [yn(1) yn(2) yn(3) yn(4) yn(5)]

T , and the relation between them as

yn = H1xn + wn, (6.1)
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Table 6.4: Contribution of the physical components to the energy bands.

band Energy range xn(1) xn(2) xn(3)
(keV)

yn(1) 10.0–5.0 X - -
yn(2) 5.0–2.0 X X -
yn(3) 2.0–1.5 X X X
yn(4) 1.5–1.0 X X X
yn(5) 1.0–0.5 X X X

where

H1 =


h11 h12 h13

h21 h22 h23

h31 h32 h33

h41 h42 h43

h51 h52 h53

 . (6.2)

and

wn ∼ N (0, LRL
T
R), LR =


r6 0 0 0 0

r11 r12 0 0 0

r15 r14 r13 0 0

r10 r9 r8 r7 0

r5 r4 r3 r2 r1

 . (6.3)

The order of subscripts of LR is in a clockwise spiral for programmatical convenience
(See tensorflow_probability.math.fill_triangular function6). Here, hij means
the contributions from x(i) to y(j). In other words, the observation matrix represents
the spectral mixture of the physical components in each energy band.

The observation matrix H1 can be rotated arbitrarily, thus the solution cannot be
obtained uniquely (§ 3.4.1.3). We thus need to restrict the problem to some extent to
break the degeneracy. We utilize the fact that the soft excess and the disk black body
component contribute only to the softer bands (Figure 6.21). The contributions of the
physical components are summarized in Table 6.4. We set hij = 0 if xn(i) does not
contribute to yn(j). The observation matrix H1 is now revised as follows:

H1 =


h4 0 0

h6 h5 0

h3 h2 h1

h7 h8 h9

h10 h11 h12

 (6.4)

The order of subscripts is in a clockwise spiral.
6https://www.tensorflow.org/probability/api_docs/python/tfp/math/fill_triangular.

html

https://www.tensorflow.org/probability/api_docs/python/tfp/math/fill_triangular.html
https://www.tensorflow.org/probability/api_docs/python/tfp/math/fill_triangular.html
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Figure 6.21: Energy spectrum of O106 and the best-fit model with the
energy band edges. The same as Figure 6.21, but only the spectrum
models are shown since the purpose is to emphasize the energy band
edges denoted by the black dotted lines.

System Model Then, we construct a model to describe how the state variables change.
We use the VAR model as in the classical approach (§ 6.2.2), so that we can investigate
the relations among different physical (Comptonization, disk blackbody, and soft excess)
components. For the choice of the VAR order, we used the AIC in the classical approach
(§ 6.2.2). In the LGSSM, however, the parameter increases as the VAR order increases.
They are correlated with each other, thus the penalty term proportional to the number
of the parameters, as in the AIC, does not work well. As the oversimplified model like
the first-order VAR model is not suited for capturing the local features of the power
spectra, we adopt the second-order VAR model here.

The system model is now expressed as

xn = A1xn−1 + A2xn−2 + vn, (6.5)

where

Ai =

ai,11 ai,12 ai,13
ai,21 ai,22 ai,23
ai,31 ai,32 ai,33

 , (6.6)

and
vn ∼ N (0, Q), Q = I. (6.7)

State-Space Model To estimate parameters using the state-space model, we need to
transform the given observation and system models into the state-space form. Looking
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at the state-space form of the VAR model in Equation (3.86), we can express both the
observation and system models as

yn =
[
H1 O

] [ xn

xn−1

]
+ wn[

xn

xn−1

]
=

[
A1 A2

I O

] [
xn−1

xn−2

]
+

[
vn
O

]
,

(6.8)

When all the elements of the observation and system models are written down, the
observation model becomes as follows:

yn =


h4 0 0 0 0 0

h6 h5 0 0 0 0

h3 h2 h1 0 0 0

h7 h8 h9 0 0 0

h10 h11 h12 0 0 0





xn(1)

xn(2)

xn(3)

xn−1(1)

xn−1(2)

xn−1(3)


+



wn(1)

wn(2)

wn(3)

0

0

0


, (6.9)

The system model becomes as follows:

xn(1)

xn(2)

xn(3)

xn−1(1)

xn−1(2)

xn−1(3)


=



a1,11 a1,12 a1,13 a2,11 a2,12 a2,13
a1,21 a1,22 a1,23 a2,21 a2,22 a2,23
a1,31 a1,32 a1,33 a2,31 a2,32 a2,33
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0





xn−1(1)

xn−1(2)

xn−1(3)

xn−2(1)

xn−2(2)

xn−2(3)


+



vn(1)

vn(2)

vn(3)

0

0

0


. (6.10)

The total parameters are listed in Table 6.5.

6.3.3 Model Inference
As described in § 3.1, we take the Bayesian inference approach here. We define the prior
distributions and the sampling of the inference below. We denote the dimension of the
state variable as p = 3, that of the observation variables as q = 5, and the order of the
VAR model as m = 2.

6.3.3.1 Prior Distributions

To obtain the posterior distributions, it is necessary to specify the prior distributions
in the Bayesian inference. We discuss how we choose the prior distributions (Table 6.5)
considering the characteristics of each parameter.

VAR Matrix The VAR coefficient matrices are denoted as Ai, where i ranges from
1 to m, in Equation (6.6). Each order of the VAR coefficient matrix consists of p × p

elements, denoted as ai,jk, with j, k = 1, 2, · · · , p. The total number of elements in
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Table 6.5: Parameters, their names, and prior distributions. N (·),
HalfCauchy(·), and LKJ(·) represent normal, half-Cauchy, and LKJ
distributions, respectively.

Symbol Parameter Name Prior Distribution
ai,jk VAR coefficients N (0, 1)
hi Observation matrix elements HalfCauchy(0, 5)
σi Standard deviation of observation noise HalfCauchy(0, 5)
ri Covariance matrix elements of observation noise LKJ(3)

the VAR coefficient matrices is m × p × p = 18. These elements need to be chosen to
satisfy the stationary condition of the VAR model, ensuring that all eigenvalues of the
characteristic equation lie outside the unit circle (§ 3.3.2).

Ideally, a prior distribution meeting this condition would be set. In practice, however,
calculating such a prior distribution is challenging and computationally demanding. In
this study, we simply use a normal distribution as the prior distribution. If the stationary
condition is not met, the likelihood should be very small as the estimated state values
exhibit explosive increases or decreases, which contradicts the observed time series that
are stationary. Therefore, parameters violating the stationary condition are expected to
be rejected during the MCMC sampling process.

Alternatively, the Minnesota prior distribution could be adopted, which is often used
for the prior distribution of VAR coefficient matrices (Lütkepohl, 2005). While this
prior does not strictly enforce the stationary condition, it assumes sparsity in the coeffi-
cients, meaning that many coefficients will be close to zero. This assumption is generally
reasonable, and having a sparse coefficient matrix has the advantage of making the in-
terpretation of the estimated values easier. We did not take this approach for simplicity.

Observation Matrix The observation matrix is denoted as H1 in Equation (6.4).
As the matrix is restricted (§ 3.1), it has pq − p(p − 1)/2 = 12 parameters. We can
assume that the state variables (physical components) contribute only additively to the
observation variables (multiband light curves), we should assume that the parameters are
positive. We thus choose the half-Cauchy distribution as the prior distribution for these
parameters with scale parameters of 5, which is a common weak prior recommended by
Stan Development Team (2024) 7.

Observation Noise (standard deviation and covariance matrix) We employ the
Half-Cauchy distribution for the prior distribution of the standard deviation of observa-
tion noise. Additionally, for the prior distribution of the covariance matrix of observa-
tion noise, we adopt the Lewandowski-Kurowicka-Joe (LKJ) distribution (Lewandowski
et al., 2009), which is commonly used as the prior distribution of the correlation matrices
in recent Bayesian modeling. It can be combined with a diagonal matrix to generate
the covariance matrix and used for the prior distribution of the covariance matrix. For

7https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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example, using a correlation matrix

R =

[
1 ρ

ρ 1

]
(6.11)

and a diagonal matrix

σ =

[
σ1 0

0 σ2

]
, (6.12)

we can compute the positive definite matrix as follows:

Σ = σRσ =

[
σ1 0

0 σ2

] [
1 ρ

ρ 1

] [
σ1 0

0 σ2

]
=

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
(6.13)

The conjugate prior distribution for a covariance matrix is the inverse Wishart distri-
bution, but the LKJ distribution is computationally stable and efficient for sampling.
The probabilistic programming language Stan recommends using this distribution for
the prior distribution of a covariance matrix (Stan Development Team, 2024). The pa-
rameter of the LKJ distribution governs the degree of correlation, with one representing
a non-informative prior and a large number indicating a strong prior.

Since we have no prior information for the standard deviations of the observation
noise, we assign the half-Cauchy distribution as the prior distribution for them, setting
the scale parameters to 5. For the LKJ distribution, we assume independence of the
observation noise term, achieved by ensuring the correlation matrix has zero values
except for non-diagonal elements. Consequently, we set the LKJ distribution parameter
to 3.

6.3.3.2 Sampling

We use MCMC sampling for the Bayesian parameter estimation. It proposes candidate
parameters based on the information from the previous iteration and only accepts them
if certain conditions are met. We use the NUTS, a variant of the Hamiltonian Monte
Carlo method, for the sampling (§ 3.1.3). The estimation conditions include a burn-in
of 1000 iterations and 5000 iterations for sampling.

Sampling values from the normal and half-Cauchy distributions are trivial (Table 6.5).
For the sampling of the LKJ distribution, we use
tensorflow_probability.distibutions.CholeckyLKJ 8, which samples from the Cholesky
decomposed LKJ distributions. Representing the yield lower triangular matrix as

LP ≡


ρ6 0 0 0 0

ρ11 ρ12 0 0 0

ρ15 ρ14 ρ13 0 0

ρ10 ρ9 ρ8 ρ7 0

ρ5 ρ4 ρ3 ρ2 ρ1

 , (6.14)

8https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/
CholeskyLKJ.html

https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/CholeskyLKJ.html
https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/CholeskyLKJ.html
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the correlation matrix is

P = LPL
T
P

=


ρ6 0 0 0 0

ρ11 ρ12 0 0 0

ρ15 ρ14 ρ13 0 0

ρ10 ρ9 ρ8 ρ7 0

ρ5 ρ4 ρ3 ρ2 ρ1




ρ6 ρ11 ρ15 ρ10 ρ5
0 ρ12 ρ14 ρ9 ρ4
0 0 ρ13 ρ8 ρ3
0 0 0 ρ7 ρ2
0 0 0 0 ρ1



=


1 ρ′11 ρ′15 ρ′10 ρ′5
ρ′11 1 ρ′14 ρ′9 ρ′4
ρ′15 ρ′14 1 ρ′8 ρ′3
ρ′10 ρ′9 ρ′8 1 ρ′2
ρ′5 ρ′4 ρ′3 ρ′2 1

 .

(6.15)

By multiplying LP and a variance diagonal matrix, the triangular matrix of the covari-
ance matrix can be calculated as

LR =


σr1 0 0 0 0

0 σr2 0 0 0

0 0 σr3 0 0

0 0 0 σr4 0

0 0 0 0 σr5




ρ6 0 0 0 0

ρ11 ρ12 0 0 0

ρ15 ρ14 ρ13 0 0

ρ10 ρ9 ρ8 ρ7 0

ρ5 ρ4 ρ3 ρ2 ρ1



=


σr1ρ6 0 0 0 0

σr2ρ11 σr2ρ12 0 0 0

σr3ρ15 σr3ρ14 σr3ρ13 0 0

σr4ρ10 σr4ρ9 σr4ρ8 σr4ρ7 0

σr5ρ5 σr5ρ4 σr5ρ3 σr5ρ2 σr5ρ1



≡


r6 0 0 0 0

r11 r12 0 0 0

r15 r14 r13 0 0

r10 r9 r8 r7 0

r5 r4 r3 r2 r1

 .

(6.16)

We use r1, . . . , r15 as the samples for the covariance matrix of the observation noise.

6.3.4 Results and Inspection
6.3.4.1 Results

Figure 6.22 shows the posterior distribution of the Bayesian inference. For each sample,
using the Kalman filter smoothing, we can construct the light curves of the observation
variables and compare them to the observed data (Figure 6.23). The smoothed observa-
tion variables describe the data very well in all bands. In addition, we can also construct
the light curves of the state variables, or the physical components (Figure 6.24). This
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demonstrates the advantage of using the latent variable in the state-space model; no
such light curve can be obtained through classical approaches.

Several interesting observations are made. In the smoothed state variable light curves
(Figure 6.24), each state variable, or the physical component, exhibits distinct variations
in each component. For instance, xn(1) (Comptonization) and xn(2) (disk blackbody)
show mostly high-frequency fluctuations, whereas xn(3) (soft excess) also shows low-
frequency fluctuations. The most notable feature is found at 46 s. This low-frequency
variation is only found in xn(3). This is consistent with the variation in the observed
data (Figure 6.24), in which the low-frequency variation is increasingly seen toward lower
energy bands.

Conversely, this indicates that we can do spectral decomposition based on the time
series analysis. Because the system model assumes a VAR model with a zero mean,
we can derive the time-averaged energy spectrum from the observation matrix. The
reproduced count rates, denoted as cij, are given by

c1j
c2j
c3j
c4j
c5j

 =


σ1 0 0 0 0

0 σ2 0 0 0

0 0 σ3 0 0

0 0 0 σ4 0

0 0 0 0 σ5




h1j

h2j

h3j

h4j

h5j

+


µ1

µ2

µ3

µ4

µ5

 . (6.17)

Here, j = 1, 2, 3, and µi and σi represent the mean and standard deviation of the observed
multiband light curve, respectively. The resultant time-averaged energy spectrum (Fig-
ure 6.25) closely resembles the energy spectrum model obtained through energy spectral
fitting (Figure 6.1). It is important to note that this spectral decomposition is achieved
solely from the time series modeling only by assuming the number of state variables of
3 and the observation matrix form in Equation (6.4).

6.3.4.2 Inspection

Statioarity Check We used the normal distribution as the prior distribution of the
VAR matrix elements. This ignores the stationary conditions to be met, but we expected
that the MCMC process would reject the non-stationary samples. Indeed, in the posterior
distribution (Figure 6.22), most of the coefficients are sampled within the range of −1

to +1, which implies the model stationarity is likely satisfied as a result.

Gaussian Check We used the Q–Q plot in Figure 6.26 to assess whether the dif-
ferences between the observation variables and the observed values adhere to a normal
distribution. A particular improvement was made from the classical approach (Fig-
ures 6.9, 6.15) at low count rates by separating the observation and state variables. The
deviation at high count rates still remains in the LGSSM. This may be a signature that
is difficult to model with linear models.
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Figure 6.22: Posterior distributions estimated by the MCMC. Figure (a),
(b), and (c) are the VAR coefficients, the observation matrix, and the
elements of the variance-covariance matrix, respectively. The order of
the panels follows, Equations (6.6), (6.4), and (6.3), respectively. The
numbers above each panel are the median of a distribution and 2.5 %
and 97.5 % quantiles.
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Figure 6.23: Estimated light curve of the observation variables (red
curves) and the observed data (black points) at the top, and the
residuals at the bottom shifted downward by −3 for clarity. The ranges
of the observation variables are shown in the 2.5 % and 97.5 % quantiles,
which are not visible due to the narrow width compared to the variation
of the curve.



6.3. Time Series Modeling II: State-Space Model 107

0

10

0

10

0 10 20 30 40
time (s)

0

10

sc
al

ed
 c

ou
nt

ra
te

Figure 6.24: Estimated light curve of the state variables, or the physical
components. The Comptonization, disk blackbody, and soft excess
components are illustrated by the blue, red, and green curves,
respectively. The range of the state variables is shown with the 2.5 %
and 97.5 % quantiles.
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6.3.5 Description Functions
Finally, we explore the multivariate description functions. The description functions
presented here are not sample description functions (§ 6.1) nor the description functions
of the observation variables (§ 6.2), but the description functions of the state variables;
i.e., relations among the physical components free from the spectral mixture.

6.3.5.1 Cross-Spectrum

For cross-spectra of the variability for the energy spectrum component, it is more rea-
sonable to use the scale of real data when comparing contribution ratios. This can be
achieved by using Equation (6.17).

Figure 6.27 shows the power spectra of energy spectrum components converted to
the scale of the softest band (0.5-1.0 keV), where all components contribute. The power
spectra of all components show a similar feature overall; flat power in frequencies below a
break, a sloped power above the break, and some excess power at high frequencies. The
breaking frequencies are different among different components; xn(1), xn(2), and xn(3)

exhibit breaking frequencies around 0.05, 0.1, and 0.05 Hz, respectively. Therefore, the
contribution of xn(3) is larger at low frequencies. This is consistent with the observed
data that low-frequency variations are more visible in the low-energy range (Figure 6.23).

For the excess power at the high frequencies, all physical components exhibit signals
around 4.0 Hz. It is improbable that each component independently generates the peri-
odic signal at the same frequency. Therefore, we consider that the periodic variation in
one component propagates to the other components.

The periodic signal observed in the VAR power spectra of energy bands (Figure 6.17)
is not identifiable in the VAR power spectra of latent components. This could be at-
tributed to the VAR power spectra of energy bands picking up characteristics of noise.
In Bayesian estimation, calculating samples from the posterior distribution may result in
such probabilistic signals being buried within the width of the probability distribution.
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Next, we calculated the power contribution and relative power contribution (Fig-
ure 6.28). The shaded areas are the widths of the posterior distribution with 95 %
quantiles. For the relative power contributions of xn(1) and xn(2), we see that the con-
tribution by themselves is the most dominant in all frequencies. On the other hand,
for xn(3), the contribution by xn(1) is most dominant, which decreases as the frequency
increases, where the contributions by xn(2) and xn(3) increase. For the relative power
contribution of xn(2), the contribution of xn(1) decreases as the frequency increases. The
relative power contribution gives little information about the periodic signal at 4 Hz as
there is no significant feature around them.

6.3.5.2 Cross-Correlation Function

We calculate the VAR cross-correlation functions for [xn(1) xn(2) xn(3)]
T based on the

VAR coefficients (Figure 6.29). The distinctive differences in breaking frequencies ob-
served in the power spectrum are evident in their respective autocorrelation functions.
Notably, Cor(xn(3), xn−k(3)) exhibits the broadest width, while Cor(xn(1), xn−k(1)) and
Cor(xn−k(2), xn−k(2)) have narrower widths. An explicit delayed signal is observed in
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Cor(xn(1), xn−k(2)) with a peak at 0.1 s. Similarly, Cor(xn(3), xn−k(2)) shows a time-
lagged signal with a peak at 0.2 s. Both signals originate from xn(2), but the latter
is delayed by an additional 0.1 s. This suggests the signal sequence propagation as
xn(2) → xn(1) → xn(3). However, in Cor(xn(3), xn−k(1)), the propagation from xn(1) to
xn(3) is obscured by a strong anti-correlation, where xn(3) exhibits an opposite fluctu-
ation about 0.5 s after the variation in xn(1). This robust anti-correlation explains the
dominance of xn(1) in the power contribution of xn(3).
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7.1 Physical Interpretation of the Results
The traditional light curve analysis employed in previous work led to contradicting con-
clusions from the same data set on the geometry of the accretion disk around a black
hole (§ 5.2). This is due in large part to the spectral dilution in the light curve of selected
energy bands (§ 4.2.2). We employed statistical modeling to overcome this and obtained
the description functions among different spectral components (§ 6.3). Using the new
results, we discuss the relationship among the different spectral components.

7.1.1 Time Scales of Variation
We start with the power spectrum of the different spectral components (Figure 6.27).
This is a significant improvement from the power spectra obtained from the light curve
analysis (diagonal panels in Figure 6.5). The Comptonization (xn(1)), disk blackbody
(xn(2)), and soft excess (xn(3)) emission has a frequency break at around 0.05 Hz (=
20 s), 0.1 Hz (= 10 s) and 0.05 Hz (= 20 s), respectively. The break frequency in the
power spectrum is indicative of the characteristic time scales (Gilfanov, 2010), which are
shown in parentheses for each component. The difference in values provides valuable
clues to investigate the sizes and radiation positions of each physical component.

We relate these break time scales to the time scales that characterize the accretion
disk around the BHBs. One is the Keplerian orbital time, and the other is the viscous
time. The Keplerian orbital time is approximated as

tK ≈ 0.3

(
M

10M�

)(
r

50rg

)3/2

(s), (7.1)

where M is the blackhole mass in the unit of the solar mass M� and r is the radius in
the accretion disk in the unit of the gravitational radius rg. Meanwhile, the viscous time
scale is estimated as

tvisc ∼ α−1

(
h

r

)−2

Ω−1
K
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1

2πα

(
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)−2
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=
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2πα

(
h

r

)−2(
M

10M�

)(
r

50rg

)3/2

(s),

(7.2)

Here, α is the viscosity parameter, h is the disk thickness, and Ωk ≡ 2π/tK . In essence,
the Keplarian orbital time is the time scale of the motion in the azimuthal direction
around the BHB, while the viscous time scale is that for the motion in the radial direction
toward the BHB. For simplicity, we assume M = 10M� in the following discussion.

We first associate the viscous time scale at the innermost radius of the accretion disk
with the break frequency of the Comptonized component. This is based on the premise
that the Comptonized component is from the accretion flow that extends inward from
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the innermost radius of the accretion disk (Gilfanov, 2010). From Equation (7.2), we
obtain the innermost radius of r ∼ 100rg, where we assume α = 0.2 and h/r = 0.2. This
size is commonly perceived as typical for the innermost disk radius in the hard state in
the truncated disk scenario (Esin et al., 1997).

We next associate the Keplerian orbital time scale at the innermost accretion disk
radius with the break frequency of the disk blackbody component, which follows the idea
of Gilfanov (2010). Equation (7.1) yields r ∼ 100rg. Interestingly, this value is consistent
with the estimate based on the break frequency of the Comptonized component.

The soft excess emission has a time scale similar to the Comptonized emission. We
consider that this is because the soft excess emission is made as a response to the Comp-
tonized emission as described in § 7.1.3.

7.1.2 Time Lags between Components
We next examine the time lag among the three spectral components (off-diagonal panels
in Figure 6.29). This is again a significant improvement over the power spectra obtained
from the light curve analysis (off-diagonal panels in Figure 6.5). The time lag from the
disk blackbody emission xn(2) to the Comptonized emission xn(1) is evident at ∼0.1 s.
This is interpreted as the origin of the hard lag derived from the light curve analysis
(§ 4.2.1), as the Comptonized emission dominates more in the harder band, and its
delay appears as the hard lag. For the first time, we revealed the hard lag to be between
two spectral components in a spectrally decomposed cross-correlation function.

If we associate the delay with a light crossing time, it is of the order of 104rg, which
is too large for a BHB system. It is usually interpreted as the viscous time scale of the
accretion disk or the hot inner accretion flow (Kotov et al., 2001; Arévalo and Uttley,
2006). For the disk, the delay time of 0.1 s equals to the viscous time at a radius of a
few rg. Variations in the disk blackbody emission close to the innermost radius of the
accretion disk would serve as seed photons for the Comptonization, which makes the
observed delay.

The lag from the Comptonized component xn(1) to the soft excess component xn(3)

is difficult to interpret in Figure 6.29. It appears to show an anti-correlation peaking
at the lag amplitude of 0.8 s. This requires further investigation with data from other
epochs. In the light curve analysis, we did observe a ∼0.02 s lag between 0.5–1.0 and
1.0–10 keV light curves (Figure 4.8). This is likely the lag between the Comptonized and
the soft excess component. However, this small lag amplitude is beyond the scope of
linear Gaussian state-space modeling (§ 6.1.1), as we binned at 0.1 s to secure a Gaussian
behavior of the noise.

Still, in Figure 6.29, we observe a time lag between the disk blackbody emission xn(2)

and the soft excess emission xn(3) of an order of 0.1 s. Therefore, we consider that the
order of causality is xn(2) → xn(1) → xn(3). The variability of the disk blackbody is
the origin, which propagates to the Comptonized emission, which propagates to the soft
excess emission.
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7.1.3 Power Contribution
We further composed the mutual power contributions among the three components (Fig-
ure 6.27). Such a plot has not been used in the context of traditional light curve analysis,
but is useful for investigating the causality of the time variability as a function of fre-
quency. In the plot, we see that the variations in the Comptonized and disk blackbody
emission are largely driven by their own contributions over all frequency ranges. In
contrast, the soft-excess component is influenced by the Comptonized component, par-
ticularly at a lower frequency than a few Hz. This suggests that the fluctuations in
the Comptonization and disk components are independent, while the variation of the
soft excess component is largely dependent on the fluctuations of the other components.
This is consistent with the causality order discussed from the time lag (§ 7.1.2). The
result also suggests that the high-frequency content of the Comptonized emission is not
propagated to the soft excess emission, indicating that the soft excess response behaves
as a low-pass filter, presumably due to the viscous nature of the accretion disk (Gilfanov,
2010).

7.2 Physical Model Selection
We now revealed the causality order among the three spectral components and associated
their variability time scales with the physical scales of the BHB system. Now, we combine
these new findings into a picture of the accretion disk geometry of MAXI 1820+070.

The findings can be naturally interpreted in the truncate accretion disk geometry
(Figure 7.1). Local fluctuation of the accreting material around the inner radius of
the disk causes variability in the X-ray emission. These serve as seed photons for the
Comptonization by the hot electron gas in the accretion flow. The time taken from the
radiation in the disk to Comptonization is approximately ∼ 0.1 s, derived from the lag
between the disk blackbody and Comptonized emission components. These components
are estimated to arise from a radius of r ∼ 100 rg based on their characteristic time
scales. The Comptonized emission illuminates the accretion disk, which is reprocessed
as the soft excess emission. From the lag identified in the differential cross-correlation
function, the light crossing time yields a distance of 1000 rg, which is a typical distance
for reprocessing to occur. This is the scenario for presenting the findings in a schematic
picture.

The lamppost model envisages the accretion disk extending close to the black hole,
where the Keplerian orbital time is ∼ 0.01 s (=100 Hz). However, in Figure 5.7, we
did not observe substantial power at such high frequencies, but only a nearly monotonic
decrease in power beyond ∼ 1Hz. Our findings show that the time scale of the disk
blackbody emission is much slower of ∼ 10 s, which introduces a challenge in interpreting
the observed variation of the light curve within the lamppost configuration.
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Figure 7.1: Schematics of truncate disk.
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Chapter 8

Summary

Rapid X-ray flux variability is one of the most ubiquitous and distinctive characteristics
of BHBs in their low hard state. The variability is considered to carry vital information
about the geometry around the black hole, in particular, the accretion disk and flow.
Numerous studies were made on this topic for its importance in physics. We started
this thesis by pointing out the problems in almost all previous studies, in which energy
and time series are independently modeled. We clarified the necessity to model both
energy and time series jointly. We also stressed the necessity to model latent variables
rather than observed variables for the time series modeling to avoid the spectral dilution
problem inherent to the traditional analysis.

We demonstrated that such joint modeling is possible using multiband X-ray light
curves of the BHB, MAXI J1820+070, observed with NICER. Considering the wide
application of our approach in the future far beyond the BHB data analysis, we made
a step-by-step progress, starting from some basics of the time series analysis, AR, VAR,
and LGSST.

In the classical (AR and VAR) approach, we directly modeled the observed light
curves to derive information from the combined contributions of various physical com-
ponents. Initially, we used AR models that independently regress past values within
each band. While we identified some features in the description functions derived from
the estimated AR parameters, the results revealed essentially no novel insights compared
to traditional analytical methods. Subsequently, we adopted VAR models, an extension
of AR models to multivariate cases. The results obtained from the description functions
of the VAR model elucidated the features observed in the AR model results, suggesting
an enhancement in modeling when considering interactions between different bands.

By modeling the variability of spectral components, it becomes possible to understand
various physical characteristics and interactions among them using their variability and
propagation. In the LGSSM approach, we attempted to achieve this by modeling the
flux of the spectral components as latent variables. They are added linearly to translate
to the observed variables, which are the flux in selected energy bands. In this manner,
we were successful in modeling the spectral component variability free from the spectral
dilution.

Using the description functions of the spectral components, valuable insights were
obtained:
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(a) The time scales for the Comptonized, disk, and soft-excess components are 0.05 Hz,
0.5 Hz, and 0.05 Hz, respectively.

(b) A time lag of 0.1 s exists from the disk to the Comptonized component, and a time
lag of 0.2 s exists from the disk to the soft excess components.

These findings lead to the following conclusions, which are interpreted in the truncated
disk scenario.

(1) The time scales of the Comptonized and disk components align with the viscous
and Kelparian time scales at a truncation radius of approximately∼ 100rg (inferred
from (a))

(2) The hard lag is determined as the time lag from the disk component to Comp-
tonization (inferred from (b)).

These pieces of information, previously unattainable by merely examining the character-
istics of observed light curves and spectra, provide crucial constraints for the geometry
around black holes.
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In the appendix, we provide a tutorial for the linear-Gaussian State-space modeling
using TensorFlow Probability. We explain the technical details to the code level of what
we did in the main part of this thesis, thereby give a cookbook that can be used to other
applications.
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A.1 Fundamental Concepts in TFP
TensorFlow Probability (TFP) is a Python library designed for probabilistic inference
that leverages TensorFlow (TF) as its numerical computing backbone. It provides imple-
mentations of probability distributions and inference tools, allowing users to construct
models by combining classes. Users need to understand the essential concepts and im-
plementations for building statistical models with TFP. In this section, we introduce key
concepts and provide references. For detailed explanations and tutorials, readers should
consult to the resources provided by the TFP development team1.

Layer In TFP, users can flexibly design probability distributions according to their
complexity by segmenting probabilistic inference tools into layers. There are four layers:
Layer 0: TensorFlow, Layer 1: statistical building blocks, Layer 2: model construction,
and Layer 3: probabilistic inference. For a better understanding of the probabilistic
inference aspects defined by each layer, it is best to consult the official page2.

Distributions tfp.distributions3 is a package that provides various probability dis-
tributions, typically imported using tfd = tfp.distributions. All classes defined here
inherit from the base class tfd.Distribution4, allowing access to characteristics like
moments through methods if implemented. Utilizing these classes allows for experiment-
ing with different distributions without major modifications to the model. For instance,
assuming counts follow a normal distribution can be described with tfd.Normal, and if a
Poisson distribution is deemed more appropriate, simply replacing it with tfd.Poisson
suffices.

Bijectors In statistical modeling, we can limit the range of variable space through
transformations of variables and probability distributions. The package for these trans-
formations is tfp.bijectors5, usually imported as tfb = tfp.bijectors. The classes
in this package inherit from the base class tfb.Bijector, enabling bijective transforma-
tions through the forward or inverse methods.

Shape In TFP, there are two important shapes: event_shape and batch_shape.
event_shape describes the shape of a single output of a probability distribution, while
batch_shape represents the shape of outputs of independently distributed objects of
a probability distribution. For a deeper understanding, it is recommended to refer to
the official website tutorial6. In the following, we will demonstrate an example using a
multidimensional Gaussian distribution.

1https://www.tensorflow.org/probability/overview
2https://www.tensorflow.org/probability/overview
3https://www.tensorflow.org/probability/api_docs/python/tfp/distributions
4https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/

Distribution
5https://www.tensorflow.org/probability/api_docs/python/tfp/bijectors
6https://www.tensorflow.org/probability/examples/Understanding_TensorFlow_

Distributions_Shapes

https://www.tensorflow.org/probability/overview
https://www.tensorflow.org/probability/overview
https://www.tensorflow.org/probability/api_docs/python/tfp/distributions
https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Distribution
https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Distribution
https://www.tensorflow.org/probability/api_docs/python/tfp/bijectors
https://www.tensorflow.org/probability/examples/Understanding_TensorFlow_Distributions_Shapes
https://www.tensorflow.org/probability/examples/Understanding_TensorFlow_Distributions_Shapes
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1 import tensorflow as tf

2 import tensorflow_probability as tfp

3

4 tfd = tfp.distributions

5

6 # Initialize a single 2-variate Gaussians.

7 mvn = tfd.MultivariateNormalDiag(

8 loc=[1., -1],

9 scale_diag=[1, 2.])

10

11 print(mvn.event_shape)

12 # ==> (2,)

13

14 print(mvn.batch_shape)

15 # ==> ()

16

17

18 # Initialize a 2-batch of 3-variate Gaussians.

19 mvn = tfd.MultivariateNormalDiag(

20 loc=[[1., 2, 3],

21 [11, 22, 33]], # shape: [2, 3]

22 scale_diag=[[1., 2, 3],

23 [0.5, 1, 1.5]]) # shape: [2, 3]

24

25

26 print(mvn.event_shape)

27 # ==> (3,)

28

29 print(mvn.batch_shape)

30 # ==> (2,)

31

32 print(mvn.sample().shape)

33 # ==> (2, 3)
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A.2 Time Series Modeling

A.2.1 Univariate Random Walk
We begin by exploring univariate time series modeling to grasp the fundamental aspects
of the modeling process. To keep it straightforward, we opt for a model with fewer
parameters, starting with the random walk model. In this model, we have only two
parameters: the level scale and the observation noise scale.

The state space model for the univariate random walk model is defined as:

xn = xn−1 + vn, vn ∼ N (0, q)

yn = xn + wn, wn ∼ N (0, r),
(A.1)

Here, q and r represents the level scale and the observation noise scale. This formulation
is derived from Equation (3.75) by setting F = G = H = [1].

Generation of Synthetic Data We generate the synthetic data that follows a random
walk. We set the level scale and the observation noise scale to 1.0 and 5.0 respectively.

1 import numpy as np

2

3 num_timesteps = 100

4 level_scale = 1.0

5 observation_noise_scale = 5.0

6

7 timestamps = np.arange(num_timesteps)

8

9 np.random.seed(123)

10 latent_noises = np.random.normal(loc=0.0, scale=level_scale ,

11 size=num_timesteps)

12 latent_values = np.cumsum(latent_noises)

13 observation_noises = np.random.normal(

14 loc=0.0, scale=observation_noise_scale ,

15 size=num_timesteps)

16 observation_values = latent_values + observation_noises

17

18 # Time series must have the shape of

19 # (batch_shape , num_timesteps , variable_size).

20 latent_values = latent_values[:, np.newaxis]

21 observation_values = observation_values[:, np.newaxis]

It is noted that in the time series modeling by TFP, the canonical shape is
(batch_shape, num_timesteps, variable_size). Since we treat a single univariate
time series as an observation variable, the shape would be
[batch_shape, num_timesteps, 1]. To achive this requirement, we add a new axis to
the latent_values and observation_values.
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Figure A.1: Samples from the univariate random walk. yn and xn in
Equation (A.1) are represented by the black points and the red curve.

State Estimation Let us estimate unobserved state variables through observed values.
Although the true parameter values are unknown in most cases, we consider the situation
where we already have in order to focus on the state estimation process here. The state
estimation code is written as follows.

1 import tensorflow as tf

2 import tensorflow_probability as tfp

3 from tensorflow_probability import sts

4

5 tfd = tfp.distributions

6 sts = tfp.sts

7

8 # Define data type.

9 tf_dtype = tf.float32

10

11 # Data type of numpy.array is usually double (`np.float64 `).

12 # The model inference needs no precise calculation here.

13 observation_values = tf.convert_to_tensor(observation_values , dtype=tf_dtype)

14

15 # The model is defined using a \texttt{tfp.sts.*StateSpaceModel}.

16 # The `tfp.sts` library is only support the univariate structural time series

17 # (STS) model.

18 rw_ssm = sts.LocalLevelStateSpaceModel(

19 num_timesteps ,

20 level_scale=1.0,

21 observation_noise_scale=5.0,

22 # The batch shape must match the state size of 1, in this case.

23 initial_state_prior=tfd.MultivariateNormalDiag(

24 loc=[0.],
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25 scale_diag=[1.]

26 )

27 )

28

29 (

30 log_likelihoods ,

31 filtered_means ,

32 filtered_covs ,

33 predicted_means ,

34 predicted_covs ,

35 observation_means ,

36 observation_covs ,

37 ) = rw_ssm.forward_filter(observation_values)

38

39 (

40 posterior_means ,

41 posterior_covs

42 ) = rw_ssm.backward_smoothing_pass(

43 filtered_means ,

44 filtered_covs ,

45 predicted_means ,

46 predicted_covs

47 )

We present the filtered and smoothed states alongside the true states in Figure A.2.
The filtering state demonstrates that the smoothed state lies within less than two stan-
dard deviations of the normal distribution. The smoothed state approximates the true
state more closely than the filtered state. This discrepancy originates from the num-
ber of observations considered under the respective probability conditions: p(xn|yn) for
filtering and p(xn|yN) for smoothing.

A.2.2 Multivariate Dynamic Factor Model
Generation of the Synthetic Data Synthetic data is created in two steps to align
with the system model and the observation model in the state-space model. First,
state variables are generated following a vector autoregression model (VAR), and then
observation variables are derived from these state variables based on the observation
model. Sample generation for state variables employs
statsmodels.tsa.vector_ar.var_model.VARProcess7, while observation variables are
generated using linear calculations.

1 import numpy as np

2 from statsmodels.tsa.vector_ar.var_model import VARProcess

3

4

7https://www.statsmodels.org/stable/generated/statsmodels.tsa.vector_ar.var_model.
VARProcess.html

https://www.statsmodels.org/stable/generated/statsmodels.tsa.vector_ar.var_model.VARProcess.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.vector_ar.var_model.VARProcess.html
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Figure A.2: Filetered (blue) and smoothed (orange) states with
observations (black circle). The true states are illustraited by the red
curve. The shadded areas represent the 95 % confidence intervals for
filtered and smoothed states.

5 batch_shape = ()

6 latent_size = 2

7 observation_size = 3

8 order = 2

9

10 num_timesteps = 100

11

12 var_coefficients = np.array([

13 [[ 0.60, -0.01],

14 [ 0.04, 0.50]],

15 [[ 0.10, 0.02],

16 [ 0.01, -0.09]]

17 ])

18 transition_noise_cov = np.array(

19 [[1.0, 0.0],

20 [0.0, 1.0]])

21 observation_matrix = np.array([

22 [0.9, 0.0],

23 [0.5, 0.4],

24 [0.3, 0.2]

25 ])

26 observation_noise_cov = np.array([

27 [0.1, 0.0, 0.0],

28 [0.0, 0.1, 0.0],

29 [0.0, 0.0, 0.1]

30 ])
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31

32 # Generate state variables.

33 var_process = VARProcess(coefs=var_coefficients ,

34 coefs_exog=None,

35 sigma_u=transition_noise_cov ,)

36

37 timestamps = np.arange(num_timesteps)

38 latent_samples = var_process.simulate_var(

39 num_timesteps , seed=123)

40

41 # Compute Observation variables.

42 observation_values = np.matmul(

43 latent_samples ,

44 observation_matrix.T,

45 )

46 observation_noises = np.random.multivariate_normal(

47 mean=np.zeros(observation_size),

48 cov=observation_noise_cov ,

49 size=num_timesteps

50 )

51

52 observation_samples = observation_values + observation_noises
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Figure A.3: Latent variables (left) and observation variables (right). The
observation variables are the mixture of x = [xn(1) xn(2)]

T and
coefficients, shown in the upper right of each panel. The gray curves in
the right panels indicate values where noise terms have been removed.

Definition of Dynamic Factor Model with VAR model We start with importing
the libraries.
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1 import tensorflow as tf

2 import tensorflow_probability as tfp

3

4 tfb = tfp.bijectors

5 tfd = tfp.distributions

As a reference, in this coding, we write down the state-space representation of the
dynamic factor model, where the system model follows the VAR model. The system
model is expressed as

xn

...
xn−m−1

xn−m

 =


A1 · · · Am−1 Am

I · · · O O
... . . . . . . ...
O · · · I O




xn−1

...
xn−m−2

xn−m−1

+


vn
O
...
O

 , vn ∼ N (0, Q), (A.2)

where

xn =

xn(1)
...

xn(k)

 , vn =

vn(1)...
vn(k)

 , Ai =

ai,11 · · · ai,1`
... . . . ...

ai,`1 · · · ai,``

 . (A.3)

The observation model is

yn =
[
H1 O · · · O

]


xn

...
xn−m−1

xn−m

+ wn, wn ∼ N (0, R), (A.4)

where

yn =

yn(1)...
yn(`)

 , H1 =

h11 · · · h1k

... . . . ...
h`1 · · · h`k

 , (A.5)

We explicitly differentiate between the terms “observation matrix” and “loading matrix”.
The observation matrix refers to the matrix that is multiplied by the state variable,
represented as [H1 O · · · O]. On the other hand, the loading matrix, denoted by H1,
specifically contributes to the variable xn without involving additional zero matrices.

In the system model expressed by Equation (A.2), the transition matrix has the
A1, · · · , Am at the top row, which is the state-space form of the VAR model. It is
convenient to define the function that converts the VAR coefficients of the shape (m ×
k × k) into the transition matrix of the VAR model with the shape (mk ×mk).

1 def make_var_transition_matrix(coefficients):

2 """Build transition matrix for an vactor autoregressive StateSpaceModel.

3

4 When applied to a vector of previous values, this matrix computes

5 the expected new value (summing the previous states according to the

6 autoregressive coefficients) in the top dimension of the state space,

7 and moves all previous values down by one dimension , 'forgetting' the
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8 final (least recent) value. That is, it looks like this:

9 ```

10 var_matrix =

11 [ c[0, 0, 0], ..., c[0, 0, M], c[1, 0, 0], ..., c[order, 0, M]

12 ...,

13 c[0, M, 0], ..., c[0, M, M], c[1, M, 0], ..., c[order, M, M]

14 1., ..., 0 , 0., ..., 0.

15 ...

16 0., ..., 1., 0., ..., 0.

17 ...

18 0., ..., 0., 1., ..., 0. ]

19 ```

20 Args:

21 coefficients: float `Tensor` of shape `concat([batch_shape , [order]])`.

22 Returns:

23 ar_matrix: float `Tensor` with shape `concat([batch_shape ,

24 [order, order]])`.

25

26 ### Example

27 ```python

28 make_var_transition_matrix(

29 [[[1.0, 0.0],

30 [0.5, 0.5]],

31 [[0.3, 0.7],

32 [0.1, 0.9]]]

33 )

34 )

35 # ===> [[1.0, 0.0, 0.3, 0.7],

36 # [0.5, 0.5, 0.1, 0.9],

37 # [1.0, 0.0, 0.0, 0.0],

38 # [0.0, 1.0, 0.0, 0.0]]

39 ```

40 """

41 dtype = coefficients.dtype

42

43 coef_shape = coefficients.shape

44 batch_shape = coef_shape[:-3]

45 order, latent_size = coef_shape[-3], coef_shape[-2]

46

47 top_row = tf.concat(tf.unstack(coefficients , axis=-3), axis=-1)

48 remaining_rows = tf.concat([

49 tf.eye(latent_size * (order - 1), dtype=dtype,

50 batch_shape=batch_shape),

51 tf.zeros(tf.concat(

52 [batch_shape , (latent_size * (order - 1), latent_size)],

53 axis=0

54 ),

55 dtype=dtype)
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56 ], axis=-1)

57 var_matrix = tf.concat([top_row, remaining_rows], axis=-2)

58 return var_matrix

The observation matrix has a unique shape: the loading matrix is located on the
leftmost, and the remaining are zero matrices. The function used to compute the dynamic
factor model with VAR.

1 def make_dfmvar_observation_matrix(matrix, var_order):

2 """Builds observation matrix for a Dynamic Factor Model with VAR model.

3

4 Appends zeros to the right of the given matrix to form the observation

5 matrix.

6

7 Args:

8 matrix: float or int `Tensor` of shape

9 `concat([batch_shape , [observation_size , latent_size]])`.

10 representing the matrix to be extended.

11 var_order: int. The order of the VAR model.

12

13 Returns:

14 observation_matrix: float `Tensor` with shape

15 `concat([batch_shape , [observation_size , latent_size * order]])`

16 representing the observation matrix.

17

18 Example:

19 ```python

20 make_dfmvar_observation_matrix(

21 [[1, 2],

22 [3, 4],

23 [5, 6]], var_order=3

24 )

25 # ===> [[[1, 2, 0, 0, 0, 0],

26 # [3, 4, 0, 0, 0, 0],

27 # [5, 6, 0, 0, 0, 0]]]

28 ```

29 """

30 batch_shape = matrix.shape[:-2]

31 observation_size , latent_size = matrix.shape[-2:]

32 remaining_rows = tf.zeros(

33 tf.concat([batch_shape ,

34 [observation_size],

35 [(var_order -1) * latent_size]],

36 axis=-1),

37 dtype=dtype)

38 observation_matrix = tf.concat([matrix, remaining_rows], axis=-1)

39 return observation_matrix
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We define the class for the dynamic factor model incorporating the VAR approach
utilizing these functions. Our coding style aligns with the conventions in the state space
modeling classes, such as tfp.sts.AutoregressiveStateSpaceModel8.

1 # The class inherits from `tfp.distributions.LinearGaussianStateSpaceModel `.

2 class DynamicFactorVectorAutoregressiveStateSpaceModel(

3 tfd.LinearGaussianStateSpaceModel):

4 """State space model for dynamic factor models.

5

6 A state space model (SSM) posits a set of latent (unobserved) variables that

7 evolve over time with dynamics specified by a probabilistic transition model

8 `p(z[t+1] | z[t])`. At each timestep , we observe a value sampled from an

9 observation model conditioned on the current state, `p(x[t] | z[t])`. The

10 special case where both the transition and observation models are Gaussians

11 with mean specified as a linear function of the inputs, is known as a linear

12 Gaussian state space model and supports tractable exact probabilistic

13 calculations; see `tfp.distributions.LinearGaussianStateSpaceModel ` for

14 details.

15

16 In a dynamic factor model, the number of the latent size is smaller than

17 the observation size.

18

19 ```python

20 x[t] = coefficient x[t-1] + MultivariateNormal(0, state_noise_cov)

21 y[t] = loading_matrix x[t] + MultivariateNormal(0, observation_noise_cov)

22 ```

23

24 The system process is characterized by a matrix `coefficients ` whose size

25 of the first dimension determines the order of the process (how many

26 previous values it looks at), by `state_noise_cov `, the covariance matrix of

27 the state noise added at each step. The observation process is characterized

28 by a matrix `loading_matrix ` which determines the contribution of a state

29 variable to an observation variable , and by `observation_noise_cov `, the

30 covariance matrix of the noise for the observation process.

31

32 This is formulated as a state space model by letting the latent state encode

33 the most recent values; see 'Mathematical Details' below.

34

35 The parameters `coefficients ` is a (batch) tensor of shape `[order,

36 latent_size , latent_size `], and `loading_matrix `, `state_noise_cov ` and

37 `observation_noise_cov ` are each (a batch of) matrix. The batch shape of

38 this `Distribution ` is the broadcast batch shape of these parameters and

39 of the `initial_state_prior `.

40

41 #### Mathematical Details

42

8https://www.tensorflow.org/probability/api_docs/python/tfp/sts/
AutoregressiveStateSpaceModel

https://www.tensorflow.org/probability/api_docs/python/tfp/sts/AutoregressiveStateSpaceModel
https://www.tensorflow.org/probability/api_docs/python/tfp/sts/AutoregressiveStateSpaceModel
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43 The dynamic factor model implements a

44 `tfp.distributions.LinearGaussianStateSpaceModel ` with `latent_size = order*

ndims_latent ` and `observation_size = ndims_observation `. The latent state

vector encodes the recent history of the process, with the current value in the

topmost dimensions. At each timestep , the transition sums the previous values

to produce the new expected value, shifts all other values down by a dimension ,

and adds noise to the current value. This is formally encoded by the

transition model:

45

46 ```

47 transition_matrix = [ coefs[0], coefs[1], ..., coefs[order]

48 I, O, ..., O

49 O, I, ..., O

50 ...

51 O, O, ..., I, O ]

52 transition_noise ~ MN(loc=0., cov=state_noise_cov)

53 ```

54

55 The observation model simply extracts the current (topmost) value, and

56 optionally adds independent noise at each step:

57

58 ```

59 observation_matrix = [[loading_matrix , O, ..., O]]

60 observation_noise ~ MN(loc=0, cov=observation_noise_cov)

61 ```

62

63 #### Examples

64

65 A simple model definition:

66

67 ```python

68 dfm_model = DynamicFactorModelStateSpaceModel(

69 num_timesteps=50,

70 coefficients=[

71 [[ 0.8, -0.1],

72 [ 0.5, -0.2]],

73 [[ 0.3, 0.1],

74 [-0.2, 0.0]]

75 ],

76 loading_matrix=[

77 [1.0, 0.5],

78 [0.3, 0.2],

79 [0.1, 0.0]

80 ],

81 state_noise_cov=[

82 [1.0, 0.0],

83 [0.0, 1.0]

84 ],
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85 observation_noise_cov=[

86 [ 1.0, 0.3, -0.1],

87 [ 0.3, 0.4, 0.0],

88 [-0.1, 0.0, 0.1]

89 ],

90 initial_state_prior=tfd.MultivariateNormalDiag(

91 scale_diag=[1., 1., 1., 1.]))

92

93 y = dfm_model.sample() # y has shape [50, 3]

94 lp = dfm_model.log_prob(y) # log_prob is scalar

95 ```

96

97 """

98

99 def __init__(self,

100 num_timesteps ,

101 coefficients ,

102 loading_matrix ,

103 state_noise_cov ,

104 observation_noise_cov ,

105 initial_state_prior ,

106 name=None,

107 **linear_gaussian_ssm_kwargs):

108 """Build a state space model implementing a dynamic factor model.

109 Args:

110 num_timesteps: int. Number of time steps in the model.

111 coefficients: Tensor. Autoregressive coefficients.

112 loading_matrix: Tensor. Loading matrix.

113 state_noise_cov: Tensor. Covariance matrix for state noise.

114 observation_noise_cov: Tensor. Covariance matrix for observation

115 noise.

116 initial_state_prior: tfd.MultivariateNormal. Prior distribution for

117 initial state.

118 name: str. Optional name for the model.

119 **linear_gaussian_ssm_kwargs: Additional keyword arguments passed

120 to `tfd.LinearGaussianStateSpaceModel `.

121 """

122

123 parameters = dict(locals())

124 parameters.update(**linear_gaussian_ssm_kwargs)

125 del parameters["linear_gaussian_ssm_kwargs"]

126

127 with tf.name_scope("DynamicFactor") as name:

128

129 dtype = initial_state_prior.dtype

130

131 coefficients = tf.convert_to_tensor(

132 value=coefficients ,
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133 name="coefficients", dtype=dtype)

134 loading_matrix = tf.convert_to_tensor(

135 value=loading_matrix ,

136 name="loading_matrix", dtype=dtype)

137 state_noise_cov = tf.convert_to_tensor(

138 value=state_noise_cov ,

139 name="state_noise_cov", dtype=dtype)

140 observation_noise_cov = tf.convert_to_tensor(

141 value=observation_noise_cov ,

142 name="observation_noise_cov", dtype=dtype)

143

144 constant_offset = tf.convert_to_tensor(

145 value=constant_offset ,

146 name="constant_offset", dtype=dtype)

147

148 batch_shape = coefficients.shape[:-3]

149 order = coefficients.shape[-3]

150 latent_size = loading_matrix.shape[-1]

151

152 super(DynamicFactorVectorAutoregressiveStateSpaceModel ,

153 self).__init__(

154 num_timesteps=num_timesteps ,

155 transition_matrix=make_var_transition_matrix(coefficients),

156 # The transition noise must be an instance of

157 # `tfd.MultivariateNormalLinearOperator `.

158 transition_noise=tfd.MultivariateNormalTriL(

159 scale_tril=tf.linalg.LinearOperatorBlockDiag(

160 [tf.linalg.LinearOperatorFullMatrix(

161 tf.linalg.cholesky(state_noise_cov)),

162 tf.linalg.LinearOperatorZeros(

163 num_rows=(order -1)*latent_size ,

164 batch_shape=batch_shape)]).to_dense()

165 ),

166 observation_matrix=make_dfmvar_observation_matrix(

167 loading_matrix , order),

168 # The observation noise must be an instance of

169 # `tfd.MultivariateNormalLinearOperator `.

170 observation_noise=tfd.MultivariateNormalTriL(

171 scale_tril=tf.linalg.cholesky(observation_noise_cov)),

172 initial_state_prior=initial_state_prior ,

173 name=name)

174

175 self._parameters = parameters

Model Inference with MCMC As discussed in Section 6.3, it is necessary to con-
strain the parameter shapes of the dynamic factor model to ensure identifiability.
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For the loading matrix, we impose a condition requiring that the loading matrix
is composed of a lower-triangular matrix combined with a rectangular matrix. Con-
sequently, it is practical to define a function that constructs this matrix from a one-
dimensional array.

1 def fill_trapezoidal(x, ncols):

2 """Creates a (batch of) trapezoidal matrix from a vector of inputs.

3

4 Fills a tensor with trapezoidal , that is an upper triangular part and

5 a rectangular part.

6

7 Args:

8 x (tf.Tensor): The input tensor.

9 ncols (int): The number of columns for the rectangular part.

10

11 Returns:

12 tf.Tensor: A tensor with the upper triangular part followed by the

rectangular part.

13

14 Raises:

15 ValueError: If the input tensor's shape is not compatible with the

operation.

16

17 ### Example:

18 ```python

19 fill_tripezoidal(

20 x=[1, 2, 3, 4, 5, 6, 7, 8, 9],

21 ncols=3)

22 # ===> [[4, 0, 0],

23 # [6, 5, 0],

24 # [3, 2, 1],

25 # [7, 8, 9]]

26 ```

27 """

28 x = tf.convert_to_tensor(x, dtype=dtype)

29 batch_shape = x.shape[:-1]

30

31 ntri = ncols*(ncols+1) // 2

32

33 x_tril = x[..., :ntri]

34 tril = tfp.math.fill_triangular(x_tril)

35

36 x_rect = x[..., ntri:]

37 nrows_rect = x_rect.shape[-1] // ncols

38 rect = tf.reshape(x_rect, (*batch_shape , nrows_rect , ncols))

39

40 trapezoidal = tf.concat([tril, rect], axis=-2)

41
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42 return trapezoidal

43

44

45 def fill_trapezoidal_inverse(x):

46 """Creates a vector from a (batch of) trapezoidal matrix.

47

48 Reconstructs the original vector from a (batch of) trapezoidal matrix.

49

50 Args:

51 x: Tensor representing trapezoidal elements.

52

53 Returns:

54 x_flat: (Batch of) vector-shaped Tensor representing

55 vectorized trapezoidal elements from x.

56

57 Example:

58 ```python

59 fill_trapezoidal_inverse(

60 x=[[4, 0, 0],

61 [6, 5, 0],

62 [3, 2, 1],

63 [7, 8, 9]])

64 # ===> [1, 2, 3, 4, 5, 6, 7, 8, 9]

65 ```

66 """

67 x = tf.convert_to_tensor(x)

68

69 batch_shape = x.shape[:-2]

70 ncols = x.shape[-1]

71

72 x1 = tfp.math.fill_triangular_inverse(x[..., :ncols, :])

73 x2 = tf.reshape(x[..., ncols:, :],

74 tf.concat([batch_shape , [-1]], axis=0))

75 x_flat = tf.concat([x1, x2], axis=-1)

76

77 return x_flat

Given that the synthetic data consists of three observed variables and one of the
latent variables is set to two, the parameters in Equations (A.2), (A.3), and (A.5) are
specified as follows:

A1 =

[
a1,11 a1,12
a1,21 a1,22

]
, A2 =

[
a2,11 a2,12
a2,21 a2,22

]
, H1 =

h3 0

h2 h1

h4 h5

 , LR =

r4 0 0

r6 r5 0

r3 r2 r1

 .

(A.6)

The code to infer these parameters using class and functions defined above is given
below. The HMC inferece process written here refers to the tutorial given by the TFP
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developing team9, which should be read for further details.
1 num_timesteps = 100

2 order = 2

3 latent_size = 2

4 observation_size = 3

5

6 observed_values = tf.covert_to_tensor(observed_values , dtype=tf.float32)

7

8

9 def ssm_dfm():

10

11 coefficients_flat = yield tfd.MultivariateNormalDiag(

12 scale_diag=order*latent_size*latent_size*[1.])

13 coefficients = tf.reshape(coefficients_flat ,

14 (-1, order, latent_size , latent_size))

15

16 num_loadings = int(

17 latent_size * (latent_size + 1) / 2

18 + (observation_size - latent_size) * latent_size

19 )

20 factor_matrix_flat = yield tfd.HalfCauchy(

21 loc=num_loadings*[0.],

22 scale=num_loadings*[5.]

23 )

24 factor_matrix = fill_tripezoidal(

25 factor_matrix_flat , latent_size)

26

27 observation_noise_nondiag = yield tfd.CholeskyLKJ(

28 dimension=observation_size ,

29 concentration=3)

30 observation_noise_diag = yield tfd.HalfCauchy(

31 loc=observation_size*[0.],

32 scale=observation_size*[5.]

33 )

34 observation_noise_cov_chol = tf.linalg.diag(

35 observation_noise_diag) @ observation_noise_nondiag

36 observation_noise_cov = tf.matmul(

37 observation_noise_cov_chol ,

38 observation_noise_cov_chol ,

39 transpose_b=True)

40

41 batch_shape = coefficients_flat.shape[:-1]

42 state_noise_cov = tf.eye(latent_size ,

43 batch_shape=batch_shape)

44

9https://www.tensorflow.org/probability/examples/STS_approximate_inference_for_
models_with_non_Gaussian_observations

https://www.tensorflow.org/probability/examples/STS_approximate_inference_for_models_with_non_Gaussian_observations
https://www.tensorflow.org/probability/examples/STS_approximate_inference_for_models_with_non_Gaussian_observations
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45 initial_state_prior = tfd.MultivariateNormalDiag(

46 loc=0.0*tf.ones(order*latent_size),

47 scale_diag=1.0*tf.ones(order*latent_size))

48

49 yield DynamicFactorVectorAutoregressiveStateSpaceModel(

50 num_timesteps ,

51 coefficients ,

52 factor_matrix ,

53 state_noise_cov ,

54 observation_noise_cov ,

55 initial_state_prior ,

56 name="observed_values")

57

58 joint_model = tfd.JointDistributionCoroutineAutoBatched(ssm_dfm)

59

60 pinned_model = joint_model.experimental_pin(observed_values=observed_values)

61 constraining_bijector = (

62 pinned_model.experimental_default_event_space_bijector()

63 )

64

65 # Allow external control of sampling to reduce test runtimes.

66 num_results = 500

67 num_results = int(num_results)

68

69 num_burnin_steps = 1000

70 num_burnin_steps = int(num_burnin_steps)

71

72 sampler = tfp.mcmc.TransformedTransitionKernel(

73 tfp.mcmc.NoUTurnSampler(

74 target_log_prob_fn=pinned_model.unnormalized_log_prob ,

75 step_size=0.1),

76 bijector=constraining_bijector)

77

78 adaptive_sampler = tfp.mcmc.DualAveragingStepSizeAdaptation(

79 inner_kernel=sampler,

80 num_adaptation_steps=int(0.8 * num_burnin_steps),

81 target_accept_prob=0.75)

82

83 initial_state = constraining_bijector.forward(

84 type(pinned_model.event_shape)(

85 *(tf.random.normal(part_shape)

86 for part_shape in constraining_bijector.inverse_event_shape(

87 pinned_model.event_shape))))

88

89

90 # Speed up sampling by tracing with `tf.function `.

91 @tf.function(autograph=False, jit_compile=True)

92 def do_sampling():
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93 return tfp.mcmc.sample_chain(

94 kernel=adaptive_sampler ,

95 current_state=initial_state ,

96 num_results=num_results ,

97 num_burnin_steps=num_burnin_steps ,

98 trace_fn=None,

99 seed=123)

100 mcmc_samples_list = do_sampling()
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Sanity Check for MCMC Sampling To verify the results of the inference, we exam-
ine the parameter traces. The MCMC samples for the VAR coefficients, elements of the
loading matrix, and elements of the observation noise covariance matrix are illustrated
in Figures A.4, A.5, and A.6, respectively. The distribution modes for all parameters
closely approximate their true values, with the exceptions of h1 and h5. These parame-
ters correspond to the weights from xn(2) to yn(2) and from xn(2) to yn(3), respectively.
Given their lower assigned values compared to those of xn(1), accurately estimating their
posterior distributions may pose a challenge. However, the fact that the true values likely
fall within the main body of the distributions suggests that the estimations are, on the
whole, reasonably accurate.
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Figure A.4: The trace plots (left) and histograms (right) for the MCMC
samples of the VAR coefficients. The red line represents the true values.
The parameter names, shown in Equation (A.6), are indicated at the
upper left. The burnin steps are not illustraited.
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Figure A.5: The trace plots (left) and histograms (right) for the MCMC
samples of the loading matrix elements. The red line represents the true
values. The parameter names, shown in Equation (A.6), are indicated at
the upper left.
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Figure A.6: The trace plots (left) and histograms (right) for the MCMC
samples of the covariance matrix. The red line represents the true
values. The parameter names, shown in Equation (A.6), are indicated at
the upper left.

1 var_coefficients_mcmc = tf.reshape(

2 mcmc_samples_list_new[0],

3 (-1, order, latent_size , latent_size)

4 )

5 obs_matrix_mcmc = fill_tripezoidal(

6 mcmc_samples_list_new[1], latent_size)

7

8 obs_noise_cov_chol_mcmc = tfp.math.fill_triangular(mcmc_samples_list_new[2])

9 obs_noise_cov_mcmc = tf.matmul(

10 obs_noise_cov_chol_mcmc ,

11 obs_noise_cov_chol_mcmc ,

12 transpose_b=True

13 )

14 state_noise_cov = tf.eye(latent_size , dtype=tf.float32)

15

16 initial_state_prior = tfd.MultivariateNormalDiag(

17 loc=0.0*tf.ones(order*latent_size),

18 scale_diag=1.0*tf.ones(order*latent_size))

19
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20 ssm_dfm_mcmc = DynamicFactorVectorAutoregressiveStateSpaceModel(

21 num_timesteps=num_timesteps ,

22 coefficients=var_coefficients_mcmc ,

23 loading_matrix=obs_matrix_mcmc ,

24 state_noise_cov=state_noise_cov ,

25 observation_noise_cov=obs_noise_cov_mcmc ,

26 initial_state_prior=initial_state_prior

27 )

28

29 # Make filtered , predicted , and smoothed latent/obervation curves.

30 observed_values = tf.convert_to_tensor(observed_values , dtype=tf.float32)

31 (log_likelihoods_mcmc ,

32 filtered_means_mcmc , filtered_covs_mcmc ,

33 predicted_means_mcmc , predicted_covs_mcmc ,

34 observation_means_mcmc , observation_covs_mcmc) = ssm_dfm_mcmc.forward_filter(

35 observed_values)

36 smoothed_means_mcmc , smoothed_covs_mcmc = ssm_dfm_mcmc.backward_smoothing_pass(

37 filtered_means_mcmc , filtered_covs_mcmc ,

38 predicted_means_mcmc , predicted_covs_mcmc)

Figure A.7 shows the state variables estimated from the MCMC samples. The esti-
mated values for both xn(1) and xn(2) roughly match the true values, but the fluctuation
in xn(2) is larger than that in xn(1). This is because xn(1) serves as the regression curve
for yn(1), making error evaluation straightforward. In contrast, estimating xn(2) is more
challenging as it requires evaluating regression coefficients after removing its influence.
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Figure A.7: Estimated states and true states. The estimated states are
computed from the MCMC samples. The true states are represented by
the red curves.
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