AN X-RAY AND NEAR-INFRARED STUDY OF THE GALACTIC RIDGE X-RAY EMISSION

Kumiko Morihana

Department of Astronomy, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan morihana@astro.isas.jaxa.jp

December 2011

Abstract

The Galactic Ridge X-ray Emission (GRXE) is an apparently extended X-ray emission along the Galactic Plane, which has a thermal spectrum with characteristic Fe K line emission. The origin of the GRXE, whether it is a truly diffuse plasma or a sum of numerous dim X-ray point sources, had been a mystery for a long time. Recently, $\sim 80\%$ of the GRXE was finally resolved into dim X-ray point sources at around the Fe K-line energy band by the deepest observation using *Chandra X-ray Observatory* (Revnivtsev et al. 2009). Thus, it is now elucidated that the GRXE is primarily composed of dim point sources. There are some candidates of the point sources (cataclysmic variables [CVs] or late-type stars), but it is extremely difficult to constrain the nature of these sources from X-rays alone, because most of the sources have only a limited number of X-ray photons.

Thus, we combine near-infrared (NIR) data with the X-ray data in this thesis. We focus on revealing the nature of the Galactic X-ray point sources that primarily contribute to the GRXE Fe K-line emission, since Fe K-line is one of the most important parameters to characterize X-ray emission mechanisms. So far, two Galactic fields have been intensively studied, which are the "Revnivtsev field" ($l = 0.^{\circ}1$, $b = -1.^{\circ}4$) and the "Ebisawa field" ($l = 28.^{\circ}5$, $b = 0.^{\circ}0$). We use the both fields, but primarily the Revnivtsev field, since it is the most deeply exposed Galactic field by *Chandra X-ray Observatory* to date.

We divided all the detected sources in the Revnivtsev field into four sub-groups (Aa: hard and bright, Ab: hard and dim, B1: soft, and B2: medium) by their spectral colors and X-ray fluxes. We studied composite spectra of these groups, as well as individual spectra and variabilities of the bright sources. We found most bright sources in the group Aa have non-thermal spectra with *weak* Fe K line. On the other hand, composite spectra of the group Ab and B2 have *strong* Fe K lines, whereas iron line emission is hardly seen in B1. More than half the variable sources belong to the group B2. We obtained fractions of each population contributing to the total point-source flux in the Fe K band as follows (fractions to the 4–8 keV continuum and to the iron line): Aa (~44\%, ~18\%), Ab (~38\%, ~52\%), B1 (~2\%, ~0\%) and B2 (~16\%, ~30\%).

Combining the 2MASS (Two Micron All Sky Survey) and our data taken at the Infra-Red Survey Facility telescope in South Africa, we identified ~11% of the X-ray sources in the Revnivtsev field with NIR. None of the group Aa sources have NIR counterparts in K_s band, which suggests that most of the group Aa sources are background AGNs attenuated by a large Galactic extinction. Most NIR identified sources in the group Ab have large extinction, which indicates that these sources are located rather at large distances, suggesting that they are intrinsically X-ray bright accreting white dwarfs. On the other hand, NIR identified sources in the groups B1 and B2 show a wide range of extinction, suggesting that these sources are located at various distances, including X-ray faint nearby late-type stars.

We obtained the NIR spectra of the sources in groups Ab, B1 and B2 in K_s band using the Multi-Object Infrared Camera and Spectrograph (MOIRCS) of Subaru telescope both in the Revnivtsev field and the Ebisawa field. The NIR spectra are classified into the following three types: spectra with (1) HI (Br γ) and CO absorption lines, (2) CO absorption lines, and (3) HI (Br γ) and HeII emission lines. (1) and (2) are signatures of the late-type stars and type (3) is a signature of the accretion disk in CVs. Most Ab sources are in type (1) or (2), and only 2 Ab sources are in type (3). From these results, we propose that most sources in the group Ab are detached systems consisting of a white dwarf that does not have a NIR line emitting accretion disk (pre-CVs), while a small number of CVs are included. All the sources in B1 and B2 are in type (1) and (2), thus they are considered to be late-type stars.

From these X-ray and NIR results, we propose nature of the sources in each group as follows: (Aa) mainly background AGNs, (Ab) mainly pre-CVs and a small fraction of CVs, (B2) mainly late-type stars on *flare*, and (B1) mainly late-type stars on *quiescence*.

We have confirmed that the GRXE is primarily explained with superposition of the X-ray point sources, and propose that these point sources consist of background AGNs, CVs, detached systems consisting of a white dwarf (pre-CVs), late-type stars on *flare*, and late-type stars on *quiescence*. Pre-CVs are the primary contributor to the GRXE iron line emission, and late-type stars on *flare* are the secondary. X-ray properties of the pre-CVs are currently hardly understood, but our study suggests that such dim, unknown X-ray sources are filling the Galactic plane, constituting a major part of the GRXE.

Contents

1 Introduction

2	Rev	view		21
	2.1	Galact	ic Ridge X-ray Emission	22
		2.1.1	Discovery of the GRXE and its Properties	22
		2.1.2	Proposed Origin of the GRXE	22
			Diffuse Scenario	24
			Point Source Scenario	26
	2.2	X-ray	and NIR Properties of the Major Source Populations	29
		2.2.1	Late-type Stars	29
			X-ray Emission	29
			NIR Emission	31
		2.2.2	Cataclysmic Variables	34
			X-ray Emission	35
			NIR Emission	37
		2.2.3	Detached Systems Consisting a White Dwarf	40
		2.2.4	Active Galactic Nuclei	40
	2.3	Scope,	Purpose, and Strategy of this thesis	42

3	Obs	serving Facilities 45		
	3.1	Chand	dra/ACIS	46
		3.1.1	Spacecraft– <i>Chandra</i>	46
		3.1.2	Telescope — High Resolution Mirror Assembly (HRMA)	47
			Configuration	47
			Effective Area	48
			Point Spread Function	48
		3.1.3	Instrument — Advanced CCD Imaging Spectrometer (ACIS)	49
			Configuration	49
			Quantum efficiency	51
			Energy Resolution	51
			Event Grades	53
			Telemetry Format	53
	3.2	IRSF/	/SIRIUS	55
		3.2.1	Telescope — Infra Red Survey Facility (IRSF) 1.4 m Telescope $\hfill .$	55
		3.2.2	Instrument — Simultaneous InfraRed Imager for Unbiased Survey (SIRIUS)	57
	3.3	Subar	u/MOIRCS	58
		3.3.1	Telescope — Subaru	58
		3.3.2	Instrument—Multi-Object InfraRed Camera and Spectrograph (MOIRC	<mark>S)</mark> 60
4	Obs	servati	ons and Data Reduction	61
	4.1	X-ray	Imaging and Spectroscopy	62
		4.1.1	Observations	62
		4.1.2	Data Reduction	62

	4.2	NIR I	maging
		4.2.1	Observations
		4.2.2	Data Reduction
	4.3	NIR S	pectroscopy
		4.3.1	Target Selection 67
			Revnivtsev Field
			Ebisawa Field
		4.3.2	Observations
		4.3.3	Data Reduction
5	Dat	a Ana	lysis and Results 87
	5.1	X-ray	Imaging and Spectroscopy
		5.1.1	Source Extraction
			Detection Rate
		5.1.2	Photometry
		5.1.3	Variability
		5.1.4	Spectroscopy 91
		5.1.5	Total and All Point Source combined spectra
	5.2	NIR I	maging
		5.2.1	Source Extraction
		5.2.2	Astrometry
		5.2.3	Photometry
		5.2.4	X-ray and NIR Correlation
	5.3	NIR S	pectroscopy
		5.3.1	Spectral Extraction

		5.3.2	Line Identification	101
6	Dise	cussion	15	111
	6.1	X-ray	Properties of the Point Sources	112
		6.1.1	Grouping by X-ray Colors	112
		6.1.2	Grouping by X-ray Flux	113
		6.1.3	X-ray Photometric Properties	118
			Source Variability	118
			$\log N - \log S$ curve	118
		6.1.4	X-ray Spectroscopic Properties	119
			Spectral Fitting	119
	6.2	NIR P	Photometric Properties of the Point Sources	125
			NIR Identification Fraction	125
			Color-Color Diagram	126
	6.3	NIR S	pectroscopic Properties of the Point Sources	127
	6.4	Popula	ation of the Point Sources	128
		6.4.1	Group Aa sources	129
		6.4.2	Group Ab sources	130
		6.4.3	Group B1 sources	130
		6.4.4	Group B2 sources	131
			Point Source Populations Constituting the GRXE	131
7	Con	clusio	ns	133
A	Cho	indra S	Sources List	143

В	Thermal Spectral Fitting	205
С	Power-law Spectral Fitting	209
D	X-ray Light curves of Variable Sources	213
E	Chandra–SIRIUS Counterpart Sources list	233

List of Figures

1.1	X-ray intensity contour map of the GP	17
2.1	GRXE spectrum with <i>Temma</i>	23
2.2	GRXE spectrum around the Fe K lines	23
2.3	X-ray image of two <i>Chandra</i> observation	25
2.4	The $\log N$ -log S curves in the Ebisawa field $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	25
2.5	X-ray intensity map of of the sky	26
2.6	GRXE spectrum in the Revnivtsev field	27
2.7	Wide-band GRXE spectrum	28
2.8	Roche lobe and types of close binaries	30
2.9	X-ray spectra of late-type stars	31
2.10	K -band spectra of late-type stars $\ldots \ldots \ldots$	32
2.11	Schematic picture of CVs	35
2.12	Example spectrum of non-magnetic CVs	36
2.13	X-ray spectrum of IPs XY Arietis	36
2.14	Sample spectrum of polar	37
2.15	NIR spectra of non-magnetic CVs	38
2.16	NIR spectra of IPs	39

LIST OF FIGURES

2.17	X-ray spectrum of a detached system	40
2.18	NIR spectrum of pre-CVs	41
2.19	Sample spectrum of AGNs	42
3.1	Schematic view of the <i>Chandra</i> satellite	46
3.2	Four nested HRMA mirror sets and associated structures	47
3.3	HRMA effective areas versus X-ray energy at the optical axis	48
3.4	Encircled energy fraction	49
3.5	Configuration of the ACIS array	50
3.6	HRMA effective area	52
3.7	ACIS pre-launch energy resolution	53
3.8	ACIS and ASCA Grades	54
3.9	IRSF 1.4 m telescope	56
3.10	Specification of SIRIUS	57
3.11	Transmission rate of SIRIUS filter	58
3.12	Schematic view of the Subaru telescope	59
3.13	Picture of the MOIRCS	60
4.1	Smoothed and exposure-corrected X-ray image of the study field	63
4.2	Sample SIRIUS $K_{\rm s}$ -band image $\ldots \ldots \ldots$	66
4.3	The relation between ME and HR	71
4.4	Mask designs in the Revnivtsev field	76
4.5	Visibility plot of our observations	81
4.8	Example of a raw data of Subaru observation	81
4.6	MOIRCS mask layout in the Revnivtsev field	82

LIST OF FIGURES

4.7	MOIRCS mask layout in the Ebisawa field	83
4.9	Example of a dark subtracted frame	84
4.10	Example of frame A and frame B	84
4.11	Example of A–B image	85
5.1	Radial profile of the surface number densities of the detected X-ray point sources	89
5.2	Detection Limit of X-ray Sources	90
5.3	Histogram of the median energies	91
5.4	Relation between the two X-ray flux estimation	92
5.5	Comparison of the total spectrum and the point sources spectrum \ldots .	96
5.6	Astrometric consistency	98
5.7	Photometric consistency between the SIRIUS and 2MASS	99
5.8	Histogram of the median energies 1	100
5.9	Example of extraction of one-dimensional spectrum	102
5.10	Night-sky OH spectra for R1300 grism of MOIRCS 1	103
5.11	Example of the night-sky OH emission features in our data	103
5.12	Normalized K_s -band spectra	104
5.13	Example of normalized $K_{\rm s}$ -band spectra in the Ebisawa field $\ldots \ldots \ldots 1$	108
6.1	X-ray color-color diagrams	14
6.2	X-ray color-color diagrams in the Ebisawa field	15
6.3	Combined spectra of X-ray point sources	16
6.4	Combined spectra of different flux ranges	16
6.5	Equivalent width	17
6.6	Histogram of the median energies of each group	17

LIST OF FIGURES

6.7	Quantile color-color diagrams	118
6.8	$\log N {-} \log S$ curves of the point sources detected in the Revnivtsev field $\ . \ .$	120
6.9	Composite spectra and spectral fitting	122
6.10	NIR color-color diagram of the NIR sources	126
6.11	Histogram of the median energy of NIR identified sources	127
B.1	Thermal spectral fittings for X-ray sources	206
C.1	Power-law spectral fittings for X-ray sources	210
D.1	Concatenated light curves for most variable sources	214

List of Tables

1.1	Study fields and data sets	19
2.1	Spectral features in K band \ldots	34
3.1	Nominal Optical Blocking Filter	51
3.2	Comparison of SIRIUS and 2MASS	56
4.1	X-ray Observation Log	64
4.2	NIR (SIRIUS) Observation Log	65
4.3	Source Priority in the Revnivtsev field	68
4.4	Target sources in the Revnivtsev field	69
4.5	Target source list in relaxed conditions in the Revnivtsev field	70
4.6	Target Sources in the Ebisawa field	72
4.6	Target Sources in the Ebisawa field	73
4.6	Target Sources in the Ebisawa field	74
4.7	Subaru observation log	80
5.1	Thermal fittings for the X-ray sources with source counts over 500 \ldots .	93
5.2	Power-law fitting for the X-ray sources with source counts over 500 \ldots .	94
5.3	NIR detected sources	97

LIST OF TABLES

5.4	List of K-band features	109
6.1	Best-fit parameters for spectral fittings	121
6.2	Parameters of the composite spectra and total point-source spectrum in the iron energy band	123
6.3	Power-law fitting of the group Aa bright sources	124
6.4	NIR IDed and unID fractions	125
6.5	Classification of population	129

Chapter 1

Introduction

Electro-magnetic emission from the Galactic Plane (GP) in our Galaxy has been observed in various wavelengths. In the 1980's, X-ray emission from the GP was discovered, which is called the Galactic Ridge X-ray Emission (GRXE; Worrall et al. 1982). The GRXE is apparently extended emission of low surface brightness along the inner part of the GP $(|l| < \pm 45^{\circ}, |b| < \pm 1^{\circ}$: Figure 1.1). It has a thermal spectrum below ~10 keV with a strong 6.7 keV Fe emission line (Koyama et al. 1986, Koyama 1989a), and a power-law spectrum above ~10 keV (e.g., Yamasaki et al. 1997).

Figure 1.1: X-ray intensity contour map at the GP in 3–20 keV by the *Rossi X-ray Timing Explorer* satellite (Revnivtsev et al. 2006). This map shows that there are many bright sources and underlying unresolved emission. The total luminosity of the GRXE is about $\sim 10^{38}$ ergs cm⁻² s⁻¹.

Origin of the GRXE has been a mystery for a long time. A long-standing debate has been whether it is a truly diffuse plasma or the sum of unresolved X-ray point sources. If the GRXE is a diffuse plasma, the GP is filled with a thermal plasma of $\sim 10^7$ K. However, our Galaxy does not have enough gravity to bound such a high-temperature thermal plasma (Warwick et al. 1985). Thus, it requires a mechanism to maintain the thermal plasma in our Galaxy. On the other hand, if the GRXE is the sum of unresolved X-ray point sources, it suggests that there are numerous dim point-like X-ray sources that have not been resolved yet.

In order to answer the question, many X-ray observations have been carried out. Two fields are intensively studied : the Revnivtsev field ($l = 0.^{\circ}1, b = -1.^{\circ}4$; Revnivtsev et al. 2009) and the Ebisawa field ($l = 28.^{\circ}5, b = 0.^{\circ}0$; Ebisawa et al. 2005). Recently, the *Chandra* X-ray Observatory brought a revolution in the study of the GRXE with its unprecedented spatial resolution of 0.6" at the on-axis position. Deep X-ray observations were made in both the Ebisawa ($\sim 100 \text{ ks} \times 2$; Ebisawa et al. 2001, 2005) and Revnivtsev ($\sim 900 \text{ ks}$; Revnivtsev et al. 2009) fields. In the latter study, which is the deepest X-ray observations ever made in the GP, Revnivtsev et al. (2009) claimed that $\sim 80\%$ of the Fe line emission was resolved into point-like sources, which strongly favors the scenario that the GRXE is made up of numerous unresolved point-like sources.

If the GRXE is composed of unresolved point-like sources, new questions arise. What are the populations of these dim X-ray point sources? Which class of sources contribute to the Fe emission lines of the GRXE most? These are the questions that we attempt to address in this thesis. We do not know the nature of the majority of the dim X-ray point-like sources resolved in the *Chandra* observations because most of these sources produce only a limited number of photons. Thus, we combine near infrared (NIR) data with the X-ray data in this thesis. The NIR emission has almost the same transmission power as the X-rays into the deep interstellar extinction toward the GP and yields a much larger number of photons to reveal the nature of these dim X-ray sources.

In this thesis, we focus on the two regions, the Revnivtsev field and the Ebisawa field, but mainly on the Revnivtsev field, since it is the deepest exposed Galactic field. In the two fields, we assemble both the X-ray and NIR data, many of which were taken as the original data of this thesis. We refer to Ebisawa et al. (2005) for the X-ray and NIR imaging data in the Ebisawa field. Table 1.1 shows the dataset and observatory/instruments used in this thesis.

The plan of this thesis is as follows. We review the GRXE and set the historical context of this thesis in Chap. 2. In Chap. 3, the basic features of the X-ray and NIR telescopes and instruments used in this thesis are presented. The observations and the data reduction are described in Chap. 4 and the data analysis and results are in Chap. 5. In Chap. 6, we discuss population of the dim X-ray sources constituting the GRXE based on the X-ray and

	Revnivtsev field	Ebisawa field
X-ray	$Chandra/ACIS^{a}$	$Chandra/ACIS^{b}$
NIR imaging	$\rm IRSF/SIRIUS^{a}$	$\rm NTT/SofI^{b}$
NIR spectroscopy	$Subaru/MOIRCS^a$	Subaru/MOIRCS ^a

Table 1.1: Study fields and data sets

^a The data presented in this work.

^b The data presented in Ebisawa et al. (2005).

NIR results. Finally, we summarize major findings of this study in Chap. 7.

CHAPTER 1. INTRODUCTION

Chapter 2

Review

In this chapter, we review historical background of the study of the GRXE. We also review X-ray and NIR properties of major Galactic point source populations that might contribute to the GRXE.

Contents

2.1	Gala	actic Ridge X-ray Emission	22
	2.1.1	Discovery of the GRXE and its Properties	22
	2.1.2	Proposed Origin of the GRXE	22
2.2	X-ra	${\bf y}$ and NIR Properties of the Major Source Populations $~$.	29
	2.2.1	Late-type Stars	29
	2.2.2	Cataclysmic Variables	34
	2.2.3	Detached Systems Consisting a White Dwarf	40
	2.2.4	Active Galactic Nuclei	40
2.3 Scope, Purpose, and Strategy of this thesis			
2.3	2.2.4 Active Galactic Nuclei .2.3 Scope, Purpose, and Strategy of this thesis		

2.1 Galactic Ridge X-ray Emission

2.1.1 Discovery of the GRXE and its Properties

The GRXE was discovered soon after the beginning of the X-ray astronomy by the *HEAO-1* satellite (Worrall et al. 1982). After the discovery, the *EXOSAT* satellite carried out a Galactic Plane (GP) survey, and found that the GRXE extends along the GP ($|l| < 40^{\circ}$, $|b| < 10^{\circ}$) with a total luminosity of 2×10^{38} ergs s⁻¹ in 2–6 keV (Warwick et al. 1985). The *Temma* satellite found that the GRXE spectrum has a strong Fe K line around 6.7 keV, which indicates the existence of thermal plasma of $k_{\rm B}T = 5$ –10 keV (Koyama et al. 1986, Koyama 1989b). The *Ginga* satellite mapped the intensity of the Fe K line and found that the GRXE distribution is represented by the sum of an exponential disk and spiral arm components (Koyama et al. 1989, Yamauchi et al. 1990; Figure 2.1). The scale height of the disk component is ~100 pc with a radius of ~4 kpc. The spiral arm component is extended from $l = -30^{\circ}$ to $l = 30^{\circ}$ (Yamauchi & Koyama 1993). The *Ginga* satellite also carried out GRXE observations above 10 keV from $l = -20^{\circ}$ to $l = 40^{\circ}$. It has a power-law spectrum and its luminosity in 3–16 keV is 2×10^{38} ergs s⁻¹ (Yamasaki et al. 1997).

After that, many X-ray satellites performed observations of the GRXE. The Suzaku satellite carried out observations (~100 ks) in the Ebisawa field. Thanks to the low background and modest spectral resolution of Suzaku, it resolved the Fe K line into three narrow K α emission lines for the first time, which are neutral or low-ionized Fe (6.4keV), He-like Fe XXV (6.67 keV), and H-like Fe XXVI (7.0 keV) as shown in Figure 2.2. While He-like and H-like Fe K lines can be explained by collisional ionization equilibrium, the neutral 6.4 keV Fe K line is not expected from thermal plasma but from fluorescence by low-ionized optically thick matter. The equivalent widths of Fe K lines are 80 ± 20 eV (the neutral), 330 ± 40 eV (He-like), and 70 ± 30 eV (H-like), respectively (Ebisawa et al. 2005).

2.1.2 Proposed Origin of the GRXE

In order to know origin of the GRXE, two approaches have been taken: (a) shallow and wide field observations like the ASCA GP survey programs (e.g., Sugizaki et al. 2001) and (b) deep and narrow field observations (Ebisawa et al. 2001, 2005, Revnivtsev et al. 2009). Despite these intensive studies, origin of the GRXE has been a mystery for a long time since its discovery. There have been two qualitative ideas to explain the origin of the GRXE:

Figure 2.1: GRXE spectrum by stacking eight observations at the GP ($280^{\circ} < l < 340^{\circ}, -5^{\circ} < b < 5^{\circ}$) with *Temma* (Koyama et al. 1986). Crosses show the observed data and curves shows the best-fit continuum (bremsstrahlung) and the Fe K line at 6.7 keV.

Figure 2.2: GRXE spectrum around the Fe K lines in the Ebisawa field with the *Suzaku* satellite (Ebisawa et al. 2008). The spectrum was fitted by a power-law continuum and three narrow Gaussian lines.

(1) diffuse scenario (Ebisawa et al. 2001, Ebisawa et al. 2005) and (2) point source scenario (Revnivtsev et al. 2006, Revnivtsev et al. 2009). The former is that the GRXE is diffuse X-ray-emitting plasma that fills the interstellar space. The latter is that the GRXE is composed of unresolved dim X-ray point sources. Below, we describe each scenario in more detail.

Diffuse Scenario

As a shallow and wide field observation, the ASCA satellite carried out the GP survey $(|l| \leq 45^{\circ}, |b| \leq 0.4^{\circ})$ and detected more than 200 new X-ray point sources brighter than 2×10^{-13} ergs cm⁻² s⁻¹ in 2–10 keV. In addition, the the cumulative source number versus flux (log N–log S) curve was made to study the contribution of X-ray point sources to the GRXE, which was found unaccountable only by X-ray point sources above the flux limit. After that, the XMM-Newton satellite carried out a GP survey and made a log N–log S curve brighter than 10^{-14} ergs cm⁻² s⁻¹ in 2–10 keV (Hands et al. 2004). It detected more X-ray point sources than the ASCA survey, but the GRXE was not explained entirely by the detected point sources.

Under such circumstances, the *Chandra* X-ray observatory was launched, which is an ideal tool to investigate even fainter X-ray point sources with its unprecedented spatial resolution of ~0.6" at the optical axis (Weisskopf et al. 2002). Using *Chandra*, long GRXE observations of two overlapping regions with a 100 ks exposure each were carried out at (l, b) = (28.°5, 0.°0) by Ebisawa et al. (2001), which we call the Ebisawa field (Figure 2.3). In the observations, *Chandra* detected 274 new X-ray point sources down to ~3×10⁻¹⁵ ergs cm⁻² s⁻¹ in 2–10 keV. The log *N*–log *S* curve was made, which revealed that the integrated flux of all the detected X-ray point source can only explain ~10% of the total flux of the GRXE in 2-10 keV (Ebisawa et al. 2001, Ebisawa et al. 2005, Figure 2.4). If this log *N*–log *S* curve is extrapolated toward the fainter end below the detection limit, it could not explain 100% of the GRXE. Therefore, they concluded that at least a part of the GRXE was a truly diffuse plasma.

If the GRXE is a truly diffuse plasma, it raises a new question. As the GRXE is thermal plasma of $k_{\rm B}T = 5-10$ keV, its energy density is ~10 eV cm⁻³, which is higher by an order than that of the interstellar medium, cosmic-rays, and Galactic magnetic field. Such a hightemperature plasma cannot be maintained by the gravity of our Galaxy. Thus, if the diffuse scenario is correct, we need a mechanism to continuously refill such hot plasma. Supernova explosions are such candidates to generate high-temperature plasmas. However, a required

Figure 2.3: X-ray image of two *Chandra* observations in the Ebisawa field (200 ks in total). The pseudocolor image shows soft X-rays in 0.5–2 keV (red), medium X-rays in 2–4 keV (green), and hard X-rays in 4–8 keV (blue). The image was smoothed to show X-ray point sources and diffuse emission clearly (Ebisawa et al. 2005).

Figure 2.4: The $\log N - \log S$ curves of the sources constituting the GRXE with *Chandra* (black histogram) and the detected sources in the Ebisawa field (red) in 2–10 keV (Ebisawa et al. 2005). The 90% error regions are shown in yellow. The number of hypothetical point sources that would account for 100% of the GRXE is shown in green.

number of supernovae to maintain the GRXE is 1 per several decades in our Galaxy (Yamasaki et al. 1997), which exceeds our understanding of the rate of the supernova explosion. Another proposed candidate is magnetic activity in the interstellar medium (Tanuma et al. 1999). This model explains the thermal plasma is heated by magnetic reconnection in the interstellar space. Yet another mechanism is the charge exchange process between cosmic-ray and interstellar medium. In this model, Fe emission lines are produced Fe ions undergoing charge exchange when they impinge upon the interstellar medium (Tanaka 2002).

Point Source Scenario

On the other hand, point source scenario claims that the GRXE consists mostly of faint X-ray point sources; e.g., cataclysmic variables (CVs), and X-ray active late type stars. CVs are binary systems that consist of a white dwarf and a late-type star (details in § 2.2). X-ray active late type stars include active binaries consisting of two late-type stars such as RS CVn, as well as single late-type stars. Such X-ray active stars often contain rapidly rotating stars that cause frequent flaring.

Figure 2.5: (Top) RXTE/PCA X-ray intensity map of the sky around the GP (3–20 keV, Revnivtsev et al. 2006). The GRXE is seen along the GP with bright point sources. Red contours show *COBE* NIR 3.5 μ m map; the lowest contour level corresponds to an X-ray intensity of 10^{-11} ergs cm⁻² s⁻¹ deg⁻². (Bottom) the same RXTE/PCA map in which rescaled NIR intensity is subtracted. Only bright NIR sources remain.

The *RXTE* satellite carried out extensive scan observations of the Galactic plane, which yielded an intensity map of the GRXE in 3–20 keV (Figure 2.5 top). As shown in Figure 2.5 bottom, only bright X-ray sources remain after subtracting a rescaled NIR 3.5 μ m map from

the observed X-ray brightness map. It shows that the GRXE intensity is proportional to the NIR 3.5 μ m intensity distribution. Since the NIR 3.5 μ m emission is considered to represent the stellar population (mainly late-type main-sequence stars), this correlation suggests the stellar origin of the GRXE. Revnivtsev et al. (2006) proposed that the GRXE is resolved into X-ray point sources at ~10⁻¹⁶-10^{-16.5} ergs cm⁻² s⁻¹ in 2–10 keV.

After that, the *Chandra* satellite carried out the longest observation (~900 ks) at $(l, b) = (0.^{\circ}0, -1.^{\circ}4)$ (Revnivtsev et al. 2009), which we call the Revnivtsev field. They detected 473 X-ray point sources in the central (circle of radius 2.56 arcmin) of the field and revealed that ~80% of the GRXE flux around the Fe K line was explained by X-ray faint point sources (Revnivtsev et al. 2009, Figure 2.6).

Figure 2.6: (Top) The GRXE spectrum extracted in the center region of the Revnivtsev field. Black blue, and red symbols indicate the total, resolved, and unresolved emission. (Bottom) Fraction of the detected X-ray point sources.

Wide-band GRXE spectra by 18 pointing observations of *Suzaku* (exposure time : $\sim 10^6$ s) were studied in (Yuasa 2011). The spectrum is represented by two thermal plasma models, in which soft X-ray emission has a plasma temperature of 1.2–1.5 keV and hard X-ray emission (Figure 2.7). The former is typical for X-ray active late-type stars. This result suggests that the wide-band GRXE spectrum can be explained by a combination of late-type stars and WD.

Figure 2.7: Wide-band GRXE spectrum by *Suzaku* in 2–50 keV. Black crosses are observed spectrum. The spectrum was fitted with optically-thin thermal model (magenta) and the Intermediate Polar model (orange). Red curves are the sum of all the model components. Solid, dashed, and dotted gray curves show the foreground diffuse soft X-ray emission, the cosmic X-ray background, and K α emission line from neutral 6.4 keV Fe K line (Yuasa 2011).

As seen above, the point source scenario is recently considered more likely for the origin of the GRXE. If the origin of the GRXE is mostly point sources, it raises a new question: *What are the major populations of these faint X-ray point sources?* In this thesis, we study individual faint X-ray point source in order to know their populations.

2.2 X-ray and NIR Properties of the Major Source Populations

In this subsection, we review general X-ray and NIR properties of the major source populations that are considered to contribute to the GRXE. They are late-type stars, cataclysmic variables, detached systems including white dwarfs, and active galactic nuclei.

2.2.1 Late-type Stars

In general, stars are classified into two types: the early-type and the late-type stars. The former has a relatively high mass (>10 solar mass) and a short life, while the latter has a low mass (< 1 solar mass) and a long life. We focus on the late-type stars because stars of this type are overwhelmingly numerous compared to the early-type ones. The energy source is the nuclear fusion in the core. The late-type stars spend billions of years fusing hydrogen to helium via the proton-proton chain. When a star evolves and its core-supply of the hydrogen disappears, the core begins to collapse and the outer layer expands (the luminosity begins to increase). Such stars are called giants.

Late-type stars exist alone or in binary systems. By the stellar size and distance between the two stars, binaries are classified into three types: detached binary systems (both stars are smaller than the Roche lobe), semi-detached binary systems (one star fills its Roche lobe but the other does not), and contact binary systems (both stars fill their Roche lobe and essentially in contact), as shown in Figure 2.8. In this thesis, we do not distinguish X-ray emitting *single* late-type stars and *binary* late-type stars.

X-ray Emission

X-rays of late-type stars are emitted by hot corona. Late type stars in X-rays have two states, flare state and quiescence state. Flare occurs by a sudden release of energy via magnetic reconnection on the stellar surface. The flare releases a large amount of energies in X-rays, making an X-ray luminosity of $10^{30}-10^{31}$ ergs s⁻¹ (Strassmeier et al. 1993). On quiescence, on the other hand, X-ray luminosities are in $10^{29}-10^{30}$ ergs s⁻¹ (Pandey & Singh 2012).

X-ray spectra from late-type stars are characterized by a thermal, optically thin plasma

Figure 2.8: Three types of close binaries, classified by stellar and Roche lobe sizes (Kopal 1959).

model with two (or multi–) temperatures. On *flare*, the late-type stars can have high temperatures from several keV to >10 keV. Such hot, thermal plasma spectra necessarily accompany prominent Fe K emission lines (6.7 keV line from He-like and 7.0 keV line from H-like ions, respectively). Figure 2.9 shows X-ray spectra of UX Ari on *quiescence* and on *flare*. On *flare*, they have a strong Fe K line (6.7 keV), and the highest temperature is ~18.9 keV (Güdel et al. 1999). Such a high temperature on *flare* is common for other late-type stars. For example, II Peg, too, has a temperature as high as ~18 keV on *flare* (Osten et al. 2007). On *quiescence*, the late-type star spectra have lower temperatures than several keV, and the Fe K-lines are insignificant (Figure 2.9). For example, equivalent width of the Fe K line (6.7 keV and 7.0 keV lines merged) is ~560 eV on *flare* and less than ~270 eV on *quiescence* in the case of UX Ari (Tsuru et al. 1989).

Figure 2.9: X-ray spectra of a late-type star (UX Ari) with ASCA (Güdel et al. 1999). The bottom spectrum is on *quiescence* and the others are on *flare*.

NIR Emission

Figure 2.10 shows examples of medium resolution NIR (2.15–2.35 μ m) spectra of late-type stars (from F-type to M-type; Ali et al. 1995). Each spectrum has different absorption lines based on surface temperatures. Major absorption lines are listed in Table 2.1.

Figure 2.10: Examples of normalized *K*-band spectra of late-type stars (spectral type F, G, K, and M). All prominent features are shown in the top (Ali et al. 1995).

Figure 2.10: Continued.

Spectral type	Absorption lines
F	HI Br γ (2.16 μ m)
G	HI Br γ (2.16 μ m)
Κ	HI Br γ (2.16 μ m), CaI (2.26 μ m; triplet),
	MgI (2.28 μ m), CO (2.29 μ m, 2.32 μ m, 2.35 μ m, 2.38 μ m)
Μ	NaI (2.20 μ m; doublet), Ca I (2.26 μ m; triplet),
	MgI (2.28 $\mu\mathrm{m}),$ CO (2.29 $\mu\mathrm{m},$ 2.32 $\mu\mathrm{m},$ 2.35 $\mu\mathrm{m},$ 2.38 $\mu\mathrm{m})$

Table 2.1: Spectral features in K band.

2.2.2 Cataclysmic Variables

Cataclysmic variables (CVs) are thought to be one of the population constituting the GRXE in the hard band. CVs are in semi-detached binary systems consisting of a white dwarf (WD) as the primary and a late-type star as the secondary. In the binary systems, when the latetype star fills its Roche lobe, the gas around the late-type star overflows to the WD via the Lagrange point, then mass accelerates to the WD (Figure 2.11). This process is called Roche lobe overflow. Accreting matter with significant angular momentum is considered to form an accretion disk.

Based on the strength of the magnetic field of the WD, CVs are divided into two subclasses: (1) non-magnetic CVs and (2) magnetic CVs. Non-magnetic CVs do not have sufficiently strong magnetic field to dominate the accretion flow. Thus, the accretion materials form an accretion disk which reaches to the white dwarf surfaces (Warner 1995). In addition, non-magnetic CVs have strong variability. They are further classified into several sub-groups according to their properties. For examples, one of the sub-groups, dwarf novae, show two states: the quiescent state and the outburst state. The former state is that the accretion disk is mostly made by neutral H. The latter state is that the accretion disk in mostly made by ionized H, which shows high surface density, mass accretion rate, and viscosity. On the other hand, magnetic CVs have strong magnetic fields, which dominates the accretion flow, so that the accretion disks are considered to be truncated before reaching the white dwarf surfaces. When accretion flow falls into a WD, a strong shock occurs at the WD surface. Then, the accretion materials turn into a hot plasma of 10^8 K. Magnetic CVs are also further classified into two subclasses (intermediate polars and Polars) based on the difference of the magnetic field strength. The intermediate polars (IPs) have 10^5-10^7 G and polars have 10⁷-10⁹ G. Non-magnetic CVs and magnetic CVs can be observed by X-rays.

Figure 2.11: Schematic picture of CVs in the orbital plane. Cool star fills its Roche lobe, and a gas stream flows on to the accretion disk of the WD (Hoffmeister & Kholopov 1985).

X-ray Emission

In non-magnetic CVs, when the gas transfers from the secondary to the primary, it carries angular momentum and makes an accretion disk around the WD. The accretion disk extends to the surface of the WD, then optically-thin plasma of $\sim 10^8$ K is created due to a strong frictional force at the boundary layer, emitting hard X-rays. Non-magnetic CVs have thermal spectra with three Fe K lines from neutral or low-ionized ions (6.4 keV), from He-like ions (6.7 keV), and from H-like ions (7.0 keV). Typical equivalent widths of the three Fe lines are ~ 50 eV (a neutral), ~ 130 eV (He-like), and ~ 60 eV (H-like), respectively (Rana et al. 2006). Typical luminosity of non-magnetic CVs is $\sim 10^{30}$ – 10^{32} ergs s⁻¹ (Verbunt et al. 1997). Figure 2.12 shows a sample spectrum of non-magnetic CVs in the quiescent phase.

In magnetic CVs, materials can not accrete on the surface of the WD directly due to the magnetic strength. When a pressure of gas equals to a pressure of magnetic pressure, materials fall to the WD along lines of magnetic flux. Since the accretion flow exceeds sound velocity, a strong shock occurs close to the WD, and accretion materials turn into a hot plasma of $\sim 10^8$ K. We can observe the hard X-ray emission with Fe K lines, which are He-like Fe K line (6.7 keV) and H-like Fe K line (7.0 keV). Furthermore, since a hot plasma reflects on the surface of the WD, it emits a neutral Fe K line (6.4 keV). In Hellier & Mukai (2004), the equivalent width of these three Fe lines are ~ 120 eV, ~ 160 eV, and ~ 110 eV, respectively. Typical luminosity of magnetic CVs is $\sim 10^{32}$ – 10^{34} ergs s⁻¹. Suzaku satellite. Figure 2.13 and 2.14 show examples of X-ray spectra of IPs and Polars, respectively.

Figure 2.12: A typical spectrum of non-magnetic CVs (V603 Aql) by the *ASCA* satellite. The spectrum is fitted with a thermal plasma model. The lower panel shows residuals from the fit (Baskill et al. 2005).

Figure 2.13: X-ray spectrum of IPs XY Arietis by *Suzaku* (crosses) with the best-fit model (solid line). The lower panel shows the ratio of the data to the model (Yuasa et al. 2010).

Figure 2.14: Example spectrum of polars (EF Eri) in 5–10 keV observed by the *ASCA* satellite (Ezuka & Ishida 1999). In the upper plot, crosses and histograms show data points and model components of thermal continuum with three Gaussian lines. The lower panel shows spectral fit residuals.

NIR Emission

We can observe CVs in NIR. The emission mainly from cool regions of the accretion disk (Dhillon et al. 1997), as well as from the late-type companions. NIR spectra of CVs show prominent HI (Br γ) and HeI emission lines from the accretion disks, CO and neutral metal absorption lines from the companion stars. Figures 2.15 and 2.16 show NIR spectra of CVs in the K band.

Figure 2.15: NIR spectra of non-magnetic CVs (from the top, YZ Cne, LY Hya, BK Lyn, T Leo, SW UMa, WZ Sge), as well as reference spectra of M and F stars (bottomo two). These spectra are normalized at 2.24 μ m. The F0V spectrum indicates the location of telluric absorption features (Dhillon et al. 1997).

Figure 2.16: NIR spectra of IPs (PQ Gem, BG GMi and EX Hya). These spectra are normalized at 2.24 μ m (Dhillon et al. 1997).

2.2.3 Detached Systems Consisting a White Dwarf

There are detached binary systems consisting of a white dwarfs (WD) and late-type stars. They are in a different population from CVs, and called pre-cataclysmic variables (pre-CVs). Pre-CVs are considered to be progenitors of CVs. Pre-CVs are composed of a WD primary star and a late type secondary star. Figure 2.17 shows an X-ray spectrum of pre-CVs. This population has not been recognized widely, so there are not many X-ray observations so far. NIR spectra of pre-CVs are shown in Figure 2.18. In NIR spectra of pre-CVs, there are absorption lines of CaI, NaI and CO, which are from the secondary stars. In contrast to the NIR spectra of CVs, pre-CVs do not show prominent $Br\gamma$ lines. The fact that most pre-CVs do not have NIR emission lines indicate that pre-CVs do not have accretion disks.

Figure 2.17: X-ray spectrum of a detached system consisting a WD (V471 Tau) by the ASCA satellite (Martin et al. 1997).

2.2.4 Active Galactic Nuclei

Active galactic nuclei (AGN) are massive black holes at the center of galaxies. The luminosity is $\sim 10^{44}-10^{46}$ ergs s⁻¹. Its energy comes from a mass accretion to the back hole in the center. The emission of AGNs are observed from radio to X-ray wavelengths.

The X-ray emission of AGNs has the following properties: The X-ray spectra are approximated with a power-law model of a photon index ~ -1.7 above ~ 2 keV. In addition, soft X-ray excess component and Fe K lines are observed. The Fe K line is at ~ 6.4 keV,

Figure 2.18: (Left) NIR spectra of CVs and pre-CVs. Top five are those of CVs, and the sixth and seventh are those of pre-CVs (V471 Tau and Feige 24). These spectra are normalized by dividing by the flux at 2.24 μ m (Dhillon et al. 1997). V471 Tau is the same source as we show in Figure 2.17. (Right) Normalized NIR spectra of four pre-CVs (black), together with three comparison stars (blue) and four late-type star templates (red). Source names and the spectral types shown on the right (Tappert et al. 2007).

which is due to fluorescence by neutral or low-ionized accretion disks, and may be gravitationally red-shifted and broadened by relativistic effects. Figure 2.19 shows an example of X-ray spectrum of AGNs. In the GP, we may observe power-law spectra of the background AGNs with ~ 6.4 keV Fe K lines affected by significant Galactic absorptions.

Figure 2.19: Example wide-band spectrum of AGNs (Mrk3) with the *Suzaku* satellite (Awaki et al. 2008). The black, red and green crosses are spectra obtained by XIS-BI, XIS-FI, and HXD-PIN of *Suzaku*, respectively.

2.3 Scope, Purpose, and Strategy of this thesis

The strong Fe K emission line complex is the feature that characterizes the GRXE spectrum most, and has been debated intensively in the past. In this thesis, we focus on the origin of the hard band (2–8 keV) X-ray emission of the GRXE, which includes the Fe K complex feature in 6–7 keV. The soft band (<2 keV) emission of the GRXE, which may have different origins, is out of the scope of this thesis. In particular, we are interested in the nature of the dim point sources that contribute to the Fe line emission.

2.3. SCOPE, PURPOSE, AND STRATEGY OF THIS THESIS

From two circumstantial lines of evidence, we are almost certain that there is an unknown X-ray point source population that contributes significantly to the Fe line emission of the GRXE. The first evidence is from the result of the deepest X-ray observation of GRXE by Revnivtsev et al. (2009) with a limiting sensitivity of $F_{\rm X} = 10^{-16} {\rm ~ergs~cm^{-2}~s^{-1}}$. The authors demonstrated that 80% of the Fe emission was resolved into point sources. However, as we shall show in \S 5.1, the X-ray spectra of almost all bright point sources do not exhibit Fe emission line. They are mostly described as a power-law spectrum contributing only to the continuum emission. This infers the presence of a different point source population, which is fainter but contributes much more to the line emission than these bright power-law sources. The second evidence is from the result of the second deepest X-ray observation by Ebisawa et al. (2005) with a limiting sensitivity of $F_{\rm X} = 3 \times 10^{-15} {\rm ~ergs~cm^{-2}~s^{-1}}$. They showed that only 10% of the hard band emission of GRXE was resolved into point sources. They constructed a $\log N - \log S$ curve and decomposed the curve into an extra-Galactic population and two Galactic X-ray point source populations of different luminosity functions: one is a high L_X population mostly for the low-mass X-ray binaries; i.e., semi-detached binary systems containing a neutron star or a black hole, and the other is a low L_X population mostly for the CVs; i.e., semi-detached binary systems containing a white dwarf (Figure 2.4). Assuming a Galactic distribution of the two populations, they extrapolated the log N-log S curve of each component and found that the integrated emission below the limiting sensitivity accounts only for a 50% of the hard band emission of the GRXE at most. The apparently contradicting results of the two studies (Revnivtsev et al. 2009 and Ebisawa et al. 2005) infers the presence of another point source population that are dominant in the flux range in between the limiting sensitivities of the two studies.

The speculation above has not been extensively discussed in the community before, but seems reasonable enough for us to pursue the theme. The aim of this thesis is to classify nature of the numerous anonymous X-ray point sources and to identify the new faint class of X-ray point sources yet to be recognized as a major contributor to the GRXE emission.

In this thesis, we did the following steps; (1) Detect X-ray point sources, (2) Identify X-ray point sources with NIR imaging, and (3) Spectroscopy of the identified X-ray sources with NIR. About (1) and (2) steps of the Ebisawa field, we used the results of Ebisawa et al. (2005).

44

Chapter 3

Observing Facilities

In this chapter, we review one X-ray and two NIR observing facilities: *Chandra* (§ 3.1), IRSF (§ 3.2), and Subaru (§ 3.3). We present the overview of the telescopes and the instruments used in this study.

Contents

3.1	Cha	ndra/ACIS	46
	3.1.1	Spacecraft– <i>Chandra</i>	46
	3.1.2	Telescope — High Resolution Mirror Assembly (HRMA)	47
	3.1.3	Instrument — Advanced CCD Imaging Spectrometer (ACIS)	49
3.2	IRS	F/SIRIUS	55
	3.2.1	$\label{eq:Telescope} {\rm Telescope} \ - {\rm InfraRed \ Survey \ Facility} \ ({\rm IRSF}) \ 1.4 \ {\rm m \ Telescope} \ . \ .$	55
	3.2.2	Instrument — Simultaneous InfraRed Imager for Unbiased Survey	
		(SIRIUS)	57
3.3	Sub	aru/MOIRCS	58
	3.3.1	Telescope — Subaru	58
	3.3.2	Instrument—Multi-Object InfraRed Camera and Spectrograph (MOI	RCS) 60

3.1 Chandra/ACIS

3.1.1 Spacecraft–Chandra

The Chandra X-ray Observatory (Weisskopf et al. 2002) was launched on 1999 July 23 by the National Aeronautics and Space Administration (NASA) using the space shuttle Colombia. The satellite was placed into a highly elliptical orbit with an apogee of 140,000 km and a perigee of 100,000 km with a period of ~63.5 hr. The high and elliptical orbit allows for uninterrupted observing intervals at the maximum of ~170 ks. Thus, *Chandra* has a high observing efficiency (~80%).

Figure 3.1: Schematic view of the Chandra satellite (Chandra Proposers' Observatory Guide 2010).

The outline of *Chandra* is shown in Figure 3.1. *Chandra* has the following sub-systems. X-ray telescope (High Resolution Mirror Assembly; HRMA: Jerius et al. 2004), the objective transmission gratings (OTGs), and two focal plane instruments; the High-Resolution Camera (HRC-I and HRC-S; Murray et al. 2000) and the Advanced CCD Imaging Spectrometer (ACIS-I and ACIS-S; Garmire et al. 2003). ACIS-I and -S are X-ray CCD arrays and HRC-I and -S are micro channel plate arrays. The ACIS-I and -S can obtain images and medium-resolution spectra and the HRC-I and -S can obtain images. The OTGs have two types,

3.1. CHANDRA/ACIS

the Low-Energy Transmission Grating (LETG: Brinkman et al. 2000) and the High-Energy Transmission Grating (HETG: Canizares et al. 2005). The ACIS and HRC arrays can obtain high resolution spectra with a combination of either of the two gratings elements (LETG, HETG). The details are given in the *Chandra* Proposer's Observatory Guide (2010).

The *Chandra*'s optical axis is kept dithered during an observation. It is intended to prevent bad pixels ruining an entire observation, to smooth over CCD chip gaps, and to reduce pixel-to-pixel variation of the quantum efficiency. The dithering pattern is a Lissajous figure with a period of ~ 1000 s. The *Chandra*'s pointing and dithering are controlled by the Pointing Control and Aspect Determination System (PCAD).

3.1.2 Telescope — High Resolution Mirror Assembly (HRMA)

Configuration

The High Resolution Mirror Assembly (HRMA) is an X-ray telescope assembly carried on *Chandra*. The HRMA adopts a grazing incidence X-ray optics (Figure 3.2) and consists of four sets of nested Wolter-I type thick mirrors as shown in Figure 3.2. The mirrors are coated with iridium. The diameter of mirrors range from 0.65 m to 1.23 m, and the focal length is about 10 m.

Figure 3.2: Four nested HRMA mirror sets and associated structures (*Chandra* Proposers' Observatory Guide 2010).

Effective Area

The effective area of the telescope depends on both X-ray energy and off-axis angle, which is the angular distance from the optical axis. Figure 3.3 (a) shows the on-axis effective area, which is about 800 cm² at 0.25 keV, 400 cm², and 100 cm² at 8.0 keV. Above 10 keV, no X-ray photons can be reflected by the mirrors. Figure 3.3 (b) shows the off-axis effective area, which decreases as the off-axis angles increases. This is due to the vignetting effect of the mirror.

Figure 3.3: (a) HRMA effective areas versus X-ray energy at the optical axis. The structure near 2 keV is from the iridium M-edge used for mirror coating. The solid line shows the total effective area. The other lines show the expected effective area convolved with the detector quantum efficiency. (b) HRMA effective areas versus off-axis angle. The curves show the profiles at five selected energies (*Chandra* Proposers' Observatory Guide 2010).

Point Spread Function

Point Spread Function (PSF) is a spatial distribution function for a point-like source for imaging detectors. In HRMA, it depends on both the energy and off-axis angle. At on-axis, most X-ray photons are collected within a 1" radius circle. Figure 3.4 (a) shows the encircled

3.1. CHANDRA/ACIS

Figure 3.4: (a) Encircled energy fraction as a function of radius at the optical axis. (b) HRMA/ACIS-I encircled energy radii for circles enclosing 50% and 90% of the power at 1.49 and 6.40 keV as a function of off-axis angle (*Chandra* Proposers' Observatory Guide 2010).

energy function at on-axis. For example, 50% photons are encircled in about 0.35" radius at 4.510 keV, which is called the half-power radius. Figure 3.4 (b) shows the dependence of PSFs at several off-axis angles.

3.1.3 Instrument — Advanced CCD Imaging Spectrometer (ACIS)

Configuration

The Advanced CCD Imaging Spectrometer (ACIS) consists of 10 charge coupled devices (CCDs). Four of them comprise the ACIS-I (ACIS-I0, I1, I2, and I3) with a 2×2 array, while six of them comprise the ACIS-S (ACIS-S0, S1, S2, S3, S4, and S5) with a 1×6 array (Figure 3.5). Each CCD has a format of 1024×1024 pixels. The pixel scale is 0.492'' pixel⁻¹. ACIS-S1 and S3 are back-illuminated (BI) CCDs, which is useful for detecting soft X-ray photons, and the others are front-illuminated (FI) CCDs. Any combination of up to six CCDs can be used simultaneously. The aim points of ACIS-I and ACIS-S are on ACIS-I3 and ACIS-S3, respectively (Figure 3.5).

ACIS FLIGHT FOCAL PLANE

Figure 3.5: Configuration of the ACIS array. The top 2×2 array is ACIS-I and the bottom 1×6 array are ACIS-S. (*Chandra* Proposers' Observatory Guide 2010).

Quantum efficiency

Figure 3.8 (a) shows the effective area of HRMA/ACIS. The edge at 1.838 keV is due to the K-edge of SI. Low energy photons are absorbed by optical blocking filter (OBF). For the FI CCDs, the gate structure can absorb low energy photons too. The ACIS-I and ACIS-S have the OBF to block photons in the optical and the ultraviolet wavelengths. The OBF is composed of polymide sandwiched between two thin aluminum layers. The thickness of them are shown in Table 3.1.

Table 3.1: Nominal Optical Blocking Filter composition and thickness.

ACIS-I	Al/Polymide/Al	1200 Å 2000 Å 400 Å
ACIS-S	Al/Polymide/Al	1000 Å 2000 Å 300 Å

As the gate structure of the BI chips is at the opposite side of the HRMA, the quantum efficiency of the BI is larger than that of the FI at the low energy band. On the other hand, at high energies, the FI chips are more sensitive than the BI as the depletion layer is thicker than that of the BI (Figure 3.8 b).

Energy Resolution

Figure 3.7 (a) shows energy resolution of the ACIS estimated by ground calibrations. The FI CCDs have a good energy resolution near the theoretical limit ($\sim 120 \text{ eV}$ at 5.9 keV), but the BI CCDs have a slightly worse resolution. After the launch, energy resolution was degraded due to damage by low energy protons when the satellite went through the earth radiation belt. These protons made many charge traps, which caused an increase of the charge transfer inefficiency (CTI).

Correction algorithm of the energy resolution has been developed by the ACIS instrument team. The algorithm was incorporated in the *Chandra* Interactive Analysis of Observations (CIAO) tool, acis_process_events. From December 2006, data for the two BI (S1 and S3) chips can be corrected using the same way. For the FI chips, the increase of the CTI is substantial in Figure 3.7 (b). They measured the resolution using the Al (1.29 keV) and Mn (5.9 keV) K α lines.

Figure 3.6: (a) Quantum efficiency convolved with the the quantum efficiency of the detector. (b) HRMA effective area convolved with the ACIS efficiency as a function of energy. The solid curve shows the FI CCDs, and the dashed curve shows the BI CCDs (*Chandra* Proposers' Observatory Guide 2010).

Figure 3.7: (a) ACIS pre-launch energy resolution as a function of energy. (b) The energy resolution of chip I3 and S3 as a function of a raw number, after proton damage in the orbit. Data were taken from I3 node 3, and S3 node 0 (where the aim points are located) from May through July of 2009 (*Chandra* Proposers' Observatory Guide 2010).

Event Grades

Events are detected when they satisfy two criteria: the bias-subtracted pulse height exceeds the event threshold, and also the pulse height is the highest among the surrounding 3×3 pixels.

To distinguish X-ray events from non X-ray events due to cosmic-rays, the grade filtering is adopted, which was originally developed for ASCA SIS. A number is specified for each pixel around the center pixel. The grade is calculated by summing up those pixel numbers around the center pixel. For example, an event with all 3×3 pixels above the threshold is grade 255. From the number, we distinguish X-ray events from non X-ray events. A single pixel event is grade 0. The ASCA grade 0, 2, 3, 4 and 6 are recognized as X-ray events. The other grades (ASCA grade 1 and 7) are regarded as non X-ray events.

Telemetry Format

The following three telemetry formats are available, Faint, Very Faint, and Graded. The Faint format includes detector coordinates, arrival time and event amplitudes. This carries

			ACIS Grades	ASCA Grade	Description
			0	0	Single pixel events
			$64 \ 65 \ 68 \ 69$	2	Vertical Split Up
			$2 \ 34 \ 130 \ 162$	2	Vertical Split Down
			$16\ 17\ 48\ 49$	4	Horizontal Split Right
			$8\ 12\ 136\ 140$	3	Horizontal Split Left
		4.000	$72 \ 76 \ 104 \ 108$	6	"L" & Quad, upper left
52	04	126	$10\ 11\ 138\ 139$	6	"L" & Quad, down left
			$18 \ 22 \ 50 \ 54$	6	"L" & Quad, down right
			80 81 208 209	6	"L" & Quad, up right
			$1 \ 4 \ 5 \ 32 \ 128$	1	Diagonal Split
			$33 \ 36 \ 37 \ 129$	1	
			$132\ 133\ 160\ 161$	1	
0		46	$164 \ 165$	1	
0		10	$3\ 6\ 9\ 20\ 40$	5	"L"-shaped split with corners
_	_		$96\ 144\ 192\ 13\ 21$	5	
			$35 \ 38 \ 44 \ 52 \ 53$	5	
			$97\ 100\ 101\ 131$	5	
			$134 \ 137 \ 141 \ 145$	5	
			$163 \ 166 \ 168 \ 172$	5	
-	-1		$176\ 177\ 193\ 196$	5	
	<u> </u>		197	5	
			24	7	3-pixel horizontal split
			66	7	3-pixel vertical split
			255	7	All pixels
			All other grades	7	
	(a)			(h)	
	(a)			(d))

Figure 3.8: (a) Concept for determining the grade of an event. (b) ACIS and ASCA Grades (*Chandra* Proposers' Observatory Guide 2010).

pulse height values of 3×3 pixels around the event pixel. The Very Faint format includes detector coordinates, arrival time, and pulse height of all events. This contains pulse height values of 5×5 pixels around the event pixels. A better background rejection is thus possible for the Very Faint mode than the Faint mode. The Graded format includes detector coordinates, arrival time, and event grades, but the pulse height of pixels are not include.

3.2 IRSF/SIRIUS

3.2.1 Telescope — InfraRed Survey Facility (IRSF) 1.4 m Telescope

For NIR imaging observations, we used the Simultaneous Infrared Imager for Unbiased Survey (SIRIUS, Nagashima et al. 1999; Nagayama et al. 2003) on the Infrared Survey Facility (IRSF) 1.4 m telescope (Figure 3.9).

The IRSF is located in the Sutherland observing station of the South African Astronomical Observatory (SAAO), which is about 370 km north-east of Cape Town, South Africa. It is at the latitude 32° 22′ 48″ south and longitude 20° 45′ 38″ east. The altitude is 1761 m, and the average ratio of clear skies is about 50%.

The facility was constructed under an agreement between Nagoya University and the SAAO. Nagoya University provided the telescope and the SIRIUS camera, while the SAAO provided the location, dome, and logistical supports. The IRSF construction was started in 1999, and celebrated the first light in November 2000. One of the main objectives is the NIR surveys in the Southern hemisphere with a depth 2–3 mag deeper than the 2MASS (Two Micron All-Sky Survey; Skrutskie et al. 2006). A comparison of the SIRIUS and the 2MASS camera is shown in Table 3.2.

The IRSF telescope is a 1.4 m classical Cassegrain telescope on an altazimuth mount. The mirror was coated with aluminum. It was made by Nagoya University in collaboration with the Nishimura Telescope Company. The pointing and tracking accuracies are 10'' rms and 0.3'' per 30 s, respectively.

Figure 3.9: IRSF 1.4 m telescope (http://www.z.phys.nagoya-u.ac.jp/~telescope/).

	SIRIUS	2MASS
Wavelength $[\mu m]$	$1.25 \ 1.65 \ 2.14$	$1.25 \ 1.65 \ 2.16$
Band	$J H K_{\rm s}$	$J H K_{\rm s}$
Field of view	$7.7' \times 7.7'$	$8.5' \times 8.5'$
Telescope	IRSF1.4 m $$	Mt. Hopkins 1.3 m
		$CTIO^{a}$ 1.3 m

Table 3.2: Comparison of Strips and 2ML
--

^a Cerro Tololo Inter-American Observatory.

3.2.2 Instrument — Simultaneous InfraRed Imager for Unbiased Survey (SIRIUS)

The SIRIUS is mounted on the Cassegrain focus of the IRSF telescope, which can obtain J-(1.25 μ m), H-(1.65 μ m), and K_s -(2.14 μ m) band images simultaneously using two dichroic mirrors and three HAWAII arrays (HgCdTe arrays). Each array has a format of 1024 \times 1024 pixels with a pixel scale of 0.45" pixel⁻¹, corresponding to a 7.7' \times 7.7' field of view. The pixel scale matches with the on-axis spatial resolution of *Chandra*. The specification of the SIRIUS is shown in Figure 3.10 (a). The 5 σ limiting magnitude of the SIRIUS is 20.6 (J), 19.4 (H), and 19.1 (K_s) magnitude, respectively with a 15 minute exposure and a seeing of 1.0".

Figure 3.10: (a) Specification of SIRIUS. (b) Optical layout of SIRIUS (Nagashima et al. 1999).

The optical layout of SIRIUS is shown in Figure 3.10 (b). Using a cold stop, we can avoid radiations from the telescope and the sky. The transmission rate of each bandpass filter is shown in Figure 3.11. The readout noise is less than 15 e ADU^{-1} .

The detector is operated at 60 K. The detectors and optical components are cooled with a Gifford-McMahon (GM) cycle refrigerator. The optical bench temperature is kept at ~ 100 K.

Figure 3.11: Transmission rate of the *J*-, *H*-, and *K*_s-band filters (http://www.z.phys.nagoya-u.ac.jp/~sirius/tech/index.html).

3.3 Subaru/MOIRCS

3.3.1 Telescope — Subaru

The Subaru telescope is at the summit of Mauna Kea, Hawai. The altitude is 4139 m. The primary mirror has a diameter of 8.2 m and a focal length of 15 m. It achieved the first light in 1999, and it has been operated by the National Astronomical Observatory in Japan (NAOJ).

The telescope is altazimuth with four foci: the prime focus, the Cassegrain focus, and the optical and the infrared Nasmyth foci (Figure 3.12 a). The Subaru Prime Focus Camera (Suprime-Cam; Miyazaki et al. 2002) is mounted at the prime focus. At the Cassegrain focus, one of the four instruments is installed: Multi-Object Infrared Camera and Spectrograph (MOIRCS; Ichikawa et al. 2006), Faint Object Camera And Spectrograph (FOCAS; Kashikawa et al. 2002), Cooled Mid-Infrared Camera and Spectrograph (COMICS; Kataza et al. 2000), and Fiber Multi Object Spectrograph (FMOS; Kimura et al. 2010). High Dispersion Spectrograph (HDS; Noguchi et al. 2002) and the Infrared Camera and Spectrograph (IRCS; Tokunaga et al. 1998) are installed at the optical and the infrared Nasmyth foci, respectively (Figure 3.12 b).

Figure 3.12: (a) Schematic view of the Subaru telescope. MOIRCS is mounted on the Cassegrain focus. (b) Plot of wavelength versus the spectral resolution of each instrument (http://www.naoj.org/Observing/Telescope/index.html).

3.3.2 Instrument—Multi-Object InfraRed Camera and Spectrograph (MOIRCS)

The MOIRCS (Ichikawa et al. 2006; Suzuki et al. 2008) is a wide-field imager and a multiobject spectrometer in the 0.8–2.5 μ m band. It has been constructed by the Institute of Astronomy, Tohoku University and the NAOJ. The design started in 1999 and the first light was achieved in September 2004. The schematic structure is shown in Figure 3.13 (b). The MOIRCS provides a 4'× 7 ' field of view with HAWAII arrays with a format of 2048 × 2048 pixels with a pixel scale of 0.117" pixel⁻¹. In the multi-object spectroscopy mode, we can conduct spectroscopy of multiple objects at a time using exchangeable masks that are custom-made for each observing field. Users can choose a slit of a resolution of low ($R \sim 500$), medium ($R \sim 1300$), and high ($R \sim 3000$). The 5 σ limiting magnitude of the MOIRCS are $J \sim 23.8$, $H \sim 22.7$, and $K_s \sim 22.7$ magnitude with one hour exposure time and with a 1" aperture under typical seeing conditions.

Figure 3.13: (a) Picture of the MOIRCS. (b) Schematic view of the MOIRCS (Ichikawa et al. 2006).

Chapter 4

Observations and Data Reduction

In this chapter, we describe X-ray and NIR observations and their data reduction.

Contents

4.1 X-ra	ay Imaging and Spectroscopy	62
4.1.1	Observations	62
4.1.2	Data Reduction	62
4.2 NIR	Imaging	64
4.2.1	Observations	64
4.2.2	Data Reduction	67
4.3 NIR	Spectroscopy	67
4.3.1	Target Selection	67
4.3.2	Observations	75
4.3.3	Data Reduction	75

4.1 X-ray Imaging and Spectroscopy

In order to investigate X-ray source populations in the GP in detail, we focus on two fields: the Revnivtsev field $(l = 0.^{\circ}1, b=-1.^{\circ}4; \text{Revnivtsev et al. 2009})$ and the Ebisawa field $(l = 28.^{\circ}5, b = 0.^{\circ}0; \text{Ebisawa et al. 2005})$. This is because these fields have been observed with a very long exposure time with *Chandra* (~900 ks for the former and ~200 ks for the latter). The results of the Ebisawa field is published in Ebisawa et al. (2005). Those of the Revnivtsev field have been published only for its central region to achieve the lowest detection limit (Revnivtsev et al. 2009). On the other hand, it is important for us to detect as many as NIR counterparts. We therefore analyze the entire region of the Revnivtsev field in this thesis.

4.1.1 Observations

We retrieved all the archived data of the Revnivtsev field taken with the *Chandra*/ACIS-I array. The observations were carried out from 2008 May to 2008 August with a total integration time of ~ 900 ks. The CCDs were operated with a frame time of 3.2 s and the data were down-linked with the Very Faint telemetry mode. Their basic information (observation ID, date, coordinate, exposure time, and roll angle) are shown in Table 4.1. Figure 4.1 shows the combined ACIS-I images of the study field. Throughout this thesis, we used events in the 0.5–8 keV band.

4.1.2 Data Reduction

We retrieved pipeline products and reduced the data sets using the *Chandra* Interactive Analysis of Observations (CIAO) software package version 4.2. We used the level2 event files reprocessed at the *Chandra* X-ray Center (CXC). In the pipeline process, a background events by cosmic-rays were removed based on event grades (only *ASCA* grades 0, 2, 3, 4, and 6) and filtering of good time intervals and energy band was applied. We merged the ten event files into one.

Figure 4.1: Smoothed and exposure-corrected X-ray image of the study field (0.5–8.0 keV). The field of view of the SIRIUS (NIR) observations are shown by red squares with region numbers (see Table 4.2 in detail.) The white circle shows the region, the result of which was published in Revnivtsev et al. (2009).

ObsID	Date	Coordinate	e (J2000.0)	$t_{\rm exp}{}^{\rm a}$	Roll
		R.A.	Decl.	(ks)	(degree)
9500	2008-07-20	17:54:38.5	-29:35:47	162.56	279.99
9501	2008-07-23	17:54:39.1	-29:35:53	131.01	278.91
9502	2008-07-17	17:54:39.8	-29:35:58	164.12	281.16
9503	2008-07-28	17:54:40.2	-29:36:60	102.31	275.21
9504	2008-08-02	17:54:40.8	-29:36:12	125.42	275.21
9505	2008-05-07	17:54:37.5	-29:34:47	10.72	82.22
9854	2008-07-27	17:54:41.5	-29:36:17	22.78	277.72
9855	2008-05-08	17:54:37.5	-29:34:47	55.94	82.22
9892	2008-07-31	17:54:40.2	-29:36:60	65.79	275.21
9893	2008-08-01	17:54:40.8	-29:36:12	42.16	275.21

Table 4.1: X-ray Observation Log

^a Exposure time.

4.2 NIR Imaging

4.2.1 Observations

X-ray sources in the Ebisawa field were correlated with NIR sources (Ebisawa et al. 2005). On the other hand, NIR imaging observation deeper than all sky surveys has not been available yet in the Revnivtsev field. We thus carried out NIR three-color simultaneous observation (J, H, and K_s band) in the Revnivtsev field with SIRIUS to identify those X-ray point sources.

We divided the *Chandra* field of view (FoV) into nine SIRIUS FoVs (Figure 4.1) and observed eight of them up to several times in three runs in 2009 July, 2010 February, and 2010 September. The observation information (data label, date, coordinate, exposure time, and air mass) are shown in Table 4.2. Each frame was exposed for 30 s, and sets of 10dithered frames were taken repeatedly with a dithering amplitude of 15". We only used data taken in photometric nights with a seeing of less than 1.2". The typical seeing was 1.8". We could not obtain NIR data in the bottom left corner of the SIRIUS layout because of the lack of time. In this region, we only have a shallower NIR coverage than the others. However, as the number of X-ray sources in this region is only 2% of the total, this does not make much difference in our results.

Data	Date	Coordinate	e (J2000.0)	$t_{\rm exp}{}^{\rm a}$	Air mass
label		R.A.	Decl.	(min)	(arcsec)
00-a	2009-06-26	17:51:27.1	-29:35:05	60.0	1.08 - 1.27
00-b	2010-09-01	17:51:27.0	-29:35:05	60.0	1.25 - 1.33
00-с	2010-09-02	17:51:27.0	-29:35:05	59.5	1.18 - 1.50
00-d	2010-09-02	17:51:27.0	-29:35:05	60.0	1.01 - 1.02
00-е	2010-09-03	17:51:27.0	-29:35:05	60.0	1.01 - 1.01
00-f	2010-09-03	17:51:27.1	-29:35:04	60.0	1.37 - 1.92
00-g	2010-09-04	17:51:27.0	-29:35:05	59.5	1.34 - 1.85
00-h	2010-09-04	17:51:27.0	-29:35:05	60.0	1.01 - 1.01
00-i	2010-09-06	17:51:27.0	-29:35:04	60.0	1.36 - 1.92
01	2010-09-01	17:51:27.0	-29:27:54	60.0	1.01 - 1.02
02	2010-09-01	17:51:27.0	$-29{:}42{:}18$	60.0	1.17 - 1.49
03	2010-09-02	17:52:00.0	-29:35:05	60.0	1.01 - 1.11
04	2010-09-02	17:50:54.0	-29:35:05	60.0	1.11 - 1.34
05	2010-09-03	17:52:00.0	-29:27:54	59.0	1.11 - 1.33
06	2010-09-03	17:50:54.1	-29:27:55	60.0	1.01 - 1.11
07	2010-09-04	17:50:54.1	-29:42:18	60.0	1.11 - 1.35

 Table 4.2:
 NIR (SIRIUS)
 Observation
 Log

^a Exposure time.

Figure 4.2: Sample SIRIUS K_s -band image of the data 00-a.

4.2.2 Data Reduction

Using the SIRIUS pipeline version sirius 09^1 developed for the Imaging Reduction and Analysis Facility (IRAF) software package, we processed all the SIRIUS data sets by applying the standard procedures, including dark frame subtraction, flat fielding, and median-sky subtraction. The flat-field images were constructed from twilight skies. Finally, the dithered frames of each region were merged into one separately for the J, H, and K_s bands. Figure 4.2 shows the K_s -band image of the data 00-a as an example.

4.3 NIR Spectroscopy

We conducted NIR spectroscopy observations for some selected objects in both the Revnivtsev field and the Ebisawa field with Subaru/MOIRCS.

4.3.1 Target Selection

We have nearly 150 X-ray sources identified in the NIR in both the Revnivtsev and Ebisawa fields, which are potential targets of the NIR spectroscopy. Even with the high efficiency of multi-object spectroscopy, we cannot obtain spectra for all of them. Also, in the multi-object spectroscopy using masks, we cannot select arbitrary sets of targets in a mask. Indeed, we need a careful selection of targets so that all of them are within a detector field of view and no two sources have overlapping dispersed spectra. We thus prioritized the NIR-identified X-ray sources to select the targets of our NIR spectroscopy observations.

As our interest is in the point sources contributing to the hard band emission of the GRXE, we biased toward hard X-ray sources. Some assumed populations (active binaries) are characterized by the presence of X-ray flux variability such as flares, so we added the variability information for prioritization in the observations of the Revnivtsev field, which took place after the observations of the Ebisawa were finished. We designed the mask patterns to include the largest possible number of hard (and variable for the Revnvtsev field) X-ray sources and then filled in the remaining part of the mask with low priority, soft sources. These soft sources serve as a comparison data set.

¹See http://www.z.phys.nagoya-u.ac.jp/nakajima/sirius/software/software.html for detail

Revnivtsev Field

We found 222 NIR identified X-ray sources in the Revnivtsev field (See § 5.2). From them, we selected 52 sources for spectroscopy in K_s band. The sources were selected based on the X-ray hardness as well as the X-ray flux variability. We used the Median Energy (ME) for the X-ray hardness (details are shown in § 5.1). We defined the ME as background-corrected median photon energy in 0.5–8 keV. We separated X-ray sources into three hardness ranges: (1) hard (ME \geq 2.3 keV), (2) medium (1.5 keV \leq ME < 2.3 keV), and (3) soft (ME <1.5 keV). For X-ray flux variability (see § 5.1 in detail), we performed the Kolmogorov-Smirnov test for all X-ray source light curves and classified them into three groups: (a) non variable (the probability of the null hypothesis of being a constant flux \geq 0.05), (b) marginally variable (0.005 < the probability of the null hypothesis <0.05), and (c) variable (the probability of the null hypothesis \leq 0.005). Based on these two quantities, we prioritized in the target source list (Table 4.3).

Table 4.3: Source Priority in the Revnivtsev field

Priority	Conditions
1	(1) hard and (c) variable
2	(1) hard and (b) marginally variable, (2) medium, and (c) variable
3	(1) hard and (a) nonvariable, (2) medium and (b) marginally variable,
	and (3)soft and (c)variable
4	Others

As a result, we selected 23 sources that satisfied the conditions above with a separation between X-ray and NIR sources below <1.1'' (Table 4.4). These sources are considered Xray and NIR counterpart sources (details in § 5.2). In addition, we selected 28 sources with relaxed conditions, which have a separation to the closest X-ray counterpart from 1.1'' to 2.0''. These sources satisfied at least one condition of Table 4.4. Table 4.5 shows the list of the additional 28 sources.

ID ¹	Position	(J2000.0)	$K_{\rm s}^2$	Flux variability ³	Median
	R. A.	Decl.			Energy
	(deg)	(deg)	(mag)		(keV)
464	267.81160	-29.50197	9.78	b	1.3
500	267.81786	-29.54719	13.45	b	4.1
505	267.81805	-29.57942	13.99	b	2.2
532	267.82113	-29.68663	13.51	b	1.9
538	267.82172	-29.63984	12.00	a	1.1
599	267.82738	-29.50417	11.06	с	1.7
631	267.83006	-29.65494	13.32	a	1.3
647	267.83166	-29.54233	13.90	b	1.1
874	267.85251	-29.49210	12.32	b	2.1
997	267.86679	-29.58130	13.51	a	1.2
1000	267.86726	-29.61758	10.92	a	1.1
1151	267.88242	-29.56410	12.72	b	1.9
1299	267.89563	-29.54132	14.92	с	1.6
1399	267.90693	-29.55152	11.53	a	1.1
1424	267.90987	-29.62817	13.11	a	1.6
1456	267.91221	-29.59669	14.08	b	1.1
1494	267.91565	-29.59643	14.73	a	1.1
1495	267.91571	-29.61957	13.25	a	1.1
1577	267.92534	-29.59347	13.12	b	2.1
1667	267.93675	-29.61987	13.01	с	1.7
1706	267.94245	-29.54876	13.81	a	1.1
1729	267.94483	-29.56681	13.53	b	1.1
1774	267.95390	-29.56919	12.49	b	1.7

 Table 4.4: Target sources in the Revnivtsev field

¹Source number in Table A.1.

²NIR magunitude by SIRIUS and 2MASS.

 $^3 {\rm Source}$ variability of Table A.1.

ID^1	Position	(J2000.0)	K_s^2	Flux variability ³	Median
	R. A.	Decl.			Energy
	(deg)	(deg)	(mag)		(keV)
311	267.78829	-29.66079	11.70	a	2.6
350	267.79477	-29.69453	11.84	b	1.7
357	267.79567	-29.52500	12.77	a	2.6
397	267.80199	-29.51229	13.24	b	1.6
421	267.80567	-29.49183	13.87	b	2.9
452	267.80922	-29.63941	14.19	b	1.7
461	267.81168	-29.64702	12.95	с	3.0
553	267.82278	-29.55812	14.34	a	2.6
564	267.82364	-29.57847	11.84	с	1.8
640	267.83046	-29.60208	12.44	a	2.6
661	267.83300	-29.72787	12.30	с	1.3
684	267.83490	-29.64442	10.54	с	2.7
700	267.83710	-29.47912	13.61	с	2.4
758	267.84190	-29.66176	12.73	a	2.0
782	267.84399	-29.71494	13.27	a	3.1
786	267.84508	-29.67205	12.44	b	1.6
974	267.86452	-29.56408	11.36	с	1.2
1023	267.86947	-29.60903	12.73	с	1.4
1039	267.87128	-29.57880	12.47	с	2.8
1053	267.87252	-29.62947	10.84	a	2.0
1277	267.89382	-29.60241	13.83	a	3.5
1339	267.90147	-29.53818	13.08	с	1.9
1349	267.90122	-29.62964	11.83	b	2.0
1493	267.91594	-29.55509	11.65	b	1.7
1560	267.92314	-29.57608	12.62	с	1.6
1571	267.92382	-29.53683	13.02	с	2.0
1690	267.94001	-29.59841	13.09	a	2.9
1745	267.94807	-29.55173	12.54	b	1.9

Table 4.5: Target source list in relaxed conditions in the Revnivtsev field

¹Source number in Table A.1.

 $^2\mathrm{NIR}$ magunitude by SIRIUS and 2MASS.

 $^3 \rm Source$ variability of Table A.1.

Ebisawa Field

There are 142 NIR identified X-ray sources in the Ebisawa field (Ebisawa et al. 2005). In Ebisawa et al. (2005), X-ray sources were classified into three based on Hardness Ratio (HR). The X-ray spectral hardness is defined as $HR \equiv (H-S)/(H+S)$, where H is the count rate in the hard band (2–8 keV) and S is the count rate in the soft band (0.5–2 keV). The sources were grouped into (1) hard (HR ≥ 0.1), (2) medium (-0.6 < HR < 0.1), and (3) soft (HR ≤ -0.6). We selected targets for NIR spectroscopy so that the sources cover a wide range

of X-ray spectral hardness. Based on these groups, we selected 98 X-ray sources for NIR spectroscopy (Table 4.6).

Figure 4.3: The relation between ME and HR in the Revnivtsev field. We used 2–8 keV and 0.5–2 keV as the hard band range and soft band range.

Since the observation in the Ebisawa field were carried out in the beginning of this study, we selected target sources only based on the X-ray hardness. Figure 4.3 shows the relation between ME and HR. For example, ME = 2.3 corresponds to $HR \sim 0.1$.

Ĺ,	_			F		1.0	112	5 11
TD [*]	R. A.	Ition Decl.	Hardness $(H-S)/(H+S)$	$F_{\rm X}^{\rm r}$ 0.5–2 keV/2–10 keV	Separation	ر ۱	- H	$K_{\rm s}^{2}$
	(J20	(0.00)		$(ergs s^{-1} cm^{-2})$	(arcsec)	(mag)	(mag)	(mag)
21	18:43:13.77	-03:57:07.4	-0.99 ± 0.11	6e - 16/2e - 16	0.28	13.66	13.07	12.73
29	18:43:17.43	-03:56:00.2	-0.16 ± 0.30	$1e\!-\!16/4e\!-\!15$	0.90	12.48	12.10	11.96
30	18:43:17.43	-03:57:32.7	-0.92 ± 0.11	$5e{-}16/2e{-}16$	0.13	16.54	15.25	15.13
35	18:43:18.59	-03:58:52.1	-1.00 ± 0.11	$5e\!-\!16/2e\!-\!16$	0.36	15.86	15.08	14.77
36	18:43:18.73	-03:54:25.2	$-0.20{\pm}0.31$	$7e\!-\!17/2e\!-\!15$	0.22	17.07	16.20	Ι
37	18:43:18.95	-03:53:27.3	-0.81 ± 0.21	$4e\!-\!16/2e\!-\!16$	0.74	14.98	14.42	14.24
39	18:43:19.22	-03:57:31.9	$-0.74{\pm}0.21$	$3\mathrm{e}{-16}/\mathrm{1e}{-15}$	0.73	15.24	Ι	Ι
41	18:43:19.61	-03:55:02.1	-0.93 ± 0.22	$2\mathrm{e}{-16}/9\mathrm{e}{-17}$	0.81	16.44	15.53	Ι
46	18:43:21.11	-03:54:30.0	$0.69{\pm}0.26$	6e - 18/5e - 15	0.21	Ι	14.60	Ι
47	18:43:21.22	-03:49:31.2	$-0.76{\pm}0.10$	$1e{-}15/4e{-}15$	0.97	14.74	13.87	12.85
50	18:43:21.76	-04:00:39.6	$-0.94{\pm}0.12$	$6\mathrm{e}{-16/3\mathrm{e}{-16}}$	0.73	14.88	14.24	13.93
51	18:43:21.81	-03:53:03.3	-0.77 ± 0.17	$4e{-}16/2e{-}15$	0.24	13.94	13.49	13.29
52	18:43:22.09	-03:54:26.4	-0.83 ± 0.17	$6\mathrm{e}{-16/3\mathrm{e}{-16}}$	0.34	16.20	15.28	15.33
54	18:43:22.98	-03:57:53.0	-0.89 ± 0.11	$6\mathrm{e}{-16}/\mathrm{2e}{-16}$	0.47	13.92	13.48	13.25
55	18:43:23.03	-03:57:25.3	-0.63 ± 0.27	$3\mathrm{e}{-16}/\mathrm{1e}{-15}$	0.66	17.0	15.77	15.17
56	18:43:23.30	-03:48:51.7	$-1.00{\pm}0.03$	$3\mathrm{e}{-15}/\mathrm{1e}{-15}$	0.47	14.78	14.09	13.81
58	18:43:23.62	-03:53:14.1	-0.39 ± 0.30	$3\mathrm{e}{-16}/\mathrm{1e}{-15}$	0.13	15.57	14.57	14.38
59	18:43:23.68	-03:51:40.6	-0.86 ± 0.19	$5e{-}16/2e{-}16$	0.09	15.71	14.97	14.69
62	18:43:23.96	-03:57:58.9	-0.38 ± 0.15	$9e{-}16/4e{-}15$	0.65	16.87	15.96	15.31
64	18:43:24.47	-03:53:49.8	-0.67 ± 0.07	$2\mathrm{e}{-15}/9\mathrm{e}{-15}$	0.05	13.72	12.64	12.21
67	18:43:25.25	-03:59:15.3	-0.55 ± 0.19	$6\mathrm{e}{-16}/\mathrm{2e}{-15}$	0.55	15.96	15.23	14.88
68	18:43:26.14	-03:56:49.7	$-0.51{\pm}0.18$	$7e{-}16/3e{-}15$	0.42	16.51	15.61	15.21
72	18:43:28.67	-03:56:22.8	-0.62 ± 0.30	$2\mathrm{e}{-16}/7\mathrm{e}{-16}$	0.27	17.29	14.81	14.70
73	18:43:28.91	-03:57:33.3	-0.78 ± 0.14	$5e{-}16/2e{-}15$	0.04	14.41	13.50	13.16
74	18:43:29.11	-03:59:42.3	$0.26 {\pm} 0.27$	$8\mathrm{e}{-17}/\mathrm{2e}{-15}$	0.69	17.85	15.39	15.76
79	18:43:29.70	-03:50:15.1	$0.71 {\pm} 0.17$	$1e{-}17/8e{-}15$	0.30	I	12.90	I
80	18:43:30.20	-03:51:18.2	$-0.70{\pm}0.28$	$3\mathrm{e}{-16}/\mathrm{1e}{-15}$	I	I	I	I
81	18:43:30.21	-03:53:44.3	-0.90 ± 0.19	$3\mathrm{e}{-16}/\mathrm{1e}{-16}$	0.33	15.37	14.73	14.50
82	18:43:30.27	-03:54:11.4	-0.60 ± 0.08	$4e{-}15/1e{-}14$	0.39	13.11	12.07	11.67
84	18:43:30.52	-04:03:50.3	-0.53 ± 0.17	$7e{-}16/3e{-}15$	ı	Ι	Ι	Ι
85	18:43:30.63	-03:53:52.0	$-1.00{\pm}0.18$	$3\mathrm{e}{-16}/\mathrm{1e}{-16}$	0.29	11.93	11.26	11.00
86	18:43:30.75	-04:01:02.5	-0.97 ± 0.03	$2\mathrm{e}{-15}/9\mathrm{e}{-16}$	0.41	9.67	9.40	9.27
87	18:43:30.80	-04:00:45.9	$-1.00{\pm}0.13$	$6\mathrm{e}{-16}/\mathrm{2e}{-16}$	0.35	15.51	14.83	I
91	18:43:31.59	-03:56:49.4	-0.62 ± 0.11	$5e{-}16/2e{-}15$	0.18	14.23	13.53	13.30
94	18:43:31.75	-03:51:26.7	-0.53 ± 0.17	$6e{-}16/2e{-}15$	0.55	15.21	14.20	13.41

Table 4.6:Target Sources in the Ebisawa field
field
Ebisawa
$_{\mathrm{the}}$
in
Sources
Target
4.6:
Table

2		(g)		14	35	6C	10		14	33	51	38	34		38	84	73	11	45	51	22	44	36	38	23	36	37	38	95	13		54		52	71	60	23
$K_{\rm s}$		(ma		11.	10.3	13.(14.	I	14.4	14.9	13.5	13.(13.5	I	14.5	14.8	10.7	16.	$14.^{-1}$	15.0	13.	$14.^{-1}$	13.5	13.5	14.5	14.(13.5	13.(12.9	14.	I	13.5	I	14.(12.'	15.(14.5
H^2		(mag)	15.04	12.55	10.71	14.89	14.47	16.15	14.66	15.38	15.69	14.01	13.66	15.59	14.71	15.13	11.18	16.60	14.64	15.88	14.02	14.74	13.53	14.14	14.60	14.84	13.61	14.65	13.21	14.37	10.90	14.01	Ι	15.19	12.93	15.41	14.70
J^2		(mag)	15.78	15.14	11.62	Ι	15.25	16.95	15.61	16.42	16.40	14.74	14.35	16.09	15.52	16.06	12.20	17.84	15.46	17.76	14.67	15.75	14.21	15.42	15.65	15.70	14.42	16.55	13.87	14.97	Ι	14.93	Ι	16.39	13.47	16.28	15.67
Separation		(arcsec)	0.70	0.32	0.52	0.08	0.45	0.24	0.48	0.08	0.35	0.27	0.68	0.94	0.32	0.38	0.27	0.24	0.70	0.21	0.60	0.12	0.33	0.06	0.11	0.20	0.13	0.92	0.11	0.62	0.29	0.03	Ι	0.67	0.48	0.37	0.34
$F_{\mathbf{x}}$	0.5-2 keV/2-10 keV	$(ergs \ s^{-1} \ cm^{-2})$	4e - 16/2e - 16	$2e{-}15/5e{-}14$	6e-16/3e-15	4e - 18/3e - 15	$3\mathrm{e}{-16}/\mathrm{1e}{-16}$	$2e\!-\!16/9e\!-\!17$	$5e\!-\!16/2e\!-\!15$	$3\mathrm{e}{-16}/\mathrm{1e}{-16}$	$2e{-}16/5e{-}15$	$6\mathrm{e}{-17}/\mathrm{2e}{-15}$	$2\mathrm{e}{-16}/\mathrm{6e}{-16}$	$4e{-}16/2e{-}16$	$5e{-}16/2e{-}16$	$3\mathrm{e}{-16}/\mathrm{1e}{-16}$	$4\mathrm{e}{-16}/\mathrm{1e}{-15}$	$3\mathrm{e}{-16}/\mathrm{1e}{-16}$	$4e{-}16/2e{-}15$	$5e{-}16/2e{-}15$	$4e{-}16/2e{-}15$	$5\mathrm{e}{-16}/2\mathrm{e}{-16}$	$5e{-}16/2e{-}16$	$2\mathrm{e}{-16}/\mathrm{8e}{-16}$	$7e{-}16/3e{-}15$	$1e{-}15/4e{-}15$	$2e{-}15/7e{-}16$	$4e{-}16/2e{-}15$	$3\mathrm{e}{-16}/\mathrm{1e}{-16}$	$3\mathrm{e}{-16}/\mathrm{1e}{-16}$	$2e{-}15/1e{-}15$	$9e{-}16/4e{-}15$	$4e{-}16/2e{-}15$	$5e{-}16/2e{-}15$	$5e{-}16/2e{-}15$	$3\mathrm{e}{-16}/\mathrm{1e}{-15}$	6e - 16/2e - 15
Hardness	(H-S)/(H+S)		-0.85 ± 0.18	0.11 ± 0.07	$-0.38{\pm}0.21$	$0.77 {\pm} 0.30$	$-1.00{\pm}0.15$	-0.82 ± 0.21	-0.66 ± 0.13	$-0.96{\pm}0.19$	$0.53 {\pm} 0.10$	$-0.07{\pm}0.25$	-0.72 ± 0.20	$-1.00{\pm}0.16$	-0.82 ± 0.11	-0.86 ± 0.14	$-0.80{\pm}0.18$	$-0.91{\pm}0.15$	-0.32 ± 0.17	$-0.64{\pm}0.17$	-0.32 ± 0.24	$-0.95{\pm}0.12$	$-1.00{\pm}0.15$	$-0.51{\pm}0.29$	$-0.58{\pm}0.15$	-0.44 ± 0.12	-0.82 ± 0.05	$-0.35{\pm}0.12$	$-1.00{\pm}0.22$	$-0.84{\pm}0.24$	$-0.98{\pm}0.02$	$-0.62{\pm}0.10$	$-0.60{\pm}0.18$	$-0.49{\pm}0.13$	$-0.57{\pm}0.14$	$-0.59{\pm}0.18$	-0.77 ± 0.16
tion	Decl.	00.0)	-04:00:50.4	-04:04:18.7	-04:03:54.3	-03:52:53.0	-03:55:23.8	-03:50:47.5	-04:00:44.7	-03:57:14.8	$-04{:}01{:}12.7$	-03:58:46.1	-03:58:54.4	-04:01:54.2	-03:57:47.9	-03:57:32.7	-03:58:02.3	-03:55:07.4	-03:59:41.1	-03:54:24.7	-03:53:16.7	-03:53:51.8	-03:54:11.6	-03:54:43.5	-03:53:18.3	-03:56:10.3	-04:01:36.1	-03:59:57.1	-04:02:29.5	-03:58:52.1	-03:52:39.1	-03:59:22.3	-03:53:59.3	-04:00:50.1	-03:57:59.8	-03:58:44.0	-03:53:36.5
Posi	R. A.	(J20)	18:43:32.41	18:43:32.58	18:43:33.47	18:43:33.94	18:43:34.12	18:43:34.13	18:43:35.33	18:43:35.41	18:43:35.45	18:43:35.48	18:43:35.82	18:43:36.18	18:43:36.74	18:43:38.63	18:43:41.02	18:43:42.37	18:43:42.57	18:43:42.73	18:43:45.35	18:43:46.06	18:43:46.43	18:43:46.72	18:43:47.11	18:43:47.63	18:43:48.67	18:43:49.03	18:43:50.42	18:43:50.67	18:43:51.09	18:43:51.81	18:43:52.78	18:43:52.78	18:43:53.11	18:43:54.18	18:43:54.65
ID^1			98	100	104	105	106	107	110	112	113	114	116	119	122	130	143	148	149	150	156	158	161	164	169	172	176	178	183	185	187	188	190	191	193	195	198

4.3. NIR SPECTROSCOPY

ald
ĥ
Ebisawa
$_{\mathrm{the}}$
in.
Sources
Target
4.6:
Table

			I																						
K_s^2		(mag)	13.32	15.34	14.77	11.95	14.80	8.76	11.91	13.15	Ι	Ι	14.07	14.87	13.97	Ι	13.60	12.11	14.57	13.57	12.52	12.37	13.83	Ι	11.11
H^2		(mag)	13.57	16.05	15.44	12.12	15.44	8.93	12.37	13.41	13.40	15.35	14.31	15.28	15.35	Ι	14.59	12.59	15.35	13.52	13.39	12.69	14.70	Ι	11.83
J^2		(mag)	14.31	17.37	16.90	12.82	16.81	9.30	13.59	14.18	14.22	17.40	14.98	16.59	Ι	Ι	16.96	13.54	Ι	14.80	14.36	13.59	16.00	Ι	13.29
Separation		(arcsec)	0.42	0.93	0.90	0.37	0.35	0.21	0.81	0.93	0.43	0.80	0.52	0.53	0.55	Ι	0.55	0.35	0.25	0.85	0.30	0.86	0.72	Ι	0.60
$F_{\mathbf{x}}$	$0.5-2~{\rm keV}/{\rm 2-10~keV}$	$(ergs \ s^{-1} \ cm^{-2})$	2e - 15/8e - 16	4e - 16/1e - 14	2e - 16/6e - 15	$3\mathrm{e}{-15}/\mathrm{1e}{-15}$	$3\mathrm{e}{-16}/\mathrm{1e}{-15}$	2e - 15/7e - 16	$5e\!-\!16/2e\!-\!15$	$2e{-}15/7e{-}16$	$6\mathrm{e}{-16}/\mathrm{2e}{-14}$	$7e{-}16/2e{-}14$	$4e{-}16/2e{-}15$	$1e{-}15/5e{-}15$	$6\mathrm{e}{-16}/2\mathrm{e}{-15}$	$3\mathrm{e}{-16}/\mathrm{1e}{-15}$	$2e{-}16/5e{-}15$	$9e{-}16/4e{-}15$	$3\mathrm{e}{-16}/\mathrm{1e}{-14}$	$1e{-}15/6e{-}15$	$7e{-}16/3e{-}15$	$2e{-}15/7e{-}15$	8e - 16/3e - 15	$1e{-}15/5e{-}15$	$8e{-}16/2e{-}14$
Hardness	(H-S)/(H+S)		-0.88 ± 0.06	$0.18 {\pm} 0.15$	$-0.14{\pm}0.19$	$-0.95{\pm}0.05$	$-0.65{\pm}0.26$	-0.86 ± 0.08	$-0.73{\pm}0.17$	-0.99 ± 0.04	$0.32 {\pm} 0.11$	$0.03 {\pm} 0.13$	$-0.39{\pm}0.26$	-0.65 ± 0.11	-0.45 ± 0.22	-0.42 ± 0.32	$0.14{\pm}0.24$	$-0.47{\pm}0.16$	$0.03 {\pm} 0.21$	-0.76 ± 0.09	-0.55 ± 0.15	$-0.59{\pm}0.09$	$-0.70{\pm}0.16$	$-0.75{\pm}0.10$	-0.20 ± 0.09
tion	Decl.	0.0)	-04:07:42.0	-03:52:50.2	-03:51:57.1	$-04{:}07{:}37{.}7$	$-04{:}03{:}21{.}2$	-03:55:18.3	-04:05:59.2	-04:05:23.7	$-04{:}02{:}57{.}6$	-04:04:36.9	-04:05:39.1	$-04{:}06{:}12.2$	-04:06:30.7	-04:02:32.8	-04:03:56.9	-04:06:02.5	$-04{:}04{:}53.2$	-04:03:51.0	$-04{:}00{:}17.4$	-03:59:11.9	$-04{:}01{:}35.1$	$-04{:}03{:}27{.}3$	$-04{:}01{:}03{.}9$
Posit	R.A.	(J200	18:43:54.83	18:43:55.70	18:43:57.68	18:43:57.87	18:43:58.30	18:43:59.67	18:44:00.31	18:44:02.16	18:44:03.95	18:44:05.05	18:44:05.56	18:44:05.91	18:44:11.90	18:44:13.72	18:44:15.62	18:44:18.54	18:44:21.60	18:44:22.61	18:44:22.67	18:44:24.09	18:44:24.24	18:44:26.71	18:44:28.87
ID^{1}			199	204	212	214	217	221	223	226	233	235	237	238	246	249	252	255	257	260	262	264	265	269	272

¹Source number in Ebisawa et al. (2005).

 $^2\mathrm{NIR}$ magunitude by NIR identification in Ebisawa et al. (2005).

4.3.2 Observations

Before spectroscopy observations, we first took pre-images (an exposure time of ~ 5 min) of the Revnivtsev field and the Ebisawa field based on positions of target list sources. Based on these pre-images, we made multi-object spectroscopy masks using the Mask Design Program². We arranged target sources to each mask in the order of the source priorities. The slit width of target sources were set to $\sim 0.8''$. Bright stars were used as alignment stars. We created square alignment holes for the alignment stars with a side of $\sim 3.5''$. Figure 4.4 shows four designed masks of the Revnivtsev field. About the Ebisawa field, we did the same method for the mask design.

The observations were performed on 2011 June 23–24 (the Revnivtsev field), and 2007 June 07–10 and 2008 June 27–28 (the Ebisawa field). The visibility plots of the two fields are shown in Figure 4.5. We used the $R \sim 1300$ grism in the $K_{\rm s}$ -band (2.0–2.3 μ m) with a dispersion scale of ~ 3.88 Å pixel⁻¹. We used OH night emission lines for wavelength calibration in the Revivtsev field and Th-Ar lump for the Ebisawa field. Dome flat images were taken for flat-fielding. The atmosphere of the Earth introduces absorption into ground-based NIR spectra, which needs to be corrected. For this telluric correction, we used A0V stars as standard stars because A0V stars do not have any emission and absorption features except for the Br γ absorption in the wavelengths of interestx. In each night, we took standard stars several times, so that one of them has almost the same airmass with the target objects. The observation information (mask ID, date, coordinate, exposure time, number of slits, airmass, seeing) is shown in Table 4.7. In our study, we used the A-B-B-A dithering pattern, in which A and B indicate two different positions along the slits, with different dithering amplitude for each mask in order to avoid having another source at the position B by chance. This is not negligible as our regions are very crowded.

4.3.3 Data Reduction

We reduced all the data taken with MOIRCS using the IRAF software package³. We describe two-dimentional data reduction in this subsection and one-dimentional reduction in § 5.3. First, we subtracted a dark frame from each object frame and standard star frame. The dark frames were taken with the same exposure time of each object and standard star frame

 $^{^2} See \ http://subarutelescope.org/Observing/Instruments/MOIRCS/wmdp_moircs.html <math display="inline">^3 http://iraf.noao.edu/$

Figure 4.4: Mask designs in R1–R4 (Table 4.7) in the Revnivtsev field. Green and red boxes show slits and their dispersion area in the chip 1 and chip 2, respectively. Cross points indicate target sources and the difference of color shows source priority (Cyan: first priority sources, magenta: second priority sources, green: third priority sources, and yellow: fourth priority sources in Table 4.3). We arranged slits in order to take as many high priority sources as possible.

Figure 4.4: Continued.

Figure 4.4: Continued.

Figure 4.4: Continued.

Mask ^a	Date	Coordina	te (J2000.0)	t_{exp}^{b}	Num. of	Airmass	Seeing ^c
ID		R. A.	Decl.	(s)	slits		(arcsec)
R1	2011-06-23	17:51:29	-29:35:43	10800	15	1.55 - 1.97	0.8
R2	2011-06-24	17:51:43	-29:34:47	9900	15	1.63 - 2.02	1.3
R3	2011-06-23	17:51:17	-29:40:60	8400	13	1.55 - 1.83	0.7
R4	2011-06-24	17:51:16	-29:31:02	9600	10	1.53 - 1.85	0.9
E1	2007-06-07	18:42:52	-03:53:29	720	7	1.00 - 1.62	0.3
E2	2007-06-08	18:47:53	-03:52:01	1440	7	1.09 - 1.29	0.3
E3	2007-06-08	18:44:24	$-04{:}02{:}01$	1920	14	1.47 - 1.73	0.5
E4	2007-06-09	18:43:50	-03:53:40	1440	14	1.23 - 1.88	0.5
E5	2007-06-10	18:43:30	-04:01:26	1080	9	1.09 - 1.32	0.3
E6	2007-06-10	18:43:45	-03:58:20	1440	11	1.22 - 1.52	0.7
$\mathrm{E7}$	2007-06-10	18:43:50	-03:53:39	1800	12	1.09 - 1.14	0.3
E8	2008-06-27	18:43:40	-04:01:48	2700	7	1.21 - 1.60	0.3
E9	2008-06-27	18:43:25	-03:56:55	2400	11	1.09 - 1.12	0.4
E10	2008-06-27	18:43:57	-04:01:37	2400	6	1.18 - 1.49	0.4
E11	2008-06-28	18:43:21	-03:51:41	2700	9	1.21 - 1.68	0.4
E12	2008-06-28	18:43:51	-03:54:20	2700	9	1.09 - 1.12	0.5
E13	2008-06-28	18:44:05	-04:06:26	2400	11	1.20 - 1.59	0.9

 Table 4.7:
 Subaru observation log

^a "E" shows the Ebisawa field, and "R" shows the Revnivtsev field.

^b Exposure time.

^c Average seeing of all images in each mask.

4.3. NIR SPECTROSCOPY

Figure 4.5: Visibility plot in the Revnivtsev field (left) and the Ebisawa field (right). The observations were carried out at an airmass < 2 (red solid lines).

(Figure 4.8). The dark frames were taken at the end of each night.

Figure 4.8: Example of a raw data (left), a dark frame (middle), and dark subtracted frame (right) of the mask R1 chip 2.

Second, we conducted flat-fielding using the normalized dome flat frames (Figure 4.9). The flat frames were taken for each mask.

Figure 4.6: MOIRCS mask layout in the Revnivtsev field (white). Each field number corresponds to the mask ID in Table 4.7. The background is a mosaicked and smoothed X-ray image in 0.5–8.0 keV. Red, green, and blue plusses show soft, medium, and hard X-ray sources identified with NIR, respectively.

Figure 4.7: MOIRCS mask layout in the Ebisawa field. The symbols follow Figure 4.6.

Figure 4.9: Example of a dark subtracted frame (left), a flat frame (middle), and flat-fielded frame (right) of mask R1 chip2.

Third, night-sky emission was subtracted by using the other frame in the A and B pairs: A–B to extract spectra taken at the position A (Figure 4.11) and B–A for the position B.

Figure 4.10: Example of frame A (left), frame B (middle), and A–B frame (right) of mask R1 chip2. The frames were dithered in the vertical direction in this figure.

Fourth, we removed bad pixels using the bad pixel map provided by the MOIRCS team.⁴ This map includes dead and hot pixels. We interpolated the value in bad pixels by the values around them using the fixpix tool in the IRAF package. We also removed cosmic rays using the craverage tool.

Fifth, we correlated the distortion of all frames using the geotran tool. We finally stacked all the frames taken with the same chip with the same mask, resulting in 4 (mask) \times 2 (chips) \times 2 (A–B and B–A combinations) stacked frames. Our target sources are so faint that some sources are difficult to extract from each "A–B" and "B–A". Thus, in order to get enough signal-to-noise ratio, we combined "A–B" and "B–A" frames into one image for each mask using the imcombine tool. Hereafter, we used these the combined "A–B" and "B–A" images.

 $^{{}^{4}}See \ http://subarutelescope.org/staff/ichi/MOIRCS/OPEN/mcsbadpix_20110416.tar.gz$

Figure 4.11: Example of A–B before (left) and after (right) the correction of bad pixels, cosmic-rays and distortion of mask R1 chip2.

CHAPTER 4. OBSERVATIONS AND DATA REDUCTION

Chapter 5

Data Analysis and Results

In this chapter, we describe X-ray and NIR analysis and their results. We analyzed the data taken with the deep-exposure *Chandra* ACIS observation, and extracted ~2,000 sources, and derived their X-ray photometric and spectroscopic properties (§ 5.1). From NIR imaging data with IRSF, we searched for NIR (J, H, and K_s) counterparts of the *Chandra* X-ray sources (§ 5.2), and studied their NIR photometric properties. In order to constrain nature of the NIR-identified X-ray sources, we obtained NIR spectra of some selected NIR sources using the Subaru telescope (§ 5.3). Hereafter, errors correspond to 90% confidence unless stated otherwise.

Contents

5.1 X-ra	ay Imaging and Spectroscopy	88
5.1.1	Source Extraction	88
5.1.2	Photometry	90
5.1.3	Variability	91
5.1.4	Spectroscopy	91
5.1.5	Total and All Point Source combined spectra	95
5.2 NIR	Imaging	97
5.2.1	Source Extraction	97
5.2.2	Astrometry	97
5.2.3	Photometry	99
5.2.4	X-ray and NIR Correlation	100

5.3	NIR	Spectroscopy	101
	5.3.1	Spectral Extraction	101
	5.3.2	Line Identification	101

5.1 X-ray Imaging and Spectroscopy

5.1.1 Source Extraction

As we show in § 2.1, Revnivtsev et al. (2009) used only the center of the Revnivtsev field, because they aimed to reach the deepest detection limit. On the other hand, in order to study as many as X-ray and NIR counterpart sources, we extract X-ray point sources using the entire field of view of the ACIS-I.

We first extracted X-ray point source candidates using the wavdetect software. We set the significance threshold at 2.5×10^{-5} , implying that one false positive detection would be expected at every 4×10^4 cells. As a result, 2,596 X-ray source candidates were found. For all the source candidates, we extracted source and background events using the ACIS Extract (AE; Broos et al. 2010)¹ package version 4.2. Point sources events were extracted from a region encircling ~90% of photons of each source, while background events were from an annulus around each source.

To select significant X-ray point sources from the candidates, we examined their validity based on their photometric significance (PS) and the probability of no source (P_B). The PS is defined as the background-subtracted source counts value (C_{net}) divided by its background counts normalized by the area. P_B is the probability that the source is attributable to a background fluctuation. We recognized the source to be valid if they satisfy both two criteria: PS ≥ 1.0 and $P_B \leq 1.0 \times 10^{-2}$. Consequently, we found 2,002 valid X-ray point sources. Table A.1 shows the basic properties of the detected 2,002 X-ray sources. The X-ray sources can be referred following the International Astronomical Union (IAU) convention; e.g., CXOU J175044.88–292837.6 for the source sequence number in Table A.1. Figure 5.1 shows a radial profile of the surface number densities of all the detected X-ray point sources.

¹See the ACIS Extract User's Guide at http://www.astro.psu.edu/xray/docs/TARA/aeusersguide.html for details.

We can see that the number of detected sources decrease as the off-axis angle increases, that is a vignetting effect of the mirror as we have shown in \S 3.1.2.

Figure 5.1: Radial profile of the surface number densities of the detected X-ray point sources in 0.5–8 keV.

Detection Rate

We estimated the detection rate of the *Chandra* data in the following method. First, we embedded random 400 artificial X-ray sources into the actual image (assuming the same exposure time, ~ 900ksec) with a flux of ~ $10^{-13} - 10^{-17}$ ergs cm⁻² s⁻¹ in 0.5–8 keV. We assumed that these artificial sources have the same spectral shape as the GRXE spectrum. The source detection method described in § 5.1.1 was employed to detect the artificial sources, and detection rates of the sources in $10^{-13} - 10^{-17}$ ergs cm⁻² s⁻¹ were derived in 0.5–8 keV. The same procedure was used to derive the detection rate in 2–8 keV. Figure 5.2 shows the detection rates of *Chandra* data thus calculated. The 100% detection rate corresponds to the 0.5–8 keV flux ~ $10^{-15.2}$ ergs cm⁻² s⁻¹. About 2–8 keV, the detection rate of 100% corresponds to ~ $10^{-14.8}$ ergs cm⁻² s⁻¹.

Figure 5.2: Detection rates of the point sources in the Revnivtsev fields in 0.5–8 keV (left) and in 2–8 keV (right).

5.1.2 Photometry

We calculated the median energy (ME), which represents the spectral hardness of all the detected sources. The value is defined as the median photon energy of detected photons when sorted with energy. The number distribution of calculated ME is shown in Figure 5.3 left.

Most detected X-ray sources are too faint (less than 100 counts) to determine the flux by spectral fitting. Thus, we estimated the X-ray flux by photometric information (hereafter called the "photometric flux"). The photometric flux is defined as the median energy \times count rate \times effective area⁻¹. The number distribution of photometric flux is shown in Figure 5.3 right. The consistency between the flux determined by the spectral fitting and the photometric flux was checked for relatively bright 335 sources (with more than 100 counts), for which flux determination by spectral fitting was possible. They are in a good agreement (Figure 5.4). Hereafter, we use the photometric flux for all the detected X-ray sources.

Figure 5.3: Histogram of the median energies for all the detected X-ray sources (left). Histogram of the photometric fluxes for all the detected X-ray sources in 0.5–8 keV (right).

5.1.3 Variability

In order to examine time variability of the flux, we applied the Kolmogorov-Smirnov (KS) test, which examines the degree of non-uniformity in the distribution of photon arrival times against a uniform distribution (or constant flux) with χ^2 -statistics. The test was not performed for sources in chip gaps or on the field edge, where *Chandra* satellite dithering can cause artificial variability. Thus we tested the time variability of 1,097 X-ray sources. Using a null hypothesis probability ($P_{\rm KS}$) derived from the KS test, we classified sources into three groups: (a) $P_{\rm KS} \geq 5 \times 10^{-2}$ for non-variable sources (680 sources), (b) $5 \times 10^{-3} \leq P_{\rm KS} < 5 \times 10^{-2}$ for marginally variable sources (316 sources), and (c) $P_{\rm KS} < 5 \times 10^{-3}$ for variable sources (101 sources, Appendix D.1). These results are shown in the column (15) in Table A.1. We plotted concatenated light curves of each source concatenating the ten observations (Appendix D.1). The light curves show variation in photon flux and median energy.

5.1.4 Spectroscopy

For the 2,002 sources, we constructed source and background spectra and generated instrumental response files; i.e., redistribution matrix functions (RMFs) of the detector and auxiliary response files (ARFs) of the telescope. We used the X-ray spectral fitting package XSPEC version 12.6.0 for the spectral analysis. We derived best-fit parameters of bright

Figure 5.4: Relation between the two X-ray flux estimations in 0.5–8.0 keV for bright 335 sources. The vertical and horizontal axes represent the X-ray flux estimated by the photometric method and the spectral fitting, respectively. The dotted line represents equal values between the two estimates.

sources (counts > 100) by using the χ^2 -statistics.

õ
Ŋ
over
counts
source
with
sources
-ray
N
×
the X
for the X
fittings for the X
Chermal fittings for the X
Thermal fittings for the X
5.1: Thermal fittings for the X
Cable 5.1: Thermal fittings for the X

¹For convenience, cols. (1)–(4) reproduce the source identification, net counts, and photometric significance data from Table A.1. ²All fits used the source model 'tbabs*vapec" in XSPEC abundances frozen at the values relative to Anders & Grevesse (1989), scaled to Wilms et al. (2000), using the tbabs absorption code in XSPEC. Cols. (5) and (6) present the best-fit values for the extinction column density and plasma temperature parameters. Col. (7) presents the emission measure confidence intervals. More significant digits are used for uncertainties <0.1 in order to avoid large rounding errors; for consistency, the same number of significant digits is used for both lower and upper uncertainties. Uncertainties are missing when XSPEC was unable to compute them or when their values were so large that he parameter is effectively unconstrained. Fits lacking uncertainties, fits with large uncertainties, and fits with frozen parameters should be viewed merely as splines to the data to obtain rough estimates of luminosities; the listed parameter values are not robust.³ X-ray flux derived from the model spectrum are presented in cols. (8)–(12): (s) soft band (0.5–2 keV); (h) hard band (2–8 keV); (t) total band (0.5–8 keV). Cols. (8) and (12) are omitted when $\log N_{\rm H} > 22.5 \,\mathrm{cm}^{-2}$ since the derived from the model spectrum, assuming a distance of 8.5 kpc. Quantities marked with an asterisk (*) were frozen in the fit. Uncertainties represent 90% soft band emission is essentially unmeasurable.

5.1. X-RAY IMAGING AND SPECTROSCOPY

2
20
over
counts
source
with
sources
Þ.
Б
_
J.
X
the X-
for the X-
fitting for the X-
-law fitting for the X-
Power-law fitting for the X-
2: Power-law fitting for the X-
5.2: Power-law fitting for the X ⁻¹
• 5.2: Power-law fitting for the X-
le 5.2: Power-law fitting for the X-
able 5.2: Power-law fitting for the X-

CXOU J 5051 16-203410 5	(
1 16-993419.5	$C_{t,net}$	Signif.	$\log N_{\rm H}$	Гı	$\log N_{\Gamma}$	$F_{\rm s}$	$F_{ m h}$	$F_{\rm h,c}$	F_{t}	$F_{\rm t,c}$
51 16-293419 5			(cm^{-2})				(erg	$ss s^{-1} cm^{-1}$	-2)	
0.011007-0110	1469.3	34.5	$22.4\substack{+0.09\\-0.09}$	$1.7^{\pm 0.3}_{-0.2}$	$-4.92^{+0.2}_{-0.2}$	3.3e-13	$3.9e{-}12$	4.7e-12	4.3e-12	8.0e-12
03.96-293431.0	670.9	24.0	$22.2\substack{+0.1\\-0.2}$	$1.2^{\pm 0.3}_{-0.3}$	$-5.61\substack{+0.2\\-0.2}$	1.5e-13	$2.1e{-}12$	$2.3e{-}12$	$2.2e{-}12$	$3.0e{-}12$
11.58 - 293532.6	783.6	26.7	$22.3 \substack{+0.1 \\ -0.1}$	$1.7_{-0.3}^{\pm0.3}$	$-5.29_{-0.2}^{+0.2}$	2.0e-13	1.9e-12	2.2e-12	2.1e-12	3.6e-12
12.04 - 293527.7	633.8	23.8	$22.4 \substack{+0.09 \\ -0.09}$	$1.9 \substack{+0.3 \\ -0.3}$	$-5.27_{-0.2}^{+0.2}$	2.0e-13	1.9e-12	2.2e-12	$2.1e{-}12$	$3.6e{-}12$
13.70-293110.1	4325.4	64.4	$22.5\substack{+0.04\\-0.04}$	$1.5\substack{+0.1\\-0.1}$	$-4.53_{-0.08}^{+0.08}$:	$1.4e{-}11$	$1.6e{-}11$	1.4e-11	:
25.00-293016.1	610.9	22.9	$22.1 \substack{+0.1 \\ -0.2}$	$1.4 \substack{+0.3 \\ -0.3}$	$-5.62_{-0.2}^{+0.2}$	1.7e-13	$1.4e{-}12$	1.5e-12	$1.6e{-}12$	2.2e-12
29.23 - 292936.2	818.9	26.7	$22.0 \substack{+0.09\\-0.10}$	$2.0^{+0.2}_{-0.2}$	$-5.29_{-0.1}^{+0.1}$	3.5e-13	$1.2e{-}12$	$1.4e{-}12$	$1.6e{-}12$	2.7e-12
29.85 - 294307.9	824.9	26.0	21.2	2.8	-5.08	1.5e-12	7.5e-13	7.6e-13	2.3e-12	$3.1e{-}12$
30.06 - 293613.4	643.2	24.3	$22.4\substack{+0.09\\-0.09}$	$1.7^{\pm 0.3}_{-0.3}$	$-5.34_{-0.2}^{+0.2}$	1.5e-13	$1.6e{-}12$	1.9e-12	1.7e-12	$3.1e{-}12$
30.80 - 293736.5	722.1	25.8	$22.2\substack{+0.08\\-0.09}$	$2.0^{+0.3}_{-0.2}$	$-5.25\substack{+0.1\\-0.1}$	2.8e-13	$1.3e{-}12$	$1.5e{-}12$	$1.6e{-}12$	$3.0e{-}12$
31.68 - 292957.0	2908.3	52.5	$22.4\substack{+0.06\\-0.06}$	$1.3\substack{+0.1\\-0.1}$	$-4.87\substack{+0.10\\-0.09}$	5.5e-13	$9.2e{-}12$	$1.1e{-}11$	$9.8e{-}12$	$1.4e{-}11$
33.05 - 294247.6	790.6	24.7	$22.2\substack{+0.1\\-0.1}$	$1.5^{\pm 0.3}_{-0.3}$	$-5.37_{-0.2}^{+0.2}$	2.4e-13	$2.2e{-}12$	$2.4e{-}12$	$2.4e{-}12$	$3.5e{-}12$
34.06 - 293103.9	1390.3	36.0	$22.1 \substack{+0.08 \\ -0.08}$	$1.6_{-0.2}^{+0.2}$	$-5.18_{-0.09}^{+0.10}$	4.6e-13	2.9e-12	$3.1e{-}12$	$3.3e{-}12$	4.9e-12
35.60 - 293754.8	509.6	21.4	$22.2\substack{+0.1\\-0.1}$	$1.8\substack{+0.3\\-0.3}$	$-5.47_{-0.2}^{\pm0.2}$	1.6e-13	$1.1e{-}12$	$1.2e{-}12$	$1.3e{-}12$	2.2e-12
38.33 - 294240.3	614.2	21.2	$21.9^{\pm 0.2}_{-0.2}$	$2.0^{\pm 0.3}_{-0.3}$	$-5.40\substack{+0.2\\-0.2}$	3.3e-13	$1.0e{-}12$	$1.1e{-}12$	$1.3e{-}12$	$2.2e{-}12$
44.97-293 802.0	667.6	24.3	$22.2\substack{+0.1\\-0.1}$	$1.6^{\pm 0.3}_{-0.3}$	$-5.47_{-0.2}^{\pm0.2}$	2.0e-13	1.5e-12	$1.6e{-}12$	$1.7e{-}12$	2.5e-12
46.92 - 294304.3	704.5	21.8	$22.5\substack{+0.1\\-0.1}$	$1.7^{\pm 0.4}_{-0.4}$	$-5.18\substack{+0.3\\-0.3}$:	$2.3e{-}12$	2.8e-12	2.5e-12	:
50.23 - 293143.7	527.5	20.6	$22.5\substack{+0.1\\-0.1}$	$2.0^{\pm 0.4}_{-0.4}$	$-5.18\substack{+0.3\\-0.2}$	1.3e-13	$1.4e{-}12$	1.7e-12	1.5e-12	3.5e-12
51.29-293310.3	1447.3	36.3	$22.3\substack{+0.09\\-0.10}$	$0.65\substack{+0.2\\-0.2}$	$-5.51_{-0.1}^{+0.1}$	1.9e-13	$5.5e{-}12$	$6.1e{-}12$	$5.8e{-}12$	7.1e-12
53.33-294245.0	1202.7	30.0	$22.4\substack{+0.1\\-0.1}$	$1.0^{\pm 0.3}_{-0.3}$	$-5.30\substack{+0.2\\-0.2}$	2.3e-13	$5.0e{-}12$	$5.7e{-}12$	$5.3e{-}12$	7.1e-12
54.54-294006.3	561.9	19.8	$22.7^{\pm 0.1}_{-0.2}$	$2.1^{\dots}_{-0.5}$	$-4.98\substack{+0.4\\-0.3}$:	$1.8e{-}12$	$2.4e{-}12$	1.9e-12	:

¹For convenience, cols. (1)–(4) reproduce the source identification, net counts, and photometric significance data from Appendix A.1. ²All fits used the source presents the power law normalization for the model spectrum. Quantities marked with an asterisk (*) were frozen in the fit. Uncertainties represent 90% confidence intervals. More significant digits are used for uncertainties <0.1 in order to avoid large rounding errors; for consistency, the same number of significant digits is used is effectively unconstrained. Fits lacking uncertainties, fits with large uncertainties, and fits with frozen parameters should be viewed merely as splines to the data to obtain rough estimates of luminosities; the listed parameter values are unreliable. ³X-ray Flux derived from the model spectrum, assuming a distance of 8 kpc, are presented in cols. (8)–(12): (s) = soft band (0.5–2 keV); (h) hard band (2–8 keV); (t) total band (0.5–8 keV). Absorption-corrected luminosities are subscripted model "tbabs (powerlaw)" in XSPEC. Cols. (5) and (6) present the best-fit values for the extinction column density and power law photon index parameters. Col. (7) for both lower and upper uncertainties. Uncertainties are missing when XSPEC was unable to compute them or when their values were so large that the parameter with a c. Cols. (8) and (12) are omitted when $\log N_{\rm H} > 22.5 \text{ cm}^{-2}$ since the soft band emission is essentially unmeasurable.

CHAPTER 5. DATA ANALYSIS AND RESULTS

5.1. X-RAY IMAGING AND SPECTROSCOPY

For the spectral models, we used an interstellar absorption model (tbabs; Wilms et al. 2000) convolved with either of the two continuum models: an optically-thin thermal plasma model with the solar abundance (apec; Smith et al. 2001) and a power-law model to represent the thermal and non-thermal spectra, respectively. The free parameters in the thermal model are absorption $(N_{\rm H})$, plasma temperature $(k_{\rm B}T)$, and X-ray flux $(F_{\rm X})$. On the other hand, the free parameters in power-law model are absorption $(N_{\rm H})$, photon index (Γ) , and flux $(F_{\rm X})$. First, we selected the sources that have the reduced χ^2 of the fitting < 1.5. Second, we removed results with unphysical best-fit values; i.e., $\Gamma > 3$ in the power-law fitting and $k_{\rm B}T > 15$ keV in the apec fitting. As a result, 200 sources were fitted with the thermal model and 360 sources were fitted with the non-thermal model. Appendix B.1 and C.1 show the best-fit model and spectra of thermal and non-thermal fitting for the bright sources, respectively. Tables 5.1, 5.2 show the best-fit model parameters.

5.1.5 Total and All Point Source combined spectra

In order to compare with Revnivtsev et al. (2009), we extracted total X-ray spectra in the Revnivtsev field as follows. (1) Using the CIAO tool specextract, we extracted X-ray spectra and build associated weighted ARFs and RMFs for each CCD chip (chip 0–3) on each observation (ten ObsIDs). We combined each spectrum, each ARF and each RMF to one total spectra using mathpha, addarf, and addrmf, respectively. (2) The CIAO/ACIS observation in the Revnivtsev field have a lot of point sources in the image, thus we could not estimate the background from the image. Thus, we used the non-X-ray background database (blank-sky database²) provided by *Chandra* X-ray Center (CXC). The blank sky lies at high Galactic latitude, which away from soft bright features such as North Polar spur. We chose the background database matching to our data using the CIAO toolacis_bkg_lookup. The background files were projected to match the coordinates of the Revnivtsev field pointing using the real aspect solution files. (3) Using the non-X-ray background thus created, we have made background subtracted total spectra (including both point source and diffuse X-rays) for the Revnivtsev field (Figure 5.5).

Meanwhile, we made the combined point source spectrum of 2,002 point sources using the CIAO toolcombine_spectra. Figure 5.5 shows the total spectrum and the combined point source spectrum in the Revnivtsev field. In Revnivtsev et al. (2009), the total surface brightness in 3–7 keV is $(4.2\pm0.4)\times10^{-11}$ ergs cm⁻² s⁻¹ deg⁻². The surface brightness of

²http://cxc.cfa.harvard.edu/contrib/maxim/acisbg/

our total spectrum in 3–7 keV is $(5.0\pm0.4)\times10^{-11}$ ergs cm⁻² s⁻¹ deg⁻². Figure 5.5 bottom shows the point source resolved fraction. We measured the flux and resolved fraction with a bin size of 1 keV. In 6–7 keV, the resolved fraction is ~89%, which is consistent with the fraction of Revnivtsev et al. (2009) as we show in § 2.1.

Figure 5.5: (Top) Comparison of the GRXE total spectrum and point source combined spectrum. (Bottom) Resolved fraction of the GRXE total spectrum. The errorbars give 1σ error.

5.2 NIR Imaging

5.2.1 Source Extraction

In this section, we used the SIRIUS data with the best seeing in each region (Table 4.1). We extracted NIR sources with a 3σ level from the eight regions by using the SExtractor version 2.8.6 (Bertin & Arnouts 1996). We applied a convolution mask of 3×3 pixel binning plus 1.5 pixel Gaussian smoothing. Consequently, we detected 52,312 (*J*), 61,188 (*H*), and 65,061 (K_s) sources. Detected NIR sources in each region are given in Table 5.3. We note that the SIRIUS sources include duplicated counts in overlapped regions.

Data ^a	Num	aber of sources							
label	J	Н	$K_{\rm s}$						
00-c	6794	8959	8252						
01	7066	6287	8493						
02	6248	8163	7506						
03	5587	8425	6929						
04	7026	4920	8600						
05	6211	8103	8219						
06	6956	8951	9230						
07	6424	7380	7832						
total	52,312	61,188	$65,\!051$						

Table 5.3: NIR detected sources

 $^{\rm a}$ Data labels are same as Table 4.1.

5.2.2 Astrometry

We calibrated the position of the SIRIUS sources by referring to the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006) point source catalogue. For the astrometry correction, we used software provided by Dr. Matsunaga at the Kiso Observatory, which is based on the optimistic pattern matching algorithm advocated by Tabur (2007). The software calculates coordinate transformation between the SIRIUS and the 2MASS catalogs, and corrects the SIRIUS astrometry. In Figure 5.6, we plotted the difference between the corrected SIRIUS and 2MASS positions both in R.A. and Decl.. We found that $\Delta R.A. = 0.08'' \pm 0.29''$ (1 σ) and $\Delta Decl. = 0.11'' \pm 0.25''$ (1 σ). This indicates that SIRIUS positions are determined at an accuracy of the pixel size of SIRIUS, and the systematic error between SIRIUS and 2MASS is negligible.

Figure 5.6: Astrometric consistency between the SIRIUS and the 2MASS sources in the (a) J, (b) H, and (c) K_s bands. The black boxes at the center is the SIRIUS pixel size.

5.2.3 Photometry

We also calibrated the photometry of the SIRIUS sources by referring to 2MASS. We identified the 2MASS counterparts to SIRIUS sources only using 2MASS sources with a signalto-noise ratio of >10 (flag A) and in the magnitude range of 12–14 mag (see § 5.2.4 for the detailed procedure). The SIRIUS magnitudes were shifted to match those by 2MASS. Figure 5.7 shows the relative photometry between SIRIUS and 2MASS. The data deviate from the linear relations (2MASS magnitudes equal to SIRIUS magnitudes) brighter than ~10 mag (J), ~10.5 mag (H and K_s) due to the saturation of SIRIUS sources. Thus, we used SIRIUS sources fainter than ~10 mag (J), ~10.5 mag (H and K_s) for the derivation of SIRIUS photometric zero point of each observation in each band.

Figure 5.7: Photometric consistency between the SIRIUS and 2MASS sources. The corrected SIRIUS and the 2MASS magnitudes are plotted separately for the (a) J, (b) H, (c) K_s bands. The dotted line in each panel shows that the 2MASS magnitude being equal to the SIRIUS magnitudes.

5.2.4 X-ray and NIR Correlation

We search for possible NIR counterparts for all the X-ray sources using the 2MASS and SIRIUS source list. Here, we used 2MASS sources brighter than 10.0 (J), 10.5 (H), and 10.5 (K_s) magnitudes and SIRIUS sources fainter than these values due to the saturation of SIRIUS sources. To identify X-ray sources with the NIR, we used NIR sources within 5" radius around each X-ray source. First, we selected counterpart candidates for each X-ray source, which are NIR sources within 5" radius. Each X-ray sources have some NIR counterpart candidates. Second, we measured residual displacements of the candidate pairs, the rms (1 σ) of the displacement is 1.3" (X-ray-2MASS source) and 1.2" (X-ray-SIRIUS source). Then, we recognized 222 X-ray sources (2MASS; 6 sources, SIRIUS; 216 sources) to have NIR counterpart within 1 σ circle (about 12% of all X-ray sources). When there are two or more sources within the 1 σ circle, we assumed the closest one to be the counterpart. Table E.1 shows X-ray–NIR counterparts pairs. In this criteria, the rate of false positive (unrelated pairs identified as counterparts) and false negative (unidentified pairs as counterpart) is to be around 13% of the identified pairs. For all and NIR identified X-ray sources, Figure 5.8 shows histogram of the median energies.

Figure 5.8: Histogram of the median energies separately for all the X-ray sources (top) and NIR identified X-ray sources (middle). The rate of NIR identification at each ME bin is shown at the bottom.

5.3 NIR Spectroscopy

5.3.1 Spectral Extraction

In the Revnivtsev field, we did the following steps to extract one-dimensional spectra from all the processed frames. From the combined image for each mask, we defined aperture to trace spectra for each slit in each mask using the **apall** tool and extracted (Figure 5.9). We registered wavelength for the dispersed spectra using OH night-sky emission line spectra extracted from the same aperture with the source (Figure 5.10; Rousselot et al. 2000). For this purpose, we used A+B frames because the OH emission is cancelled out in the A-B frames. Then, we identified the OH night-sky emission lines using the **identify** tool for the extracted spectrum of A and B images. Using the pixel coordinates of the sky emission lines, we derived a chebyshev polynomial function to convert pixel position to wavelength. Using this function for each slit, we made wavelength calibrated spectra for each slit using the **dispcor** tool (Figure 5.10 (d)). In the Ebisawa field, we did almost the same steps as the Revnivtsev field. Since we had comparison data taken with Th-Ar in the Ebisawa field, we used it for the wavelength calibration. The same procedure was taken also for the standard stars.

After the wavelength calibration, we corrected for telluric features of the objects. The telluric feature was derived from the standard star spectra after removing the Br γ feature by fitting with a Voigt profile and flattening continuum emission using a blackbody emission of a temperature of 9790 K for A0V stars. The OH emission features are sparse in the longer wavelength in the $K_{\rm s}$ -band (Figure 5.11), in which we suffer degraded calibration accuracy. In the last, we combined A–B and B–A spectra of the same aperture using the scombine tool.

5.3.2 Line Identification

Table 5.4 shows the K_s -band spectral features that we used to investigated the nature of each source. Most spectra show absorption features indicating that they are stars. Figure 5.12 and 5.13 show spectra of the sources in the Revnivtsev field and the Ebisawa field, respectively.

In order to find their spectra types, we compared each spectra with the published NIR late-type star spectra (Ali et al. 1995, Ivanov et al. 2004). There are mainly two types of

Figure 5.9: Example of extraction of one-dimensional spectrum (mask R1 slit 1). (a) Combined A–B image. (b) Source and background apertures. Green curves show the source region, yellow dashed curves show the background region, and magenta curves show noisy region, which were not used to derive traces. (c) Extracted spectrum. (d) Wavelength–calibrated spectrum.

Figure 5.10: Night-sky OH spectra for R1300 grism of MOIRCS in K_s band. The top and bottom horizontal axes are in the unit of pixels and wavelengths, respectively, and which the vertical axis is the intensity with 0.8'' long slit.

Figure 5.11: Example of the night-sky OH emission features in our data, which are found mainly in \sim 500–1000 pixels.

Figure 5.12: Normalized K_s -band spectra in mask R1. X-ray source numbers are given below each spectrum. The color of each number corresponds to group Ab (blue), B1 (red), and B2 (green) in Chap. 6. The identification of features A–J is given in Table 5.4.

Figure 5.12: Extracted spectra in mask R2.

Figure 5.12: Extracted spectra in mask R3.

Figure 5.12: Extracted spectra in mask R4.

Figure 5.13: Example of normalized K_s -band spectra in the Ebisawa field. X-ray source numbers are given below each spectrum. The color of each number corresponds to group Ab (blue), B1 (red), and B2 (green) in Chap. 6. The identification of features A–J is given in Table 5.4.
Element	Features $[\mu m]$	Correspondence with Figure 5.12
He _I	2.113	A
$\mathrm{Mg}_{\mathrm{II}}$	2.144	_
H_{I}	2.166	В
$\mathrm{He}_{\mathrm{II}}$	2.189	\mathbf{C}
Na_{I}	2.206	D
Na_{I}	2.209	E
Ca_I	2.263	\mathbf{F}
Ca_I	2.266	_
CO	2.293	G
CO	2.323	Н
CO	2.352	Ι
CO	2.383	J

Table 5.4: List of K-band features

the sources in the Revnivtsev field. (1) Sources with $Br\gamma$ and CO absorption features. (2) Sources only with CO absorption features. From these properties, (1) are G or K spectral type stars and (2) are M spectral type stars. In addition, some sources have metallic features (CaI, MgI and MgII). In the Ebisawa field, in addition to these two types, there are some sources that have emission features, which are likely to be CVs. Source classification based on NIR spectroscopic results is discussed in detail in § 6.3.

Chapter 6

Discussions

Contents

6.1	X-ra	y Properties of the Point Sources	
	6.1.1	Grouping by X-ray Colors	
	6.1.2	Grouping by X-ray Flux	
	6.1.3	X-ray Photometric Properties	
	6.1.4	X-ray Spectroscopic Properties 119	
6.2	NIR	Photometric Properties of the Point Sources 125	
6.3	NIR	Spectroscopic Properties of the Point Sources 127	
6.4	Ρορι	lation of the Point Sources	
	6.4.1	Group Aa sources	
	6.4.2	Group Ab sources	
	6.4.3	Group B1 sources	
		G D0 101	

6.1 X-ray Properties of the Point Sources

6.1.1 Grouping by X-ray Colors

We first examine colors of all the X-ray point sources in the Revnivtsev field. As most of them have low photon statistics, we used a quantile analysis (Hong et al. 2004) to represent colors, which is effective in such a case. Using this method, we made a quantile color-color diagram (Figure 6.1). In the diagram, the quantile Q_x for each source is defined as

$$Q_x = \frac{E_{\rm x} - E_{\rm min}}{E_{\rm max} - E_{\rm min}},\tag{6.1}$$

where E_x is the energy below which x % of the photons reside when sorted by energy, and $E_{\min} = 0.5$ keV and $E_{\max} = 8$ keV. For all the detected X-ray sources, we calculated Q_{50} , Q_{25} , and Q_{75} and used two combinations of these quantiles: $q1 = \log_{10} \frac{Q_{50}}{1-Q_{50}}$ and $q2 = \frac{3Q_{25}}{Q_{75}}$.

Regarding the Ebisawa field, we also made a quantile color-color diagram with the same method as the Revnivtsev field (Figure 6.2). On the diagram, the sources have almost the same distribution as in the Revnivtsev field. Thus, we applied the same criteria to separate all the detected X-ray point sources in the Ebisawa field. Hereafter, we mainly use the data of the Revnivtsev field because the Revnivtsev field is the deepest observation among the GRXE X-ray observations.

The q1 indicates the degree of photon spectrum being biased toward the harder (q1>0) or softer (q1<0) end, and the q2 indicates the degree of photon spectrum being less peaked (q2>1) or more peaked (q2<1). In order to put the diagram into a context, we simulated the quantiles for thermal and non-thermal spectra with different parameters. For the thermal spectra, we used an optically-thin thermal plasma model **brems** attenuated by the interstellar extinction model **tbabs** with the parameters in the ranges of $k_{\rm B}T = 0.5$ -30 keV and $N_{\rm H} = 10^{20.5}$ -10²³ cm⁻². For the non-thermal spectra, we used a power-law model **pow** attenuated by the interstellar extinction model **tbabs** with the parameters in the parameters in the ranges of $\Gamma = 1$ -3 and $N_{\rm H} = 10^{20.5}$ -10²³ cm⁻².

In the plot, sources are distributed around (q1, q2) = (-0.5, 1.3). There are two branches extending up-and-leftward and up-and-rightward in the diagram. Based on this distribution, we define three groups of the sources: (A) q1 > -0.5, (B1) $q1 \le -0.5$ and q2 > 1.3, (B2) $q1 \le -0.5$ and $q2 \le 1.3$. Note that among the 21 bright sources of which spectra are studied individually, 18 sources are classified into group A while three are into group B2. We then made a combined spectrum of each group using CIAO tool combine_spectra (Figure 6.3). This tool makes background-subtracted spectra, and photon counts-weighted ARFs and RMFs. It is noticeable that the spectra of group A and B2 show Fe K emission line feature in the 6–7 keV range, but B1 show hardly iron line emission. Existence of the Fe K feature in the combined spectrum of the group A apparently contradicts with the spectra of individual bright sources (Appendix B.1, C.1), in which almost no sources show significant Fe K emission. This strongly suggests that the Fe K emission feature depends on the source flux. We thus proceed to the flux-sorted spectra.

6.1.2 Grouping by X-ray Flux

In order to investigate contribution of the Fe K emission from the sources in the group A depending on the source fluxes, we separated the group A sources into three sub-groups by fluxes (bright, medium, and faint) so that each sub-group has almost the same total counts. The bright criterion is $> 6.8 \times 10^{-15}$ ergs cm⁻² s⁻¹, the medium criterion is 6.8×10^{-15} – 1.0×10^{-16} ergs cm⁻² s⁻¹, and the faint criterion is $< 1.0 \times 10^{-16}$ ergs cm⁻² s⁻¹. We then made a combined spectrum for each group. The spectra were normalized at 2.5 keV to facilitate comparison (Figure 6.4). We found that the fainter two sub-groups have obviously more significant Fe K line emission than the brightest sub-group. This suggests that the Fe K emission feature becomes more significant below a certain flux.

We then made combined spectra of the sources from the brightest one toward the faintest end by increasing the source number by 20 at each step. In other words, cumulative combined spectra were made above a certain threshold, and the threshold flux is gradually decreased. For each spectrum, we measured equivalent width (EW) of the Fe line. Figure 6.5 shows the EW value against the threshold flux. The EW starts to increase at around $F_{\rm X} \sim 6 \times 10^{-15}$ ergs cm⁻² s⁻¹, indicating a new class of sources starts to dominate below this flux. We thus decided to separate the group A sources into two; sources with the fluxes above 6×10^{-15} ergs cm⁻² s⁻¹ (Aa) and those below this flux (Ab). Figure 6.6 shows distribution of the ME of each group. Sources in the group Aa and Ab have larger ME than those in B1 and B2, indicating that the sources in group A have harder spectra than the others.

We obtain fraction of the populations constituting the GRXE as follows (fraction in numbers and fluxes in 0.5–8 keV between 10^{-13} and 10^{-16} ergs cm⁻² s⁻¹): Aa (~3\%, ~38\%), Ab (~29\%, ~35\%), B1 (~28\%, ~5\%) and B2 (~40\%, ~22\%).

Figure 6.1: X-ray color-color diagrams of all the detected X-ray point sources in the Revnivtsev field. For reference, we plotted a grid of thermal spectra (top) and power-law spectra (bottom) attenuated by interstellar extinction with various parameter combinations. The labels indicate the values of $k_{\rm B}T$ (0.5, 1, 2, 5, 10, and 30 keV) and Γ (1, 1.5, 2.0, 2.5, and 3.0) and $N_{\rm H}$ (10^{20.5}, 10²¹, 10^{21.5}, 10²², 10^{22.5}, and 10²³ cm⁻²). We separate these sources into three groups (A, B1, and B2) by the values of q1 and q2.

Figure 6.2: X-ray color-color diagrams of all the detected X-ray point sources in the Ebisawa field. We separated these sources into three groups (A, B1, and B2) by the same values of q1 and q2 as Figure 6.1.

Figure 6.3: Combined spectra of X-ray point sources in group A (top left), B1 (top right), and B2 (down left).

Figure 6.4: Combined spectra of different flux ranges: bright (black), medium (red), and faint (green). These spectra are normalized at 2.5 keV.

Figure 6.5: Equivalent width of the Fe K line of cumulatively combined spectra. Cross points show equivalent width at each flux. The error bars show a 1σ statistical uncertainty. The dashed line shows a boundary line between Aa and Ab.

Figure 6.6: Histogram of the median energies of each group.

6.1.3 X-ray Photometric Properties

Source Variability

We plot X-ray variable sources in the quantile color-color diagram (Figure 6.7) made in the same manner as Figure 6.1. In this diagram, we plotted 101 variable sources selected in the KS test in § 5.1.3 with magenta. We found that more than half of the variable sources are in group B2. Fraction of the 101 variable sources in the four groups is the following: 6 (Aa), 21 (Ab), 18 (B1), and 56 (B2). The fraction of the variable sources in each group is $10\pm3\%$ (Aa), $4\pm2\%$ (Ab), $6\pm2\%$ (B1), and $13\pm4\%$ (B2), respectively.

Figure 6.7: Quantile color-color diagrams of all the detected X-ray point sources, in which magenta circles show X-ray variable sources. Black circles show non-variable sources.

$\log N - \log S$ curve

We make the $\log N - \log S$ curve of X-ray point sources in the hard band (2–8 keV), separately for the group A, B1, B2, and total point sources (Figure 6.8). Note that the source detection efficiency is dependent on the off-axis angle (Figure 5.1), such that the sensitivity is the highest at around the image center. Also the $\log N - \log S$ curves are strongly affected by reduction of the detection rates in lower flux levels (Figure 5.2). Thus, below we make fiducial discussion using the $\log N - \log S$ curves only above the flux level corresponding to the 100% detection rate.

In order to see the contribution of extra-galactic point sources, we compare our log N– log S curve in the hard band with that of extra-galactic point sources detected in the same band by the *Chandra* Deep Field survey with a flux limit of 2.0×10^{-16} ergs cm⁻² s⁻¹ in 2–8 keV (Bauer et al. 2004). Since the extra-galactic sources are absorbed in the Revnivtsev field with a hydrogen column density of $N_{\rm H} \sim 10^{22}$ cm⁻² (Table 6.1), we take into account for this and use the log N–log S curve with $N_{\rm H} \sim 10^{22}$ cm⁻² in Bauer et al. (2004). As we show in Figure 6.8, the log N–log S curve of the group A above 6×10^{-15} ergs cm⁻² s⁻¹ (which corresponds to Aa) is comparable with that of extra-galactic. Namely, number of the X-ray point sources in the group Aa is roughly the same as the number of the background AGNs. Below the threshold 6×10^{-15} ergs cm⁻² s⁻¹ and above the 100 % detection limit, the group A log N–log S curve is much above the extra-galactic one, which indicates that Galactic sources dominate in the group Ab.

6.1.4 X-ray Spectroscopic Properties

Spectral Fitting

We make composite spectra for each group (Aa, Ab, B1, and B2) using the same method in § 6.1.1. It is noticable that Ab and B2 show a strong Fe line and Aa shows a weak Fe line (Figure 6.9). We now perform spectral fitting of the four composite spectra (Aa, Ab, B1, and B2) with more physically meaningful models in 0.5–8 keV. As we have shown in § 2.2, late-type stars, pre-CVs, and CVs have thermal spectra. Therefore, we first try two thermal models: a one-temperature plasma model and a two-temperature plasma model. We used the **apec** model as a thermal model in XSPEC. With a one-temperature plasma model, we determined the best-fit model and parameters for Ab, B1, and B2 groups (Table 6.1). The composite spectra of the Ab, B1, and B2 are well fitted with a two-temperature thermal model. Comparing the best-fit parameters of Ab and B2, they have almost the same $k_{\rm B}T$, but the $N_{\rm H}$ values are different.

On the other hand, background AGNs have power-low spectra above ~ 2 keV and an additional soft-excess component as we have shown in § 2.2. Therefore, for the Aa composite

Figure 6.8: $\log N - \log S$ curve of the point sources detected in the Revnivtsev field in the hard band (2–8 keV). Green, blue, red, cyan solid curves correspond to the total, group A, group B1, and group B2 sources, respectively. On the diagrams, $\log N - \log S$ curve for extra-galactic sources with Galactic absorption $(N_{\rm H} \sim 10^{22} \text{ cm}^{-2})$ is shown in black for comparison (Bauer et al. 2004). The ~100% complete detection limit (§ 5.1.1) is shown as a vertical black dashed line. Flux boundary between the Aa sources and Ab sources is also indicated.

spectrum, we tried to fit with a one-temperature plasma model (for soft-excess) and a powerlaw model (Fe line is included). We used the **pow** model as a power-low model in XSPEC. We thus determined the best-fit model parameters for the Aa composite spectrum (Table 6.1).

In addition, we carried out spectral fitting of the composite spectra only in 4–8 keV with a power-law and a Gaussian model to precisely determine the iron line parameters and the underlying continuum (Table 6.2). Also in Table 6.2, we show contribution of each group to the total point-source continuum flux in 4–8 keV and the iron line flux. While Aa contributes to the continuum flux most, Ab, having the largest iron line EW, is the largest contributor to the iron line flux.

Furthermore, we have found that the bright individual sources with over 500 counts in the Aa group are successfully fitted with a power-law model in 0.5–8 keV without iron emission lines (Appendix C.1). The best-fit parameters of $N_{\rm H}$ and the photon index (Γ) are shown in Table 6.3.

	Parameters	Aa	Ab	B1	B2
	$N_{\rm H}(10^{22}~{\rm cm}^{-2})$		$1.93^{+0.85}_{-0.41}$	$0.69^{+0.06}_{-0.07}$	$0.79^{+0.19}_{-0.22}$
Two-temperature	$k_{\rm B}T_1~({\rm keV})$		$0.20^{+0.12}_{-0.09}$	$0.61\substack{+0.03\\-0.03}$	$0.96\substack{+0.09\\-0.08}$
thermal model	$N_{\rm H}(10^{22}~{\rm cm}^{-2})$		$1.99^{+0.28}_{-0.29}$	$1.04^{+0.25}_{-0.23}$	$0.14_{-0.05}^{+0.05}$
	$k_{\rm B}T_2~({\rm keV})$		$10.47^{+2.46}_{-1.85}$	$1.93\substack{+0.37\\-0.45}$	$9.55^{+3.30}_{-1.65}$
	$N_{\rm H}(10^{22}~{\rm cm}^{-2})$	$0.07\substack{+0.27\\-0.07}$			
Thermal $+$	$k_{\rm B}T_1~({\rm keV})$	$0.45^{+1.11}_{-0.45}$			
Power-law	$N_{ m H}(10^{22}~{ m cm}^{-2})$	$1.79^{+0.77}_{-0.21}$			
model	Photon index	$1.34_{-0.09}^{+0.19}$			
Reduced- χ^2		0.37	0.65	1.11	0.67

 Table 6.1: Best-fit parameters for spectral fittings

Figure 6.9: Composite spectra and model fitting for each spectrum in 0.5–8 keV. The model components are shown by dashed lines. The lower panel shows the residuals between the model and the data.

oand
energy
e iron
$^{\mathrm{tp}}$
in
spectrum
it-source
iioc
alı
tot
pī
l ai
spectra
composite
he
of t.
rs (
Paramete
ö
.0
ble
Ta

Group	Line	EW^{1}	$F_{ m continuum}^2$	$f_{\rm continuum}^{3}$	Line ⁴	f_{Fe}^{5}
	energy				flux	
	(keV)	(eV)	$(\times 10^{-13} \text{ ergs cm}^{-2} \text{ s}^{-1})$		$(10^{-6} \text{ photons } \text{cm}^{-2} \text{ s}^{-1})$	
Aa	$6.75\substack{+0.10\\-0.10}$	150^{+120}_{-105}	$6.4^{+0.4}_{-0.3}$	44%	$2.3^{+1.7}_{-1.4}$	18%
Ab	$6.72\substack{+0.05\\-0.08}$	$535\substack{+305\\-230}$	$5.5^{+0.4}_{-0.5}$	38%	$6.5^{+3.4}_{-2.7}$	52%
B2	$6.66\substack{+0.08\\-0.08}$	340^{+200}_{-210}	$2.3^{+0.4}_{-0.3}$	16%	$3.7^{+2.0}_{-1.6}$	30%
B1	I	I	$0.3^{+0.1}_{-0.1}$	2%	1	I
Total	$6.69\substack{+0.04\\-0.04}$	321^{+121}_{-104}	$14.5^{+0.1}_{-0.1}$	I	$12.5^{+3.9}_{-3.5}$	
point-source						

 $^1\mathrm{Equivalent}$ width of the Fe K line.

²Continuum fluxes in 4–8 keV.

 3 Fraction to the total continuum.

⁴Fe K line fluxes.

 $^5\mathrm{Fraction}$ to the total point-source Fe K line flux.

Seq.	$C_{\rm t,net}^{*}$	$\log N_{\rm H}$	Г
ID		(cm^{-2})	
33	1469.3	$22.4_{-0.09}^{+0.09}$	$1.7^{+0.3}_{-0.2}$
203^{\dagger}	670.9	$22.2_{-0.2}^{+0.1}$	$1.2_{-0.3}^{+0.3}$
371	783.6	$22.3_{-0.1}^{+0.1}$	$1.7\substack{+0.3 \\ -0.3}$
385	633.8	$22.4_{-0.09}^{+0.09}$	$1.9_{-0.3}^{+0.3}$
438^{\dagger}	4325.4	$22.5_{-0.04}^{+0.04}$	$1.5_{-0.1}^{+0.1}$
888^{\dagger}	610.9	$22.1_{-0.2}^{+0.1}$	$1.4_{-0.3}^{+0.3}$
1083	643.2	$22.4_{-0.09}^{+0.09}$	$1.7\substack{+0.3\\-0.3}$
1149 [†]	2908.3	$22.4_{-0.06}^{+0.06}$	$1.3_{-0.1}^{+0.1}$
1207^{\dagger}	790.6	$22.2_{-0.1}^{+0.1}$	$1.5_{-0.3}^{+0.3}$
1252	1390.3	$22.1_{-0.08}^{+0.08}$	$1.6_{-0.2}^{+0.2}$
1320	509.6	$22.2_{-0.1}^{+0.1}$	$1.8^{+0.3}_{-0.3}$
1670	667.6	$22.2_{-0.1}^{+0.1}$	$1.6^{+0.3}_{-0.3}$
1732	704.5	$22.5_{-0.1}^{+0.1}$	$1.7_{-0.4}^{+0.4}$
1805	527.5	$22.5_{-0.1}^{+0.1}$	$2.0_{-0.4}^{+0.4}$
1831^{\dagger}	1447.3	$22.3_{-0.10}^{+0.09}$	$0.65_{-0.2}^{+0.2}$
1869^{\dagger}	1202.7	$22.4_{-0.1}^{+0.1}$	$1.0^{+0.3}_{-0.3}$
1893	561.9	$22.7^{+0.1}_{-0.2}$	$2.1^{\dots}_{-0.5}$

 Table 6.3: Power-law fitting of the group Aa bright sources

*Source counts in 0.5–8 keV.

 † Sources that are rejected to have an opticallythin thermal plasma spectrum are marked with $^{\dagger}.$

Summarizing the X-ray photometry and spectroscopy results of the point sources, the following are obtained:

- X1: The 101 variable sources are divided into each group as 6(Aa), 21(Ab), 18(B1), and 56(B2). Fractions of the variable sources in each group is Aa (10±3%), Ab (4±2%), B1 (6±2%), and B2 (13±2%). Namely, B2 sources are most variable.
- **X2:** The $\log N \log S$ curve of the group Aa sources is comparable with that of the background AGNs considering the Galactic absorption (Figure 6.8). Namely, number of

the bright X-ray point sources in the group Aa is consistent with that expected for the background AGNs.

- **X3:** The composite spectrum of the group Ab is represented with a two-temperature thermal plasma model with several keV and ~ 10 keV (Figure 6.9). The spectrum also has a strong Fe emission line.
- X4: The composite spectrum of the group B1 is represented with a two-temperature thermal plasma with low temperatures (Figure 6.9).
- X5: The composite spectrum of the group B2 is represented with a two-temperature thermal plasma (low and high temperature; Figure 6.9). In addition, the spectrum has a strong Fe emission line.
- X6: The best-fit parameters of $N_{\rm H}$ is different between Ab composite spectrum and B2 composite spectrum. The composite spectrum of Ab has larger $N_{\rm H}$ than B2, which suggests that sources in Ab tend to locate further than those in B2.
- **X7:** Most bright sources in the group Aa have non-thermal spectra with very weak Fe K lines.

6.2 NIR Photometric Properties of the Point Sources

NIR Identification Fraction

We show the NIR identification fraction of each group in Table 6.4. Fractions of the group B1 and B2 are higher than those of the group Aa and Ab.

Group	Aa	Ab	B1	B2	Total
NIR identified	2	35	93	92	222
NIR unidentified	58	541	469	712	1780
Total	60	576	562	804	2002
ID fraction $(\%)$	3	6	17	11	11

Table 6.4: NIR ID and unID fractions in each group

Color-Color Diagram

To better understand NIR properties of the sources, we made NIR color-color diagram (Figure 6.10). In the diagram, we plot Ab, B1, and B2 sources. There are no Aa sources on the diagram, because none are identified in the K_s -band. The intrinsic colors of dwarfs and giants are shown by the solid and dashed curves, respectively (Tokunaga 2000).

From Figure 6.10, we can see that most NIR-IDed X-ray sources in the group Ab have large extinction. The Ab sources gather around the position $(H-K_s, J-H) = (\sim 0.3, \sim 1.2)$, which indicates that these sources are located rather at a large distance and intrinsically X-ray bright. They are likely to be accreting white dwarfs, which are known to be X-ray luminous relative to the NIR luminosities. On the other hand, NIR-IDed sources in the group B1 and B2 distribute over various extinctions. It suggests that these sources are located at various distances, including nearby late-type stars which are intrinsically X-ray faint.

Figure 6.10: NIR color-color diagram of the NIR sources in J, H, and K_s -bands. Large open and filled circles show NIR IDed X-ray sources (blue: group Ab, green: group B1, and red: group B2 sources in § 6.1). Filled circles are sources we get NIR spectra in § 6.3. Small black dots show NIR sources without X-ray counterparts that include the SIRIUS and the 2MASS sources. Black solid and dashed curves represent the (evolutional) track of dwarfs and giants, respectively (Tokunaga 2000). Direction and amount of the extinction corresponding to $A_V = 5$ is shown with an arrow.

From the NIR imaging observations, the following results are obtained.

- **NP1:** The NIR identification fraction is smaller in group A than in B1 and B2. It is the smallest in group Aa, and second smallest in group Ab.
- **NP2:** Group Ab sources suffer large extinctions, which indicates that these sources are located at a large distance and intrinsically X-ray bright. These sources are likely to be accreting white dwarfs.
- **NP3:** Most NIR IDed sources in the B1 and B2 groups distribute over various extinctions. This suggests that these sources are located at different distances, including nearby late-type stars which are intrinsically X-ray faint.

6.3 NIR Spectroscopic Properties of the Point Sources

Figure 6.11: (Left) Histogram of the median energy of all the X-ray sources (top), NIR identified sources (middle), and NIR spectroscopic sources (bottom). (Right) Histogram of the K_s -band magnitude of NIR identified sources (red) and NIR spectroscopic sources (blue) in the Revnivtsev field.

Before studying the NIR spectroscopic properties, we made histograms of the number of sources for median energies and K_s -band magnitudes. Figure 6.11 left shows histograms of the number of sources as a function of ME for all the X-ray sources, NIR IDed sources, and NIR spectroscopic sources. From the histograms, we can see that distribution of the sources are similar for each step (X-ray, NIR imaging, and NIR spectroscopy). For NIR spectroscopy, ME of the hardest source is about 3.5 keV. We made a histogram of the number of the K_s -band-detected SIRIUS sources and the Subaru spectroscopy sources at each $K_{\rm s}$ -band magnitude in Figure 6.11 right. We see that NIR spectroscopic sources for the Subaru observations are almost uniformly distributed on $K_{\rm s}$ band from 10 to 15 mag.

In the Revnivtsev field, NIR spectra are mainly classified into the two classes; the spectra with type (1) HI (Br γ) absorption feature, type (2) HI (Br γ) and CO absorption features. The spectra of any group (Ab, B1, B2) are classified into these two classes. Type (1) sources are thought to be relatively earlier in the late-type stars (F- or G- or early K-type stars) and type (2) sources are thought to be relatively later in the late-type stars (mainly M-type) due to the CO absorption feature. All the sources in Ab, B1, and B2 are classified into type (1) or (2).

In the Ebisawa field, most NIR spectra are classified into types (1) and (2) above, but two sources are classified into type (3), indicating HI (Br γ) and HeII emission feature. These two sources are Seq ID 79,100 in Table 4.2, which are in group Ab. Type (3) is a signature of the CVs as we have shown in § 2.2.

From NP2 above, the Ab sources are considered to be accreting white dwarfs. The fact that only a small number of the Ab sources indicate the NIR signature of the CVs means that majority of the Ab sources are not CVs, but detached systems including white dwarfs without accretion disks (pre-CVs).

From the NIR spectroscopy (and NP2 above), the following results are revealed.

- NS1: Most sources in the group Ab are type (1) or (2), and only 2 sources are type (3). From this, most sources in the group Ab are not CVs, but considered to be detached systems including white dwarfs (pre-CVs).
- **NS2:** All the sources in the group B1 and B2 are type (1) or (2), which indicates that these sources are late-type stars.

6.4 Population of the Point Sources

In this section, we discuss origin of the X-ray point sources by using the results above. Table 6.5 shows that candidate populations for each group and evidences which are used for the classification. In Table 6.5, evidences with bold type are absolutely imperative to constrain populations. The evidences with regular type are supportive information.

Group	Population ^a		Evidences	S ^b
		$\mathbf{X}^{\mathbf{c}}$	$\rm NP^{c}$	NS^{c}
Aa	AGNs	X2,X7	NP1	
Ab	pre-CVs	X3,X6	$\mathbf{NP2}$	$\mathbf{NS1}$
	CVs	X3.X6	$\mathbf{NP2}$	$\mathbf{NS1}$
B1	Late-type stars (quiescence)	X1,X4	NP3	NS2
B2	Late-type stars (flare)	X1,X5	NP3	NS2

Table 6.5: Classification of sources in each group. Here, the population indicates main population in each group. The evidences indicates the results to constrain each group population.

^a Main population in each group.

^b Evidences to constrain population.

 $^{\rm c}$ The labels in § 6.1, § 6.2, and § 6.3.

6.4.1 Group Aa sources

We propose that most sources in the group Aa are background AGNs due to the following reasons. First, in general, the AGNs have the power-law index $\Gamma \sim 1.7$ in the X-ray band regardless of their types and luminosity (Charles & Seward 1997). The X7 evidence is consistent with this.

Second, the X2 evidence indicates that the $\log N - \log S$ curve of the group Aa is comparable with that of the background AGNs considering the Galactic absorption.

Third, we use the NP1 evidence. Here, we examine the number of AGNs in our field by NIR observations. The number of galaxies (N) per square degree per magnitude at a certain K-band magnitude (K) is

$$\frac{dN}{dK} = 4000 \times 10^{\alpha(K-17)},\tag{6.2}$$

where $\alpha = 0.67$ for 10 < K < 17 mag (Tokunaga 2000). From this equation, the number of galaxies at $K_{\min} < K < K_{\max}$ is estimated by

$$\int_{K_{\min}}^{K_{\max}} \frac{dN}{dK} dK = \frac{4000}{\alpha \ln 10} (10^{\alpha(K_{\max} - 17)} - 10^{\alpha(K_{\min} - 17)}).$$
(6.3)

The interstellar extinction in the Revnivtsev field is $A_{\rm R} \sim 4$ (Revnivtsev et al. 2010), which corresponds to $A_{\rm K} \sim 1$. Thus, using the equation (6.3) with $K_{\rm min} = 10$ and $K_{\rm max} = 16$ and

considering the extinction, we can estimate number of the galaxies expected in our field of view. Thus, the estimated number of the galaxy is ~ 10 in the *Chandra* FoV. This small number suggests that evidence NP1 is a consequence that Aa sources are mostly extra-galactic.

6.4.2 Group Ab sources

We consider that the group Ab sources are mainly pre-CVs, but including a small fraction of CVs, based on the following arguments. First, from the X3 evidence, the candidate sources of the group Ab are CVs (§ 2.2.2), pre-CVs (§ 2.2.3), and late-type stars (§ 2.2.1), because X-ray spectra of these populations have Fe K lines.

Second, from the X6 and NP2 evidences, the group Ab sources are located at large distances and intrinsically X-ray bright, which indicates that these sources are likely to be accreting white dwarfs. Therefore, we consider that CVs and pre-CVs are candidates of the group Ab sources.

Third, from the NP1 evidence, most group Ab sources have the NIR spectra of late-type stars except for the two CV-like spectra.

From these evidences, we consider that the group Ab sources are mainly pre-CVs, including a small fraction of CVs.

6.4.3 Group B1 sources

We consider that the group B1 sources are Galactic single or binary late-type stars on *quiescence* based on the following evidences.

First, from the X4 evidence, the group B1 source are considered to be late-type stars, because spectra from the late-type stars have low temperatures (a several keV; in § 2.2.1).

Second, from the X1 evidence, small fraction of the variable sources indicates that the group B1 sources are on *quiescence*.

Third, the NP3 evidence suggests that the group B1 sources include intrinsically X-ray faint late-type stars. In addition, the NS2 evidence supports that the B1 group sources are late-type stars.

From these evidences, we conclude that the group B1 sources are mostly late-type stars on *quiescence*.

6.4.4 Group B2 sources

We consider that the group B2 sources are Galactic single or binary late-type stars on *flare* based on the following evidences.

First, from the X5 evidence, the group B2 source candidates are CVs, pre-CVs, and latetype stars on *flare*, since spectra of these three populations have Fe K lines. However, the NP3 argument suggests that nearby X-ray dim sources are included in B2, which are likely to be late-type stars. From Table 6.2, the equivalent width of Fe K line of B2 corresponds to the equivalent width of late-type stars on *flare* within error ranges as we show in § 2.2.2.

Second, from the NS2 evidence, CVs are rejected. In addition, from the X1 argument, the group B2 sources are most variable, suggesting they are on *flare*.

We comment on the rather high temperature of 9.5 keV for the composite spectrum of B2 (Table 6.1). As we show in § 2.2.2, late-type stars are known to have higher temperature than several keV on *flare* such as UX Ari and II Peg. Thus, 9.5 keV is reasonable for the late-type stars on flare.

From these arguments, we consider that the group B2 sources are mostly late-type stars on *flare*.

Point Source Populations Constituting the GRXE

From X-ray and NIR studies above, we propose main population of each group as follows: Aa: background AGNs, Ab: mainly pre-CVs but a small fraction of CVs included, B1: late-type stars on *quiescence*, and B2: late-type stars on *flare*.

Chapter 7

Conclusions

In this thesis, we focused on revealing the nature of the Galactic X-ray point sources that primarily contribute to the GRXE Fe K-line emission. We carried out extensive X-ray and near-infrared (NIR) studies of the X-ray point sources constituting the GRXE. We have used the "Revnivtsev field" ($l = 0.^{\circ}1$, $b = -1.^{\circ}4$) and the "Ebisawa field" ($l = 28.^{\circ}5$, $b = 0.^{\circ}0$), but primarily the Revnivtsev field, since it is the most deeply exposed Galactic field by *Chandra X-ray Observatory* to date.

- 1. From the Chandra X-ray Observatory archive data in the Revnivtsev field, we detected 2,002 X-ray point sources in the $17 \times 17 \text{ arcmin}^2$ Advanced CCD Imaging Spectrometer (ACIS)-I image. Our observation is complete down to $F_X \sim 10^{-15.2}$ ergs cm⁻² s⁻¹ in 0.5–8 keV with the faintest detected sources at $F_X \sim 10^{-16.2}$ ergs cm⁻² s⁻¹. For bright sources (>100 counts), we studied individual X-ray spectra and source variability.
- 2. We divided all the detected sources into four sub-groups (Aa: hard and bright, Ab: hard and dim, B2: medium, and B1: soft) depending on their spectral colors and X-ray fluxes, and studied composite spectra of these groups. Most bright sources in the group Aa have non-thermal spectra with very weak Fe K line. Composite spectra of the group Ab and B2 have strong Fe K lines, whereas iron line emission is hardly seen in B1. We obtained fractions of each population to the total point-source flux in the iron K-band as follows (fractions to the 4–8 keV continuum and to the iron line): Aa (~44\%, ~18\%), Ab (~38\%, ~52\%), B1 (~2\%, ~0\%) and B2 (~16\%, ~30\%).
- 3. The fraction of the variable sources in group Aa, Ab, B1, and B2 is $10\pm3\%$, $4\pm2\%$,

 $6\pm 2\%$, and $13\pm 4\%$, respectively. Namely, B2 sources are most variable.

- 4. We conducted NIR imaging observations of the Revnivtsev field to identify X-ray sources using the Infra-Red Survey Facility 1.4 m telescope in South Africa. We obtained J- (1.25 μ m), H-(1.65 μ m), and K_s-(2.14 μ m) band Simultaneous Infra-Red Imager for Unbiased survey (SIRIUS) images to identify X-ray point sources in 7.7×7.7 arcmin² down to K_s~16 mag. Combining the 2MASS (Two Micron All Sky Survey) and our SIRIUS data, we identified the NIR counterparts for 222 X-ray sources (~11% of the X-ray sources).
- 5. None of the group Aa sources have NIR counterparts in K_s band, which suggests that most of the group Aa sources are background AGNs attenuated by large Galactic extinction. In fact, the X-ray surface number density of Aa sources is consistent with that of the AGNs known in the high Galactic latitudes, considering the Galactic Xray absorption. Most NIR identified sources in the group Ab have large extinction, which indicates that these sources are located rather at a large distance, suggesting that they are intrinsically X-ray bright. Hence, these sources are likely to be accreting white dwarfs, which are known to be X-ray luminous relative to NIR luminosity. On the other hand, NIR identified sources in the groups B1 and B2 show a wide range of extinction; this suggests that these sources are located at various distances, including nearby late-type stars that are intrinsically X-ray faint.
- 6. We performed follow-up NIR spectroscopic observations in the Revnivtsev field and the Ebisawa field for the 33 and 55 NIR identified sources, respectively, using the Subaru telescope. We obtained the NIR spectra of the sources in groups Ab, B1 and B2 in K_s band using the Multi-Object Infrared Camera and Spectrograph (MOIRCS). We found that these NIR spectra are classified into the following three types: (1) Spectra with HI (Brγ) and CO absorption lines, (2) Spectra with CO absorption lines, and (3) Spectra with HI (Brγ) and HeII emission lines. (1) and (2) are signatures of the late-type stars and type (3) is a signature of the accretion disk in CVs. Most Ab sources are type (1) or (2), and only 2 Ab sources are type (3). From this, we conclude that most sources in the group Ab are not CVs, but detached systems including a white dwarf which does not have NIR line emitting accretion disks (pre-CVs). All the sources in B1 and B2 are type (1) and (2), thus they are considered to be late-type stars.
- 7. From these X-ray and NIR studies, we propose the nature of the sources in each group as follows: The group Aa sources are considered to be mainly background AGNs. The

group Ab sources are mainly pre-CVs, but a small fraction of CVs are included. The group B2 sources are mainly late-type stars on *flare*, because of their time variability and high temperatures. At last, the group B1 sources are mainly late-type stars on *quiescence*.

8. We have confirmed that the GRXE is primarily explained with superposition of Xray point sources. These point sources consists of background AGNs, CVs, detached systems including a white dwarf (pre-CVs), late-type stars on *flare*, and late-type stars on *quiescence*. Pre-CVs are the primary contributor to the GRXE iron line emission, and late-type stars on *flare* are the secondary. As opposed to what has been predicted, contributions from CVs (Yuasa 2011) or late-type stars on quiescence (Revnivtsev et al. 2006) to the GRXE iron line emission are not very significant.

CHAPTER 7. CONCLUSIONS

Bibliography

- Ali, B., Carr, J. S., Depoy, D. L., Frogel, J. A., & Sellgren, K. 1995, Astronomical Journal, 110, 2415
- Anders, E. & Grevesse, N. 1989, Geochimica et Cosmochimica Acta, 53, 197
- Awaki, H., Anabuki, N., Fukazawa, Y., et al. 2008, Publication of Astronomical Society of Japan, 60, 293
- Baskill, D. S., Wheatley, P. J., & Osborne, J. P. 2005, Monthly Notices of the Royal Astronomical Society, 357, 626
- Bauer, F. E., Alexander, D. M., Brandt, W. N., et al. 2004, Astronomical Journal, 128, 2048
- Bertin, E. & Arnouts, S. 1996, Astronomy & Astrophysics Supplement, 117, 393
- Brinkman, B. C., Gunsing, T., Kaastra, J. S., et al. 2000, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4012, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. J. E. Truemper & B. Aschenbach, 81–90
- Broos, P. S., Townsley, L. K., Feigelson, E. D., et al. 2010, Astrophysical Journal, 714, 1582
- Canizares, C. R., Davis, J. E., Dewey, D., et al. 2005, Publication of Astronomical Society of Pacific, 117, 1144
- Charles, P. A. & Seward, F. D. 1997, Journal of the British Astronomical Association, 107, 44
- Dhillon, V. S., Marsh, T. R., Duck, S. R., & Rosen, S. R. 1997, Monthly Notices of the Royal Astronomical Society, 285, 95

- Ebisawa, K., Maeda, Y., Kaneda, H., & Yamauchi, S. 2001, Science, 293, 1633
- Ebisawa, K., Tsujimoto, M., Paizis, A., et al. 2005, Astrophysical Journal, 635, 214
- Ebisawa, K., Yamauchi, S., Tanaka, Y., et al. 2008, Publication of Astronomical Society of Japan, 60, 223
- Ezuka, H. & Ishida, M. 1999, Astrophysical Journal Supplement, 120, 277
- Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A., & Ricker, Jr., G. R. 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4851, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. J. E. Truemper & H. D. Tananbaum, 28–44
- Güdel, M., Linsky, J. L., Brown, A., & Nagase, F. 1999, Astrophysical Journal, 511, 405
- Hands, A. D. P., Warwick, R. S., Watson, M. G., & Helfand, D. J. 2004, Monthly Notices of the Royal Astronomical Society, 351, 31
- Hellier, C. & Mukai, K. 2004, Monthly Notices of the Royal Astronomical Society, 352, 1037
- Hoffmeister, C. & Kholopov, P. N. 1985, Soviet Astronomy, 29, 719
- Hong, J., Schlegel, E. M., & Grindlay, J. E. 2004, Astrophysical Journal, 614, 508
- Ichikawa, T., Suzuki, R., Tokoku, C., et al. 2006, in Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Vol. 6269, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
- Ivanov, V. D., Rieke, M. J., Engelbracht, C. W., et al. 2004, VizieR Online Data Catalog, 2151, 10387
- Jerius, D. H., Gaetz, T. J., & Karovska, M. 2004, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 5165, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. K. A. Flanagan & O. H. W. Siegmund, 433–444
- Kashikawa, N., Aoki, K., Asai, R., et al. 2002, Publication of Astronomical Society of Japan, 54, 819
- Kataza, H., Okamoto, Y., Takubo, S., et al. 2000, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4008, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. M. Iye & A. F. Moorwood, 1144–1152

- Kimura, M., Maihara, T., Iwamuro, F., et al. 2010, Publication of Astronomical Society of Japan, 62, 1135
- Kopal, Z. 1959, Close binary systems, ed. Kopal, Z.
- Koyama, K. 1989a, Publication of Astronomical Society of Japan, 41, 665
- Koyama, K. 1989b, Publication of Astronomical Society of Japan, 41, 665
- Koyama, K., Awaki, H., Kunieda, H., Takano, S., & Tawara, Y. 1989, Nature, 339, 603
- Koyama, K., Makishima, K., Tanaka, Y., & Tsunemi, H. 1986, Publication of Astronomical Society of Japan, 38, 121
- Martin, E. L., Pavlenko, Y., & Rebolo, R. 1997, Astronomy & Astrophysics, 326, 731
- Matsuoka, M., Sugizaki, M., Tsuboi, Y., et al. 2011, ArXiv e-prints
- Miyazaki, S., Komiyama, Y., Sekiguchi, M., et al. 2002, *Publication of Astronomical Society* of Japan, 54, 833
- Murray, S. S., Austin, G. K., Chappell, J. H., et al. 2000, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4012, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. J. E. Truemper & B. Aschenbach, 68–80
- Nagashima, C., Nagayama, T., Nakajima, Y., et al. 1999, in Star Formation 1999, ed. T. Nakamoto, 397–398
- Nagayama, T., Nagashima, C., Nakajima, Y., et al. 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4841, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. M. Iye & A. F. M. Moorwood, 459–464
- Noguchi, K., Aoki, W., Kawanomoto, S., et al. 2002, Publication of Astronomical Society of Japan, 54, 855
- Osten, R. A., Drake, S., Tueller, J., et al. 2007, Astrophysical Journal, 654, 1052
- Pandey, J. C. & Singh, K. P. 2012, Monthly Notices of the Royal Astronomical Society, 419, 1219

- Rana, V. R., Singh, K. P., Schlegel, E. M., & Barrett, P. E. 2006, Advances in Space Research, 38, 2847
- Revnivtsev, M., Churazov, E., Postnov, K., & Tsygankov, S. 2009, Astronomy & Astrophysics, 507, 1211
- Revnivtsev, M., Sazonov, S., Gilfanov, M., Churazov, E., & Sunyaev, R. 2006, Astronomy & Astrophysics, 452, 169
- Revnivtsev, M., van den Berg, M., Burenin, R., et al. 2010, Astronomy & Astrophysics, 515, A49
- Rousselot, P., Lidman, C., Cuby, J.-G., Moreels, G., & Monnet, G. 2000, Astronomy & Astrophysics, 354, 1134
- Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, Astronomical Journal, 131, 1163
- Smith, R. K., Brickhouse, N. S., Liedahl, D. A., & Raymond, J. C. 2001, Astrophysical Journal Issue, 556, L91
- Strassmeier, K. G., Hall, D. S., Fekel, F. C., & Scheck, M. 1993, Astronomy & Astrophysics Supplement, 100, 173
- Sugizaki, M., Mitsuda, K., Kaneda, H., et al. 2001, Astrophysical Journal Supplement, 134, 77
- Suzuki, R., Tokoku, C., Ichikawa, T., et al. 2008, Publication of Astronomical Society of Japan, 60, 1347
- Tabur, V. 2007, Publications of the Astronomical Society of Australia, 24, 189
- Tanaka, Y. 2002, Astronomy & Astrophysics, 382, 1052
- Tanuma, S., Yokoyama, T., Kudoh, T., et al. 1999, Publication of Astronomical Society of Japan, 51, 161
- Tappert, C., Gänsicke, B. T., Schmidtobreick, L., Mennickent, R. E., & Navarrete, F. P. 2007, Astronomy & Astrophysics, 475, 575
- Tokunaga, A. T. 2000, Infrared Astronomy, ed. Cox, A. N., 143

- Tokunaga, A. T., Kobayashi, N., Bell, J., et al. 1998, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 3354, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. A. M. Fowler, 512–524
- Tsuru, T., Makishima, K., Ohashi, T., et al. 1989, Publication of Astronomical Society of Japan, 41, 679
- Verbunt, F., Bunk, W. H., Ritter, H., & Pfeffermann, E. 1997, Astronomy & Astrophysics, 327, 602
- Warner, B. 1995, Cambridge Astrophysics Series, 28
- Warwick, R. S., Turner, M. J. L., Watson, M. G., & Willingale, R. 1985, Nature, 317, 218
- Weisskopf, M. C., Brinkman, B., Canizares, C., et al. 2002, Publication of Astronomical Society of Pacific, 114, 1
- Wilms, J., Allen, A., & McCray, R. 2000, Astrophysical Journal, 542, 914
- Worrall, D. M., Marshall, F. E., Boldt, E. A., & Swank, J. H. 1982, Astrophysical Journal, 255, 111
- Yamasaki, N. Y., Ohashi, T., Takahara, F., et al. 1997, Astrophysical Journal, 481, 821
- Yamauchi, S., Kawada, M., Koyama, K., Kunieda, H., & Tawara, Y. 1990, Astrophysical Journal, 365, 532
- Yamauchi, S. & Koyama, K. 1993, Astrophysical Journal, 404, 620
- Yuasa, T. 2011, Dissertation, The University of Tokyo
- Yuasa, T., Nakazawa, K., Makishima, K., et al. 2010, Astronomy & Astrophysics, 520, A25

BIBLIOGRAPHY

Appendix A

Chandra Sources List

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts				Chara	cteristics		
Seq	CXOU J	R.A.	Decl.	Err	θ	C _{net} ⊳	$C_{\rm net}$	$C'_{\rm bkg}$ C	net,hard	PSF	PS $P_{\rm B}$	Anom V	ar EffE	$xp E_{mec}$	lian	Photo $F_{\mathbf{x}}$
#		(deg)	(deg)	())	S						Frac		(ks	s) (ke ¹	< (e	${ m rgs~s^{-1}~cm^{-2}})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14) (1	5) (16	3) (17	()	(18)
1	175044.88 - 292837.6	267.68701	-29.47711	0.4 1	1.6	78.4	23.5	437.6	29.2	0.89	3.3 - 3.9	:	b 486	.5 1.5	20	1.6×10^{-15}
2	175045.10 - 293431.4	267.68794	-29.57541	0.4	9.2	38.4	14.9	163.6	30.0	0.90	2.5 - 2.7	:: :00	325	.1 3.0	C	1.2×10^{-15}
ŝ	175045.10 - 293240.5	267.68795	-29.54460	0.3	9.7	56.1	19.1	279.9	17.7	0.89	2.9 - 3.3	: :00	535	.5 1.5	20	2.3×10^{-15}
4	175045.51 - 293222.4	267.68963	-29.53956	0.3	9.7	46.4	16.5	201.6	34.1	0.78	2.7 - 3.1	: :00	597	.9 2.9	6	1.9×10^{-15}
2	175045.86 - 293503.5	267.69112	-29.58432	0.3	9.1	60.6	16.5	190.4	52.7	0.90	3.6 - 5.0	: :00	417	.5 2.'	2	$3.0 imes 10^{-15}$
9	175045.90 - 293208.7	267.69127	-29.53576	0.3	9.7	92.1	20.3	291.9	24.2	0.85	4.4 < -5	: :00	639	.9 1.4	4	1.5×10^{-15}
2	175046.03 - 293539.1	267.69180	-29.59422	0.4	9.0	40.2	15.5	179.8	10.7	0.90	2.5 - 2.7	:: :00	387	.2 1.8	x	1.3×10^{-15}
x	175046.07 - 293405.8	267.69196	-29.56830	0.3	9.2	69.0	19.2	270.0	46.8	0.90	3.5 - 4.7	ະ. ພ	570	.4 2.	4	$2.0 imes 10^{-15}$
6	175046.25 - 292947.1	267.69271	-29.49644	$0.3 \ 1$	0.7	60.1	17.6	224.9	51.2	0.69	3.3 - 4.3	:	b 678	.2 3.5		$2.5 imes 10^{-15}$
10	175046.62 - 292935.0	267.69425	-29.49307	0.3 1	0.8	58.6	17.7	229.4	73.7	0.70	3.2 - 4.1	:	b 677	.5 5.5	0	$3.8 imes 10^{-15}$
11	175047.08 - 293334.4	267.69617	-29.55956	0.3	9.1	48.4	19.9	316.6	8.2	0.90	2.4 - 2.4	:: :00	679	.6 1.5	0	$6.0\! imes\!10^{-16}$
12	175047.51 - 293733.0	267.69798	-29.62583	0.3	9.0	51.4	17.4	226.6	42.1	0.90	2.9 - 3.3	: :00	519	.2 2.8	x	$2.0 imes 10^{-15}$
13	175048.28 - 293250.7	267.70118	-29.54744	0.2	9.0	148.7	22.4	321.3	125.7	0.90	6.5 < -5	:	a 714	.8	10	4.8×10^{-15}
14	175048.39 - 292816.1	267.70166	-29.47114	$0.4 \ 1$	1.3	71.4	20.2	304.6	47.4	0.90	3.5 - 4.5	ະ. ພ	386	.5 2.	4	$3.0 imes 10^{-15}$
15	175048.54 - 293937.5	267.70228	-29.66042	0.3	9.5	102.3	19.1	235.7	82.1	0.90	5.2 < -5	ະ. ພ	457	.0 3.(C	$5.0 imes 10^{-15}$
16	175048.65 - 293538.6	267.70274	-29.59408	0.2	8.5	127.2	18.6	194.8	79.1	0.80	6.6 < -5	: :00	734	.4 3.0	ç	4.8×10^{-15}
17	175048.86 - 293736.9	267.70362	-29.62694	0.3	8.8	73.8	20.0	296.2	30.3	0.90	3.6 - 4.8	: 50	698	.8 1.9	6	1.4×10^{-15}
18	175048.91 - 292906.9	267.70381	-29.48528	0.3 1	0.6	124.8	25.5	482.2	45.0	0.90	4.8 < -5	÷	a 668	.0 1.0	.0 .0	$2.0{ imes}10^{-15}$
19	175048.95 - 293547.9	267.70398	-29.59666	0.2	8.5	82.7	16.4	165.3	51.4	0.76	4.9 < -5	:	a 752	.1 2.5	10	$2.1 { imes} 10^{-15}$
20	175049.07 - 293803.6	267.70450	-29.63435	0.3	8.8	82.8	20.6	312.2	13.8	0.90	3.9 < -5	: 50	702	1.0	ç	1.3×10^{-15}
21	175049.14 - 293346.2	267.70478	-29.56285	0.3	8.6	66.8	19.5	286.2	29.8	0.90	3.3 - 4.2	:	a 722	.0 1.9	6	$1.2 { imes} 10^{-15}$
22	175049.30 - 293527.5	267.70542	-29.59100	0.2	8.4	141.8	20.9	264.2	67.8	0.88	6.6 < -5	:	а 766	.0 1.	2	$2.1 { imes} 10^{-15}$
23	175049.37 - 294045.3	267.70574	-29.67928	0.3	0.0	56.8	18.9	274.2	47.6	0.90	2.9 - 3.4	: :00	488	.4 3.(C	$2.5 imes 10^{-15}$
24	175049.58 - 293836.6	267.70660	-29.64351	0.2	8.9	132.0	21.7	309.0	19.7	0.90	5.9 < -5	: :00	694	.4 1.	_	1.5×10^{-15}
25	175049.63 - 293025.2	267.70681	-29.50701	0.2	9.8	198.0	25.2	401.0	45.4	0.90	7.7 < -5	i	c 692	.1 1.	4	$2.7 imes 10^{-15}$
26	175049.66 - 293913.2	267.70694	-29.65368	0.3	9.1	55.5	19.3	289.5	43.4	0.87	2.8 - 3.1	: :00	694	.7 3.5	0	1.8×10^{-15}
27	175049.70 - 293222.6	267.70711	-29.53963	0.2	8.9	201.7	23.2	303.3	141.1	0.90	8.5 < -5	i	a 718	.9 2.8	8	$5.2 imes 10^{-15}$
28	175049.72 - 293116.2	267.70717	-29.52117	0.3	9.3	92.2	22.2	364.8	35.7	0.90	4.1 < -5	÷	а 707	.8 1.8	x	1.5×10^{-15}
29	175050.44 - 293713.8	267.71018	-29.62053	0.2	8.3	137.9	19.8	227.1	116.1	0.90	6.8 < -5	: :00	642	.8 3.5	10	$5.5 imes 10^{-15}$
30	175050.52 - 293002.5	267.71050	-29.50070	0.3	9.8	109.7	23.0	384.3	41.1	0.90	4.7 < -5	:	a 683	.5 1.5	20	$1.6 imes 10^{-15}$
31	175050.54 - 294029.2	267.71061	-29.67479	0.3	9.6	131.1	21.3	292.9	44.1	0.86	6.0 < -5	50	666	.8	2	$2.5\! imes\!10^{-15}$
32	175051.10 - 294235.8	267.71294	-29.70996	$0.4 \ 1$	0.7	62.6	21.4	360.4	22.4	0.91	2.9 - 3.2	i	a 471	.8 1.8	x	1.5×10^{-15}
33	175051.16 - 293419.5	267.71317	-29.57211	0.1	$8.1 \ 1_{2}$	169.3	$^{42.1}$	251.7	1106.7	0.90	34.5 < -5	i	a 785	.9 2.9	6	$3.5 imes 10^{-14}$
34	175051.21 - 293546.0	267.71339	-29.59614	0.3	8.0	46.6	18.2	259.4	0.0	0.90	2.5 - 2.6	:	a 786	.6 1.8	20	$5.8 imes 10^{-16}$
(cont.)																
						i	-	20110		i	1			Inaracue	1150103	
-----------	-------------	-------------	----------	--------	-------------	---------------------------	------------------	-------------------------	------	-------------	----------------------	----------	------	----------	------------------	-------------------------
-	R.A.	Decl. I	Brr	θ	Cnet 4	ΔC_{net}	$C'_{\rm bkg}$ ($\sigma_{\rm net,hard}$	PSF	$_{\rm PS}$	$P_{\rm B}$	Anom	Var	EffExp	$E_{\rm median}$	Photo $F_{\mathbf{x}}$
	(deg)	(deg) (() ()	Ð)			Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
	(3)	(4) ((2)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
293031.4	267.71350 -	-29.50873 (0.2	9.4	146.0	23.3	361.0	37.6	0.90	6.1	$\stackrel{<}{-5}$		q	693.5	1.6	2.3×10^{-15}
293338.3	267.71455 -	-29.56065 (0.2	8.1	114.8	19.9	251.2	78.9	0.90	5.6	$\stackrel{<}{-}$	÷	q	783.4	2.9	2.8×10^{-15}
294036.0	267.71498 -	-29.67669 (0.3	9.5	96.6	19.2	244.4	70.0	0.84	4.9	~ -5	60	i	649.4	2.9	$3.5 imes 10^{-15}$
293834.5	267.71587 -	-29.64293 (0.3	8.5	56.5	19.3	285.5	33.4	0.91	2.9	-3.2	50 60	:	736.0	3.0	1.5×10^{-15}
294311.3	267.71610 -	-29.71982 (0.4 1	1.0	55.9	21.7	382.1	63.6	0.91	2.5	-2.6	: 60	ł	473.3	3.4	$2.8 { imes} 10^{-15}$
-292813.7	267.71630 -	-29.47049 (0.4 II	0.7	46.1	19.3	295.9	18.1	0.90	2.3	-2.3	: 60	ł	441.2	1.7	$1.2 { imes} 10^{-15}$
-293502.7	267.71690 -	-29.58410 (0.2	7.8	103.9	19.0	232.1	23.1	0.90	5.3	$\stackrel{>}{\sim}$:	q	792.2	1.5	1.3×10^{-15}
293404.1	267.71737 -	-29.56781 (0.3	7.9	45.4	17.2	226.6	11.6	0.90	2.6	-2.8		q	789.3	1.5	$5.6\! imes\!10^{-16}$
-293552.5	267.71738 -	-29.59792 (0.2	7.8	134.3	19.9	235.7	96.6	0.89	6.6	~ -5		ದ	790.7	2.9	$3.2 imes 10^{-15}$
-293051.6	267.71783 -	-29.51436 (0.3	9.0	70.9	21.0	338.1	10.1	0.90	3.3	-4.1	60	i	744.0	1.2	7.9×10^{-16}
-293321.1	267.71846 -	-29.55588 (0.2	8.0	98.3	18.8	227.7	43.6	0.90	5.1	~ -5		g	762.7	1.8	$1.5 imes 10^{-15}$
-293712.7	267.71920 -	-29.62022 (0.3	7.9	51.7	16.5	197.3	26.9	0.88	3.0	-3.7	60	i	702.2	3.8	$2.0 imes 10^{-15}$
-293751.4	267.71926 -	-29.63095 (0.2	8.0	110.1	19.4	239.9	40.3	0.89	5.5	~ -5	-	ပ	771.3	1.8	$1.7 { imes} 10^{-15}$
-294002.5	267.71966 -	-29.66737 (0.3	8.9	82.1	20.7	313.9	42.6	0.90	3.9	~ -5	6.0	i	724.2	2.1	$1.7 imes 10^{-15}$
-293133.3	267.72045 -	-29.52594 (0.2	8.5	166.9	22.2	294.1	28.2	0.90	7.3	~ -5	: 60	i	766.8	1.3	$2.0\! imes\!10^{-15}$
-293739.2	267.72066 -	-29.62757 (0.2	7.9	81.0	18.5	235.0	60.5	0.89	4.3	$\stackrel{<}{-}$	i	q	770.0	2.9	$2.1\! imes\!10^{-15}$
-293246.7	267.72071 -	-29.54632 (0.2	8.0	180.5	21.0	233.5	77.4	0.91	8.4	~ -5		ದ	774.2	1.7	$2.6 imes 10^{-15}$
-293520.8	267.72100 -	-29.58914 (0.2	7.6	55.3	17.2	216.7	6.6	0.90	3.1	-3.9	:	ъ	795.1	1.2	$5.5\! imes\!10^{-16}$
-293641.7	267.72198 -	-29.61161 (0.2	7.7	103.5	16.0	133.5	83.8	0.85	6.3	~ -5	50 50	i	633.1	2.9	3.4×10^{-15}
-293206.0	267.72238 -	-29.53501 (0.2	8.2	134.1	20.2	245.9	63.2	0.90	6.5	~ -5	50 60	i	772.6	1.9	2.3×10^{-15}
-293921.6	267.72244 -	-29.65602 (0.2	8.5	98.1	21.1	314.9	55.3	0.91	4.5	~ -5	60 60	÷	759.6	2.8	$2.5 imes 10^{-15}$
-293705.4	267.72297 -	-29.61818 (0.2	7.7	132.0	18.4	183.0	27.7	0.89	7.0	~ -5	50 00	i	699.5	1.4	1.8×10^{-15}
-293648.6	267.72327 -	-29.61352 (0.3	7.6	30.2	11.0	77.8	14.6	0.70	2.6	-3.1	60	÷	681.7	2.0	7.9×10^{-16}
-293726.8	267.72385 -	-29.62413 (0.3	7.7	37.3	12.0	91.7	10.2	0.67	3.0	-3.7	÷	q	775.5	1.3	$5.7 imes 10^{-16}$
-293120.2	267.72388 -	-29.52230 (0.2	8.5	224.1	23.2	283.9	43.5	0.90	9.4	~ -5	60	÷	751.2	1.4	$3.0 imes 10^{-15}$
-293409.0	267.72392 -	-29.56919 (0.2	7.5	228.9	20.8	179.1	12.2	0.90	10.7	~ -5		ပ	782.2	1.1	2.1×10^{-15}
-293036.6	267.72471 -	-29.51019 (J.3	8.8	44.9	19.4	303.1	40.2	0.90	2.3	-2.2	i	ದ	747.0	2.5	1.0×10^{-15}
-294058.5	267.72484 -	-29.68293 (0.3	9.2	58.0	20.5	329.0	30.1	0.90	2.8	-3.0	60	÷	730.9	3.0	1.6×10^{-15}
-293340.6	267.72492 -	-29.56131 (0.2	7.6	87.1	17.1	180.9	76.2	0.90	5.0	$\stackrel{>}{\sim}$:	U	784.8	3.7	$2.8{ imes}10^{-15}$
-293718.9	267.72497 -	-29.62194 (0.2	7.6	194.6	19.4	158.4	20.2	0.83	9.8	$\stackrel{>}{\sim}$:	с	766.8	1.1	$2.0 { imes} 10^{-15}$
-293150.7	267.72513 -	-29.53077 (0.2	8.2	88.5	19.0	246.5	66.0	0.90	4.5	~ -5	50 60	i	754.8	2.6	$2.1\! imes\!10^{-15}$
-294327.4	267.72609 -	-29.72429 (0.1 1.	0.8 1(500.2	46.2	470.8	1517.0	0.91	34.3	~ -5	50 50	i	618.0	4.0	7.7×10^{-14}
-293838.8	267.72617 -	-29.64412 (0.2	8.0	75.9	19.0	259.1	26.6	0.90	3.9	$\stackrel{>}{\sim}$:	q	769.8	1.4	1.1×10^{-15}
		00 10170	000	1	2 1 1	6	1020	0.01	0000	1	Ċ		-		7	1 10-16

list
source
Chandra
A.1:
Table

7	Source	- 1	Position	F	<	1	Extra	cted Co	unts	40 4	۲ د	-	Cha	aracteris	stics	r -
Seq	C NOU J	К.А.	Decl.	Err	θ	Cnet Z	$^{\Delta C_{\rm net}}$	$C_{\rm bkg}$	net,hard	FSF.	$F_{\rm B}$	Anom /	/ar Þ	uttexp 1	^E median	Photo $F_{\mathbf{x}}$
#		(deg)	(deg)	$\tilde{\boldsymbol{\boldsymbol{\omega}}}$	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14) ((15)	(16)	(17)	(18)
69	175054.35 - 292947.7	267.72650	-29.49660	0.3	9.2	69.1	16.5	180.9	31.3	0.75	4.1 < -5	:	, в	751.3	1.9	1.4×10^{-15}
20	175054.47 - 293259.2	267.72698	-29.54978	0.3	7.7	50.4	16.0	184.6	29.5	0.90	3.0 - 3.8	: 60	:	768.4	2.6	1.2×10^{-15}
71	175054.52 - 293544.4	267.72719	-29.59567	0.2	7.3	51.0	16.4	194.0	19.9	0.90	3.0 - 3.7	÷	ש	786.5	1.8	7.6×10^{-16}
72	175054.60 - 293136.5	267.72751	-29.52682	0.2	8.2	95.7	19.6	259.3	50.1	0.90	4.8 < -5	: 60	:	758.8	2.0	1.8×10^{-15}
73	175054.69 - 293326.8	267.72789	-29.55746	0.3	7.5	31.8	9.4	46.2	16.1	0.55	3.2 - 4.8	: 60	:	766.1	2.1	$9.5 imes 10^{-16}$
74	175054.90 - 293507.3	267.72879	-29.58538	0.2	7.2	106.7	17.3	168.3	96.2	0.90	6.0 < -5	:	` ש	786.7	3.6	$3.2 imes 10^{-15}$
75	175054.98 - 294008.5	267.72912	-29.66904	0.2	8.6	282.9	24.8	296.1	175.8	0.90	11.2 < -5	:	` ຜ	755.8	2.7	$7.0\! imes\!10^{-15}$
26	175055.22 - 293820.9	267.73011	-29.63915	0.3	7.7	39.1	16.7	215.9	22.1	0.90	2.3 - 2.3	:	` q	779.3	3.2	1.1×10^{-15}
27	175055.30 - 293324.7	267.73045	-29.55686	0.2	7.4	77.7	13.4	85.3	54.3	0.72	5.6 < -5	: :0	:	746.9	2.6	$2.3 { imes} 10^{-15}$
78	175055.36 - 294131.1	267.73067	-29.69198	0.2	9.3	670.4	32.7	352.6	499.1	0.90	20.2 < -5	:	` q	736.5	3.0	1.9×10^{-14}
79	175055.39 - 293442.8	267.73080	-29.57857	0.2	7.1	56.1	15.0	148.9	30.1	0.90	3.6 < -5	:. ໜ	:	782.4	2.3	1.1×10^{-15}
80	175055.51 - 292949.1	267.73132	-29.49697	0.2	9.0	144.9	19.4	204.1	114.7	0.80	7.3 < -5	:	` ש	754.1	3.7	5.4×10^{-15}
81	175055.54 - 293637.6	267.73143	-29.61047	0.2	7.2	60.0	14.8	141.0	39.5	0.90	3.9 < -5	: :0	:	612.2	3.3	$2.2\! imes\!10^{-15}$
82	175055.56 - 293124.5	267.73151	-29.52348	0.1	8.1	443.8	27.1	254.2	374.2	0.90	16.1 < -5	:	` מ	779.0	3.3	1.2×10^{-14}
83	175055.60 - 293713.6	267.73168	-29.62047	0.2	7.3	70.0	16.1	167.0	22.6	0.88	4.2 < -5	: :0	:	755.5	1.5	$9.5 imes 10^{-16}$
84	175055.61 - 292930.2	267.73173	-29.49174	0.3	9.2	51.6	19.6	302.4	74.8	0.89	2.6 - 2.7	: :0	:	746.4	4.7	2.3×10^{-15}
85	175055.62 - 293216.2	267.73178	-29.53784	0.2	7.7	61.8	16.5	188.2	40.8	0.90	3.6 < -5	: 60	:	780.2	2.5	1.4×10^{-15}
86	175055.65 - 293314.3	267.73188	-29.55398	0.2	7.4	221.4	19.9	148.6	170.0	0.90	10.9 < -5	: 60	:	745.2	3.1	6.3×10^{-15}
87	175055.66 - 292805.5	267.73194	-29.46821	0.3	10.1	137.4	20.6	257.6	110.8	0.90	6.5 < -5	: :0	:	484.3	3.4	7.4×10^{-15}
88	175055.76 - 293951.4	267.73235	-29.66429	0.3	8.3	47.5	18.9	282.5	15.4	0.91	2.4 - 2.5	÷	` A	764.3	1.7	6.9×10^{-16}
89	175055.79 - 293840.2	267.73248	-29.64452	0.2	7.7	124.7	19.3	222.3	23.1	0.89	6.3 < -5	:	` q	773.1	1.3	1.4×10^{-15}
90	175055.85 - 293204.3	267.73274	-29.53455	0.2	7.7	96.2	17.8	195.8	63.7	0.90	5.3 < -5	i	` ש	784.7	2.8	2.3×10^{-15}
91	175055.97 - 293515.6	267.73325	-29.58768	0.2	6.9	72.5	15.6	149.5	43.6	0.90	4.5 < -5	: 60	:	779.0	2.5	1.6×10^{-15}
92	175056.07 - 293142.7	267.73363	-29.52855	0.3	7.8	40.1	17.0	225.9	40.3	0.90	2.3 - 2.3	i	` q	784.6	3.5	1.2×10^{-15}
93	175056.28 - 294209.2	267.73452	-29.70256	0.3	9.6	86.9	21.5	344.1	56.5	0.90	3.9 < -5	i	ы в	681.8	2.3	$2.0\! imes\!10^{-15}$
94	175056.38 - 293715.8	267.73494	-29.62106	0.2	7.1	50.9	14.8	148.1	30.5	0.87	3.3 - 4.6	i	` A	763.8	2.5	1.1×10^{-15}
95	175056.55 - 293407.0	267.73566	-29.56864	0.2	6.9	162.1	17.7	130.9	9.7	0.90	8.9 < -5	ъ0	:	785.4	1.1	1.6×10^{-15}
96	175056.64 - 293051.0	267.73603	-29.51419	0.3	8.2	43.7	18.0	255.3	17.6	0.90	2.4 - 2.4	: 60	:	769.9	1.6	$6.2\! imes\!10^{-16}$
97	175056.75 - 294327.1	267.73647	-29.72421	0.3	10.5	110.0	24.0	430.0	93.6	0.90	4.5 < -5	:	с в	655.0	3.1	$3.6\! imes\!10^{-15}$
98	175056.76 - 293928.7	267.73651	-29.65798	0.2	7.9	72.1	18.2	232.9	42.6	0.89	3.9 < -5	: :0	:	756.4	2.8	1.8×10^{-15}
66	175056.81 - 293256.6	267.73671	-29.54907	0.3	7.2	34.7	14.1	144.3	22.5	0.90	2.4 - 2.6	:	` q	795.7	2.4	7.0×10^{-16}
100	175056.95 - 292922.0	267.73731	-29.48946	0.2	9.0	184.1	22.5	290.9	17.9	0.90	8.0 < -5	:	` q	748.1	0.9	1.5×10^{-15}
101	175057.07 - 293505.2	267.73780	-29.58478	0.2	6.7	147.5	17.2	125.5	26.6	0.90	8.4 < -5	: Ю	:	785.1	1.3	1.7×10^{-15}
102	175057.14 - 294251.7	267.73811	-29.71437	0.3	10.0	69.9	21.8	373.1	20.4	0.90	3.1 - 3.7	÷	с в	673.6	1.2	$8.7{ imes}10^{-16}$
(cont.)																

	Source		Dosition				Hwtr.	oted Cr	unte						haracter	ietice	
Seq	CXOU J	R. A.	Decl. F	lrr	θ	Cnet 1	$\Delta C_{\rm net}$	$C'_{\rm hko}$	net,hard	PSF	\mathbf{PS}	$P_{\rm B}$	Anom	Var	EffExp	$E_{\rm median}$	Photo $F_{\rm x}$
#		(deg)	(deg) (<i></i>	S			0			Frac				(ks)	(keV)	$(ergs \ s^{-1} \ cm^{-2})$
(1)	(2)	(3)	(4) (2)	(9)	(2	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
103	175057.18 - 293733.4	267.73828 -	-29.62596 (.2	7.0	106.3	17.2	165.7	54.5	0.90	6.0	< -5	:	ပ	764.0	2.0	1.8×10^{-15}
104	175057.23 - 293616.7	267.73847	-29.60467 ().2	6.7	105.7	14.7	92.3	55.7	0.86	7.0	~ -5	50 60	÷	645.2	2.4	2.9×10^{-15}
105	175057.25 - 294128.2	267.73858 -	-29.69118 ().2	9.0	145.7	22.1	310.3	71.5	0.90	6.4	~ -5	60 60	÷	743.5	2.0	$2.8 imes 10^{-15}$
106	175057.28 - 293939.7	267.73869 -	-29.66104 ().2	7.9	49.4	17.0	215.6	8.1	0.88	2.8	-3.3	÷	q	751.1	1.4	6.2×10^{-16}
107	175057.33 - 293813.6	267.73890 -	-29.63711 ().2	7.2	126.8	18.0	175.2	83.5	0.90	6.8	~ -5	:	g	760.4	2.5	$2.7 imes 10^{-15}$
108	175057.46 - 293119.3	267.73945 -	-29.52205 ().2	7.8	63.8	17.5	218.2	42.1	0.90	3.5	-4.9	1	ъ	782.5	3.2	1.8×10^{-15}
109	175057.54 - 293952.5	267.73979 -	-29.66460 ().3	8.0	52.2	17.4	224.8	15.8	0.90	2.9	-3.4	:	ъ	750.1	1.4	6.5×10^{-16}
110	175057.60 - 293633.6	267.74004 -	-29.60936 ().3	6.7	26.8	12.2	106.2	0.0	0.90	2.1	-2.1	60 60	÷	595.5	1.2	$3.7 imes 10^{-16}$
111	175057.62 - 293620.7	267.74012 -	-29.60578 ().2	6.6	49.4	10.4	47.6	0.0	0.74	4.5	~ -5	50 60	ł	557.3	1.2	$9.2 imes 10^{-16}$
112	175057.66 - 293439.4	267.74025 -	-29.57763 ().2	6.6	45.9	13.3	114.1	16.1	0.90	3.3	-4.4	60	÷	796.1	1.7	$6.7 imes 10^{-16}$
113	175057.76 - 294033.3	267.74068 -	-29.67593 ().2	8.3	259.8	23.4	255.2	138.6	0.91	10.9	~ -5	60 60	÷	743.7	2.2	5.3×10^{-15}
114	175057.76 - 294155.7	267.74068 -	-29.69882 ().3	9.2	81.9	20.7	314.1	55.6	0.90	3.9	~ -5	50 60	÷	709.0	2.7	$2.2 imes 10^{-15}$
115	175057.83 - 293034.5	267.74097 -	-29.50960 ().3	8.1	57.7	17.7	229.3	24.9	0.90	3.2	-4.0	60	÷	773.0	1.7	$9.0 imes 10^{-16}$
116	175057.85 - 293227.9	267.74105 -	-29.54109 ().2	7.2	216.0	19.6	143.0	173.6	0.90	10.8	~ -5	:	q	796.9	3.4	$6.2 imes 10^{-15}$
117	175058.05 - 292953.1	267.74188	-29.49810 ().2	8.5	133.6	20.5	256.4	46.8	0.90	6.4	$\sim 10^{-1}$:	с	765.7	1.5	1.8×10^{-15}
118	175058.22 - 293902.9	267.74261 -	-29.65081 ().2	7.4	108.5	18.1	193.5	31.6	0.90	5.8	~ -5	:	q	758.4	1.4	1.3×10^{-15}
119	175058.38 - 293338.8	267.74326 -	-29.56078 ().2	6.6	68.4	14.1	112.6	48.7	0.90	4.7	~ -5	:	q	807.0	3.0	1.7×10^{-15}
120	175058.60 - 293051.3	267.74418 -	-29.51425 ().3	7.8	59.6	17.1	207.4	45.8	0.90	3.4	-4.5	:	q	783.4	3.1	1.6×10^{-15}
121	175058.67 - 293025.2	267.74446 -	-29.50701 ().2	8.1	75.6	17.7	214.4	4.2	0.90	4.1	~ -5	50 60	ł	778.2	1.0	6.8×10^{-16}
122	175058.78 - 293808.5	267.74492 -	-29.63571 ().2	6.9	196.3	19.3	150.7	9.4	0.90	9.9	~ -5	ъ0	÷	758.2	1.1	$2.0 imes 10^{-15}$
123	175058.80 - 293414.6	267.74500 -	-29.57074 ().2	6.4	48.4	12.7	97.6	23.4	0.90	3.7	~ -5	60 60	÷	810.3	2.0	$8.2 imes 10^{-16}$
124	175059.04 - 293306.5	267.74601 -	-29.55182 ().2	6.7	67.4	13.5	97.6	48.0	0.87	4.8	~ -5	i	ъ	815.3	2.9	1.6×10^{-15}
125	175059.04 - 293508.7	267.74602 -	-29.58577 ().2	6.3	56.5	13.1	98.5	33.8	0.89	4.2	~ -5	÷	ರ	810.6	2.5	1.2×10^{-15}
126	175059.11 - 293106.2	267.74633	-29.51840 ().3	7.6	54.7	16.2	186.3	63.8	0.90	3.3	-4.3	i	q	786.8	3.9	1.9×10^{-15}
127	175059.18 - 293452.8	267.74661	-29.58135 ().2	6.3	36.8	12.2	96.2	13.9	0.89	2.9	-3.6	:	ъ	814.8	1.9	$5.8 imes 10^{-16}$
128	175059.26 - 293930.0	267.74692	-29.65834 ().2	7.5	87.6	17.1	183.4	42.8	0.90	5.0	\sim -5	: 60	i	751.0	1.9	1.5×10^{-15}
129	175059.27 - 292906.7	267.74698 -	-29.48521 ().3	8.8	51.7	13.4	111.3	53.3	0.70	3.7	~ -5	÷	q	746.1	4.0	2.4×10^{-15}
130	175059.31 - 293433.6	267.74715 -	-29.57602 ().3	6.3	24.7	11.5	93.3	14.1	0.90	2.1	-2.1	÷	9	819.4	2.8	$5.6 imes 10^{-16}$
131	175059.32 - 293535.4	267.74717 -	-29.59317 ().2	6.2	37.4	12.4	101.6	1.7	0.89	2.9	-3.5	1	g	814.6	1.1	$3.5 imes 10^{-16}$
132	175059.35 - 292858.1	267.74731 -	-29.48283 ().3	8.9	62.4	14.7	134.6	39.7	0.73	4.1	~ -5	÷	ರ	746.1	2.6	1.8×10^{-15}
133	175059.37 - 294029.6	267.74740 -	-29.67490 ().3	8.0	58.7	17.6	225.3	34.2	0.91	3.2	-4.1	: 60	÷	740.5	2.1	1.1×10^{-15}
134	175059.51 - 293310.6	267.74797	-29.55296 ().2	6.6	31.5	10.9	74.5	19.6	0.83	2.8	-3.4	i	q	805.8	2.2	6.3×10^{-16}
135	175059.52 - 294226.2	267.74801 -	-29.70730 ().3	9.3	139.2	21.4	289.8	114.4	0.90	6.3	~ -5	:	c	666.7	3.6	$4.0 imes 10^{-15}$
136	175059.52 - 294101.0	267.74802 -	-29.68363 ().2	8.3	218.5	22.2	242.5	153.0	0.91	9.6	~ -5	÷	ರ	736.2	2.9	7.0×10^{-15}
(cont.)																	

list
source
Chandra
A.1:
Table

	T TOAD	۲ ۲	Deel	E			5	5		L L L L L L L L L L L L L L L L L L L	D C	r L		17		E	DLete D	ı.
5	CAUUJ	К.А.	Deci.	Err	Ь	Cnet 4	Cnet	C _{bkg}	net,hard	101	Ŋ	LB LB	vnom	var	EILEXD	$L_{ m median}$	F noto $F_{\rm X}$	
		(deg)	(deg)	Ű	S						Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$	
	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	
1	175059.57 - 293038.4	267.74821	-29.51068	0.2	7.8	98.1	17.7	189.9	20.3	0.90	5.4	$^{-2}_{->}$:	а	777.6	1.3	1.1×10^{-15}	
8	175059.63 - 294007.9	267.74848	-29.66888	0.2	7.8	67.6	16.9	194.4	44.7	0.90	3.9	~ -5	: 60	÷	741.6	2.7	1.7×10^{-15}	
69	175059.69 - 293135.1	267.74873	-29.52643	0.2	7.2	142.3	17.7	149.7	27.4	0.89	7.8	~ -5	:	ъ	796.1	1.3	1.6×10^{-15}	
10	175059.74 - 292829.3	267.74894	-29.47483	0.3	9.2	100.5	20.7	296.5	63.7	0.90	4.7	~ -5	:	С	749.2	2.6	2.3×10^{-15}	
11	175059.76 - 293339.7	267.74900	-29.56103	0.1	6.4	176.9	17.1	94.1	31.0	0.90	10.1	$\stackrel{<}{-}$:	а	815.7	1.4	$2.0 imes 10^{-15}$	
12]	175059.96 - 293612.6	267.74987	-29.60352	0.2	6.1	68.0	12.9	82.0	36.6	0.90	5.1	$\stackrel{<}{-}$: 60	÷	668.4	2.3	1.5×10^{-15}	
13]	175100.09 - 293650.6	267.75041	-29.61406	0.2	6.2	25.6	11.7	97.4	17.0	0.90	2.1	-2.1	: 60	÷	730.9	2.2	$5.0\! imes\!10^{-16}$	
14]	175100.16 - 293205.3	267.75069	-29.53481	0.2	6.9	91.3	15.3	124.7	10.6	0.90	5.8	~ -5	:	q	802.0	1.2	$9.0\! imes\!10^{-16}$	
15]	175100.16 - 293331.7	267.75069	-29.55881	0.2	6.3	83.7	13.8	90.3	76.1	0.90	5.8	~ -5	: :00	÷	786.5	3.6	$2.6\! imes\!10^{-15}$	
46]	175100.17 - 293020.9	267.75073	-29.50583	0.3	7.9	7.77	17.0	189.3	13.2	0.90	4.4	~ -5	: 60	:	763.7	1.4	$9.6 imes 10^{-16}$	
17]	175100.67 - 293413.0	267.75282	-29.57031	0.2	6.0	29.9	11.1	80.1	9.6	0.90	2.6	-3.0	:	а	819.0	1.1	$2.7{ imes}10^{-16}$	
18	175100.69 - 293446.9	267.75291	-29.57970	0.2	5.9	31.7	11.1	77.3	8.9	0.90	2.7	-3.3	:	а	827.7	1.7	4.3×10^{-16}	
[6]	175100.77 - 294304.9	267.75322	-29.71804	0.3	9.6	118.9	21.4	309.1	32.1	0.89	5.4	~ -5	50 60	i	654.9	1.2	1.5×10^{-15}	
0	175100.79 - 293358.6	267.75331	-29.56630	0.2	6.1	58.9	12.3	78.1	18.8	0.90	4.6	$\stackrel{\circ}{_{-2}}$:	а	821.5	1.5	7.1×10^{-16}	
1	175100.92 - 293148.0	267.75386	-29.53002	0.2	6.9	62.2	14.3	122.8	11.1	0.90	4.2	~ -5	:	а	785.0	1.2	6.4×10^{-16}	
5	175100.97 - 293907.3	267.75407	-29.65203	0.2	6.9	103.9	15.6	119.1	44.9	0.84	6.5	~ -5	:	q	798.3	1.8	1.6×10^{-15}	
	175100.99 - 294236.3	267.75413	-29.71010	0.2	9.2	204.3	22.7	277.7	159.6	0.90	8.8	~ -5	: 60	ł	656.7	3.0	6.6×10^{-15}	
4	175101.02 - 293501.2	267.75425	-29.58368	0.2	5.9	42.4	11.5	76.6	22.2	0.90	3.5	~ -5	:	q	826.2	1.8	$6.1\! imes\!10^{-16}$	
5	175101.11 - 293139.0	267.75463	-29.52751	0.2	6.9	119.2	16.3	125.8	29.8	0.90	7.1	~ -5	: 60	÷	777.9	1.2	1.3×10^{-15}	
9	175101.21 - 293741.4	267.75506	-29.62819	0.2	6.2	62.0	13.7	109.0	21.4	0.89	4.4	\sim -5	÷	а	821.3	1.8	8.9×10^{-16}	
1	175101.23 - 293223.5	267.75516	-29.53987	0.2	6.5	112.0	15.2	102.0	75.8	0.90	7.1	~ -5	50 10	÷	796.6	3.0	$2.9 imes 10^{-15}$	
8	175101.35 - 293750.2	267.75563	-29.63064	0.2	6.3	41.9	12.8	106.1	12.7	0.89	3.1	-4.0	:	а	820.8	1.7	$5.7 imes 10^{-16}$	
6	175101.41 - 293011.3	267.75588	-29.50315	0.2	7.8	88.0	17.0	177.0	51.9	0.90	5.0	\sim -5	÷	q	780.3	2.6	1.9×10^{-15}	
0	175101.45 - 293402.7	267.75606	-29.56743	0.2	5.9	110.9	14.1	72.1	23.5	0.90	7.6	~ -5	÷	q	817.5	1.4	1.3×10^{-15}	
1	175101.50 - 293312.7	267.75626	-29.55354	0.2	6.1	35.7	11.5	83.3	24.9	0.90	3.0	-3.7	: 60	÷	807.9	3.9	1.2×10^{-15}	
2	175101.60 - 294058.3	267.75668	-29.68287	0.2	8.0	68.3	17.6	216.7	74.9	0.90	3.8	-5-	÷	а	770.5	3.8	$2.2 imes 10^{-15}$	
с Г	175101.66 - 293600.8	267.75692	-29.60023	0.2	5.7	27.2	10.9	78.8	15.6	0.90	2.4	-2.6	: 60	÷	801.5	2.2	$5.0 imes 10^{-16}$	
4	175101.66 - 293902.9	267.75694	-29.65081	0.2	6.8	87.7	14.1	95.3	76.9	0.81	6.0	~ -5	:	а	809.1	3.8	$3.0 imes 10^{-15}$	
5	175101.66 - 293929.1	267.75695	-29.65809	0.2	7.0	88.6	16.5	162.4	53.4	0.90	5.2	~ -5	:	q	803.2	2.4	1.7×10^{-15}	
9	175101.76 - 293342.0	267.75736	-29.56168	0.2	5.9	45.3	9.7	37.7	9.9	0.77	4.4	$\stackrel{>}{\sim}$:	q	810.3	1.4	$6.0\! imes\!10^{-16}$	
7	175101.88 - 293320.9	267.75786	-29.55582	0.2	6.0	27.3	10.7	74.7	12.6	0.90	2.4	-2.7	50 50	÷	783.7	1.9	$4.7 imes 10^{-16}$	
8	175102.04 - 293550.9	267.75854	-29.59748	0.2	5.6	22.8	10.5	74.2	2.8	0.90	2.1	-2.1	: 60	ł	821.9	1.3	$2.5 imes 10^{-16}$	
6	175102.12 - 292841.5	267.75884	-29.47821	0.3	8.7	70.4	18.3	237.6	33.5	0.90	3.7	$\stackrel{>}{\sim}$	50 60	÷	732.0	1.9	1.3×10^{-15}	
0	175102.13-293137.5	267.75890	-29.52710	0.2	6.7	145.7	16.7	113.3	81.4	0.90	8.5	 1.5 1.5	ы Ы		796.2	2.3	2.9×10^{-15}	

	Source		Position				Extra	acted Co	ounts						haracter	istics	
Seq	CXOU J	R. A.	Decl. H	Err	θ	$C_{\rm net}$	$\Delta C_{\rm net}$	$C'_{\rm bkg}$ (7net,hard	\mathbf{PSF}	\mathbf{PS}	$P_{\rm B}$	Anom	Var	EffExp	$E_{ m median}$	Photo $F_{\mathbf{x}}$
#		(deg)	(deg) (S			0			Frac				(ks)	(keV)	$(ergs \ s^{-1} \ cm^{-2})$
(1)	(2)	(3)	(4) ((2)	(9)	(2	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
171	175102.24 - 292807.0	267.75937	-29.46863 (0.3	9.2	48.4	17.9	247.6	13.3	0.90	2.6	-2.8	: :00	÷	654.6	1.6	8.4×10^{-16}
172	175102.28 - 293343.1	267.75950	-29.56198 (0.2	5.8	65.0	11.2	47.0	3.9	0.82	5.6	~ -5	: 60	ł	802.4	1.0	$6.0 imes 10^{-16}$
173	175102.35 - 294158.2	267.75983	-29.69953 (0.2	8.6	213.1	22.6	267.9	151.9	0.91	9.2	~ -5	:	q	740.4	2.7	$5.3{ imes}10^{-15}$
174	175102.54 - 293228.7	267.76062	-29.54131 (0.2	6.2	37.1	11.6	83.9	25.8	0.90	3.1	-4.0	: 60	÷	796.4	3.0	9.9×10^{-16}
175	175102.61 - 293308.7	267.76091	-29.55243 (0.2	5.9	25.6	10.6	74.4	5.4	0.90	2.3	-2.5	: 60	ł	797.3	1.3	$2.8 imes 10^{-16}$
176	175102.70 - 293822.1	267.76128	-29.63948 (0.2	6.2	38.7	10.6	61.3	31.1	0.77	3.5	~ -5	:	q	821.5	3.7	1.3×10^{-15}
177	175102.71 - 294058.0	267.76130	-29.68280 (0.3	7.8	45.7	16.2	193.3	36.0	0.89	2.7	-3.1	:	g	778.4	4.2	$1.6 imes 10^{-15}$
178	175102.74 - 293941.3	267.76144	-29.66149 (0.2	6.9	73.7	15.7	153.3	35.1	0.90	4.5	~ -5	:	q	806.0	1.9	1.1×10^{-15}
179	175102.76 - 293816.8	267.76152	-29.63802 (0.2	6.2	82.7	13.3	79.3	22.5	0.82	6.0	~ -5	:	ų	822.6	1.4	1.0×10^{-15}
180	175102.85 - 293413.0	267.76189	-29.57028 (0.1	5.6	210.2	17.1	62.8	138.7	0.90	11.9	~ -5	: 60	i	805.5	2.8	5.1×10^{-15}
181	175102.89 - 293539.3	267.76208	-29.59426 (0.2	5.4	33.9	10.0	55.1	26.7	0.86	3.2	-4.6	: :00	÷	816.9	3.4	1.0×10^{-15}
182	175102.92 - 293001.5	267.76218	-29.50042 (0.2	7.6	331.1	22.7	156.9	224.4	0.90	14.3	$\stackrel{-}{\sim}$: :00	÷	759.1	2.9	$5.6 imes 10^{-15}$
183	175102.92 - 294020.3	267.76219	-29.67232 (0.2	7.3	60.6	15.9	170.4	20.5	0.90	3.7	~ -5	:	q	796.4	1.8	1.0×10^{-15}
184	175102.92 - 292924.5	267.76220	-29.49014 (0.3	8.1	57.4	16.3	184.6	29.6	0.90	3.4	-4.7	: :00	÷	739.7	2.1	1.7×10^{-15}
185	175102.98 - 294038.9	267.76245	-29.67748 (0.2	7.5	46.7	15.8	182.3	24.9	0.90	2.9	-3.4	:	q	791.2	2.1	$8.2 imes 10^{-16}$
186	175102.99 - 293321.5	267.76250	-29.55599 (0.2	5.8	95.2	13.4	68.8	9.8	0.90	6.8	~ -5	: :00	÷	781.7	1.1	$9.3 { imes} 10^{-16}$
187	175103.30 - 293119.3	267.76378	-29.52203 (0.2	6.7	44.5	13.0	107.5	26.8	0.90	3.3	-4.4	: 60	÷	792.7	2.4	9.2×10^{-16}
188	175103.32 - 293900.4	267.76384	-29.65012 (0.2	6.4	64.7	14.3	120.3	33.4	0.89	4.4	~ -5	:	c	817.0	2.1	1.1×10^{-15}
189	175103.35 - 293444.3	267.76397	-29.57899 (0.2	5.4	50.1	10.1	39.9	31.3	0.84	4.7	~ -5	: 60	i	806.2	2.8	1.3×10^{-15}
190	175103.36 - 293441.0	267.76401	-29.57806 (0.3	5.4	12.8	6.0	17.2	2.8	0.62	1.9	-2.4	50 60	ł	804.4	1.4	4.8×10^{-16}
191	175103.36 - 293350.9	267.76404	-29.56416 (0.2	5.6	66.2	11.9	61.8	42.1	0.90	5.3	~ -5	: :00	÷	807.6	3.0	7.7×10^{-16}
192	175103.37 - 293326.3	267.76406	-29.55731 (0.2	5.7	22.0	10.0	66.0	19.9	0.90	2.1	-2.2	: 60	i	780.8	2.5	4.8×10^{-16}
193	175103.44 - 294147.1	267.76436	-29.69643 (0.2	8.3	123.2	14.0	57.8	16.9	0.57	8. 2	~ -5	i	5	767.2	1.3	$2.2 imes 10^{-15}$
194	175103.45 - 293741.5	267.76441	-29.62820 (0.2	5.8	55.5	12.4	83.5	19.8	0.90	4.3	~ -5	:	5	830.4	1.4	$6.1\! imes\!10^{-16}$
195	175103.63 - 293651.8	267.76514	-29.61442 (0.2	5.5	76.7	12.8	71.3	43.9	0.90	5.8	$\stackrel{\circ}{\sim}$:	ъ	796.4	2.3	1.5×10^{-15}
196	175103.72 - 293149.7	267.76551	-29.53048 (0.2	6.3	57.4	12.8	91.6	0.7	0.90	4.3	$\stackrel{-2}{\sim}$: 60	ł	799.3	0.9	4.4×10^{-16}
197	175103.84 - 294147.0	267.76603	-29.69639 (0.2	8.2	39.8	8.9	29.2	6.4	0.44	4.2	~ -5	÷	5	770.2	1.1	7.8×10^{-16}
198	175103.86 - 293839.8	267.76611	-29.64441 (0.2	6.2	113.1	15.1	95.9	79.9	0.89	7.3	~ -5	÷	q	822.9	3.0	$2.7 imes 10^{-15}$
199	175103.90 - 293538.3	267.76626	-29.59400 (0.1	5.2	109.3	13.5	56.7	68.3	0.90	7.8	~ -5	: 60	ł	807.8	2.4	2.3×10^{-15}
200	175103.91 - 293013.5	267.76632	-29.50378 (0.2	7.3	77.2	15.3	135.8	46.5	0.90	4.9	~ -5	: 60	÷	759.8	2.6	1.9×10^{-15}
201	175103.92 - 293912.5	267.76634	-29.65348 (0.2	6.5	35.0	13.0	118.0	15.9	0.89	2.6	-2.9	:	q	815.3	2.0	$5.7 imes 10^{-16}$
202	175103.94 - 294114.5	267.76644	-29.68736 (0.2	7.8	209.0	20.8	197.0	11.3	0.89	9.8	~ -5	:	q	781.4	0.9	1.6×10^{-15}
203	175103.96 - 293431.0	267.76652	-29.57528 (0.1	5.3	670.9	27.5	56.1	514.0	0.90	24.0	~ -5	: 60	÷	814.5	3.1	1.8×10^{-14}
204	175103.98 - 293847.8	267.76659	-29.64661 (0.2	6.2	69.5	13.6	99.5	34.3	0.89	4.9	~ -5	÷	q	821.1	2.1	1.2×10^{-15}
(cont.)																	

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts					Chá	aracteris	stics		
Seq	CXOU J	R. A.	Decl.	Err	θ	$C_{\rm net}$ Z	$^{\Delta C_{\mathrm{net}}}$	$C'_{\rm bkg}$ C	' net,hard	PSF	PS F	B An	om 1	/ar E	OffExp 1	g_{median}	Photo $F_{\mathbf{x}}$	
#		(deg)	(deg)	Ű	S						Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$	
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (1	3) (1	4) (15)	(16)	(17)	(18)	
205	175104.01 - 293552.6	267.76671	-29.59796	0.2	5.2	52.0	11.1	58.0	19.2	0.91	4.5 < -	-22	:. 60	:	807.6	1.5	$6.6\! imes\!10^{-16}$	
206	175104.08 - 294013.9	267.76701	-29.67054	0.3	7.1	28.5	9.8	55.5	0.2	0.68	2.8	3.6	:	5 S	799.2	1.2	$3.7 imes 10^{-16}$	
207	175104.10 - 293643.0	267.76709	-29.61196	0.2	5.3	24.8	9.8	59.2	8.6	0.90	2.4 - 2.4	8.	:	:	732.4	1.7	$3.8 imes 10^{-16}$	
208	175104.12 - 292748.9	267.76719	-29.46360	0.2	9.1	458.1	25.7	171.9	385.1	0.90	17.5 <-	-5	: :00	:	487.5	3.5	$2.2 imes 10^{-14}$	
209	175104.12 - 294020.8	267.76720	-29.67247	0.2	7.2	85.3	15.2	126.7	21.0	0.86	5.4 < -	-5	÷	q	797.6	1.4	$1.0\! imes\!10^{-15}$	
210	175104.13 - 293408.9	267.76723	-29.56916	0.1	5.3	161.3	15.3	55.7	99.3	0.90	$10.2 < \cdot$	-5	÷	a	816.4	2.3	$3.0\! imes\!10^{-15}$	
211	175104.15 - 293815.7	267.76730	-29.63771	0.1	5.9	347.5	21.4	87.5	203.7	0.90	$15.8 < \cdot$	-5	÷	5 B	828.0	2.4	$6.5\! imes\!10^{-15}$	
212	175104.17 - 293903.6	267.76740	-29.65102	0.2	6.3	76.0	14.3	111.0	60.1	0.90	5.1 <	-5	÷	a B	817.8	3.4	$2.1\! imes\!10^{-15}$	
213	175104.18 - 294131.5	267.76743	-29.69211	0.3	8.0	37.9	11.2	73.1	0.0	0.62	3.2 - 1	1.5	÷	a	776.5	1.1	$5.1\! imes\!10^{-16}$	
214	175104.32 - 293356.0	267.76801	-29.56556	0.1	5.3	135.0	14.4	56.0	22.7	0.90	9.1 < 0.1	-5	÷	0	824.4	1.3	1.4×10^{-15}	
215	175104.33 - 294313.2	267.76805	-29.72034	0.3	9.3	57.0	19.5	296.0	44.5	0.90	2.8	3.2	:	8	685.1	3.2	$1.8 { imes} 10^{-15}$	
216	175104.36 - 294125.0	267.76817	-29.69030	0.2	7.9	44.8	11.0	64.2	25.3	0.61	3.9 < .	-5	÷	q	779.1	2.6	$1.5 \! imes \! 10^{-15}$	
217	175104.52 - 294159.8	267.76885	-29.69996	0.2	8.3	92.8	13.3	69.2	55.0	0.57	6.7 < -	-5	÷	U	758.0	2.3	$3.3{ imes}10^{-15}$	
218	175104.52 - 293459.6	267.76887	-29.58323	0.1	5.1	97.6	12.7	50.4	65.3	0.90	7.4 < -	-5	÷	q	813.5	2.6	$1.8 { imes} 10^{-15}$	
219	175104.55 - 293944.2	267.76896	-29.66230	0.2	6.7	61.5	14.0	117.5	23.3	0.89	4.2 < -	-5	÷	a	808.5	1.8	$9.1 imes 10^{-16}$	
220	175104.56 - 293332.0	267.76902	-29.55890	0.2	5.4	53.2	11.0	55.8	17.7	0.90	4.6 < -	-5	: :00	:	791.1	1.6	$7.0 imes 10^{-16}$	
221	175104.59 - 293537.4	267.76914	-29.59374	0.1	5.1	168.4	15.5	54.6	90.3	0.90	$10.5 < \cdot$	-5	:	:	804.0	2.3	$3.3{ imes}10^{-15}$	
222	175104.66 - 293717.6	267.76944	-29.62157	0.2	5.4	33.0	10.9	72.0	33.4	0.90	2.9 - 3	3.7	÷	a	819.6	3.1	8.3×10^{-16}	
223	175104.80 - 293753.9	267.77002	-29.63164	0.2	5.6	18.6	6.3	14.4	10.4	0.52	2.7 - 1	1.5	÷	q	820.6	2.4	6.3×10^{-16}	
224	175104.88 - 293415.7	267.77035	-29.57105	0.2	5.1	54.7	10.6	46.3	27.1	0.90	4.9 < -	-5	÷	a	828.0	1.9	$8.3 imes 10^{-16}$	
225	175104.95 - 294203.7	267.77064	-29.70104	0.3	8.3	67.0	14.1	114.0	23.4	0.70	4.6 < -	-5	÷	a	751.5	1.5	$1.1\! imes\!10^{-15}$	
226	175104.99 - 293604.8	267.77083	-29.60135	0.2	5.0	28.9	8.2	29.1	2.8	0.85	3.3 < .	го го	:.	:	598.0	1.1	$3.9{ imes}10^{-16}$	
227	175105.02 - 292926.7	267.77093	-29.49076	0.3	7.8	45.0	15.2	166.0	11.7	0.90	2.9 - 3	3.4	÷	U	792.6	1.5	$5.6 imes 10^{-16}$	
228	175105.04 - 293753.7	267.77100	-29.63161	0.2	5.6	19.9	6.7	18.1	13.4	0.58	2.7 - 1	1.4	÷	ъ	822.5	3.3	8.3×10^{-16}	
229	175105.05 - 293201.3	267.77107	-29.53371	0.1	6.0	375.2	21.7	71.8	221.4	0.90	16.9 < .	10	:.	:	796.1	2.5	8.3×10^{-15}	
230	175105.09 - 293821.0	267.77123	-29.63919	0.2	5.8	29.4	0.0	40.6	21.3	0.74	3.1 - 1	1.6	÷	r B	816.2	3.4	$1.0\! imes\!10^{-15}$	
231	175105.17 - 293052.0	267.77157	-29.51446	0.2	6.7	176.6	17.3	103.4	146.8	0.90	9.9 < -	-5	÷	q	803.3	3.5	$5.2{ imes}10^{-15}$	
232	175105.23 - 293344.9	267.77182	-29.56248	0.2	5.2	14.4	5.6	11.6	5.1	0.58	2.3	3.6	:	:	803.1	1.6	$3.0 imes 10^{-16}$	
233	175105.23 - 293647.8	267.77182	-29.61329	0.2	5.1	87.5	12.4	51.5	54.5	0.90	6.8 < 0.8	го го	:	:	772.0	2.4	$1.8 { imes} 10^{-15}$	
234	175105.24 - 293535.2	267.77187	-29.59312	0.2	4.9	32.7	9.6	49.3	13.4	0.90	3.2 - 1	1.7	:	:	815.3	1.5	$4.0 imes 10^{-16}$	
235	175105.26 - 292944.4	267.77195	-29.49568	0.2	7.5	174.7	18.6	149.3	135.3	0.90	$9.1 < \cdot$	-5	:	q	795.5	3.3	4.8×10^{-15}	
236	175105.26 - 293817.1	267.77195	-29.63810	0.2	5.7	32.5	8.6	32.5	22.1	0.67	3.6 < -	-02	:	5 S	818.1	3.2	1.1×10^{-15}	
237	175105.27 - 292907.6	267.77198	-29.48547	0.3	8.0	46.5	15.7	179.5	23.2	0.90	2.9 - 3	3.4	÷	5	782.4	2.8	1.1×10^{-15}	
238	175105.30 - 293709.7	267.77210	-29.61938	0.2	5.2	32.2	10.3	60.8	13.3	0.90	3.0	1.0	:	:	803.6	1.7	$4.5 imes 10^{-16}$	
(cont.)																		

tics	nedian Photo $F_{\rm x}$	(keV) (ergs s ⁻¹ cm ⁻²)	(17) (18)	1.2 2.8×10^{-16}	$1.0 1.2 \times 10^{-15}$	$3.0 1.3 \times 10^{-14}$	$1.0 2.4 \times 10^{-16}$	1.1 4.9×10^{-16}	2.8 4.8×10^{-16}	3.6 7.9×10^{-16}	$1.2 4.9 \times 10^{-16}$	$3.2 1.5 \times 10^{-15}$	$1.5 6.5 \times 10^{-16}$	2.5 1.4×10^{-15}	$1.7 6.3 \times 10^{-16}$	1.9 2.6×10^{-16}	2.0 1.2×10^{-15}	2.8 1.2×10^{-15}	1.6 7.5×10^{-16}	2.3 4.4×10^{-16}	2.1 1.4×10^{-15}	1.3 9.4×10^{-16}	1.6 7.3×10^{-16}	2.9 1.2×10^{-15}	1.7 3.4×10^{-16}	1.6 2.2×10^{-16}	1.1 4.0×10^{-16}	2.3 1.3×10^{-15}	$1.0 2.8 \times 10^{-16}$	$1.8 1.1 \times 10^{-15}$	1.5 7.4×10^{-16}	2.2 8.3×10^{-16}	1.1 1.9×10^{-16}	$1.0 1.7 \times 10^{-15}$	1.3 5.0×10^{-16}	2.3 3.3×10^{-15}	1.1 3.0×10^{-16}	
Characteris	r EffExp E	(ks) ((16)	803.9	805.8	. 807.3	827.4	. 810.7	. 810.0	. 798.6	. 635.3	826.8	795.9	. 789.7	. 783.2	828.2	. 813.6	. 794.1	. 821.8	830.4	684.3	. 814.9	. 825.2	808.1	. 817.9	832.3	. 778.6	759.6	. 834.6	782.0	838.2	. 822.3	842.9	. 711.2	. 795.9	781.3	. 808.3	
	nom Va		14) (15	q	р 	: :. 60	а 	:: 20	:: :: :00	: :. :00	:: :: :00	а 	а 	:. 20	:: 20	а 	:. 20	: ස ක	:: 20	а 	а 	:: 20	: :. 20	а 	: :. :00	ы 	: :. 60	р 	: :. :00	ы 	р 	:: :: :00	р 	: :. 60	: :. 60	ы 	 8	
	$P_{\rm B}$ A		(13) (-2.6	$\stackrel{<}{-}_{5}$	~ -5	-4.6	< -5	-2.2	-3.0	~ -5	~ -5	-4.8	~ -5	< -5	-2.1	~ -5	~ -5	< -5	-3.7	-4.2	< -5	~ -5	~ -5	-3.0	-2.1	-4.6	- 5- 5	$\stackrel{<}{-}$ 5	< -5	<-5 -5	< -5	-3.0	~ -5	~ -5	~ -5	-3.1	
	SF PS	Frac	1) (12)	90 2.5	90 7.3	$90 \ 20.4$	90 3.1	78 4.8	90 2.0	90 2.5	90 3.9	90 5.2	90 3.4	90 5.1	90 4.0	89 1.9	90 5.8	88 4.3	90 5.0	90 2.7	90 3.3	90 6.4	89 5.1	90 3.6	90 2.5	90 1.9	90 3.3	90 3.6	89 3.5	90 4.3	90 5.7	90 3.8	90 2.4	$90 \ 11.4$	90 4.4	87 9.2	89 2.6	
$_{ m ts}$	t,hard P		10) (1	3.4 0.	1.2 0.	4.7 0.	2.1 0.	0.0	7.2 0.	4.4 0.	2.9 0.	3.8 0.	6.9 0.	8.1 0.	6.2 0.	3.9 0.	1.9 0.	2.5 0.	4.5 0.	4.9 0.	4.6 0.	0.7 0.	6.6 0.	6.3 0.	0.2 0.	6.8 0.	0.0 0.	9.1 0.	0.0	9.7 0.	9.2 0.	6.1 0.	.6 0.	2.0 0.	.0 0.	6.2 0.	6.2 0.	
ed Coun	$b_{\rm kg}^{\prime} C_{\rm ne}$	D	(6)	24.1 5	15.9 4	8.5 41	4.5 2	4.9 (2.4 1	9.7 2	6.5 2	0.6 4	10.4 1	7.0 3	1.8 1	2.9 8	6.9 3	3.8	5.1 2	5.3 1	19.6 3	7.8 2	5.7 1	8.6 3	7.4 1	3.7 6	8.3 (15.5 3	9.4 (31.2 2	6.6 1	0.6 2	7.7 0	3.4 1	9.8 7	17.8 8	4.9 5	
Extract	$C_{\rm net}$ C		(8)	13.2 12	16.0 1	25.0 7	9.3 4	9.0 2	9.1 5	9.9 5	9.2 3	10.4 4	$14.9 1_{-1}$	12.0 6	9.7 4	8.3 4	11.3 4	10.7 5	10.6 4	8.3 3	20.5 3:	12.4 5	10.0 3	12.8 9	9.0 4	8.4 4	12.0 8	17.4 2	9.1 3	16.7 18	10.5 3	11.4 7	8.3 3	15.0 3	9.8 3	17.4 1	10.9 7	
	$C_{\rm net} \Delta$		(2)	33.9	120.1	520.5	30.5	46.1	19.6	26.3	38.5	56.4	52.6	64.0	41.2	17.1	69.1	48.2	55.9	23.7	70.4	82.2	53.3	48.4	23.6	17.3	41.7	64.5	33.6	73.8	62.4	45.4	21.3	176.6	45.2	164.2	30.1	
	θ	S	(9)	6.8	6.9	6.2	4.9	5.1	5.5	5.3	4.9	4.9	7.2	5.5	5.2	4.8	5.3	5.4	5.2	4.8	9.7	5.6	4.9	6.7	5.3	4.7	6.1	8.1	4.6	7.7	4.6	5.9	4.6	4.7	4.8	7.0	6.2	
	Err	<i>"</i>)	(5)	0.2	0.2	0.1	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.2	0.3	
Position	Decl.	(deg)	(4)	-29.66897	-29.50863	-29.52651	-29.57910	-29.56276	-29.54733	-29.62518	-29.60082	-29.57586	-29.67807	-29.63435	-29.55877	-29.58306	-29.55428	-29.62928	-29.55576	-29.57466	-29.73208	-29.54130	-29.56826	-29.51012	-29.54919	-29.59733	-29.65461	-29.70145	-29.58940	-29.69208	-29.58257	-29.52704	-29.58783	-29.60772	-29.61519	-29.67959	-29.51961	
	R. A.	(deg)	(3)	267.77242	267.77245 -	267.77295 -	267.77299	267.77309 -	267.77313 -	267.77322	267.77348 -	267.77356	267.77358 -	267.77373 -	267.77380 -	267.77389 -	267.77410 -	267.77410 -	267.77508 -	267.77523	267.77531 -	267.77542 -	267.77554 -	267.77600 -	267.77647	267.77656	267.77682 -	267.7730 -	267.77743	267.77780 -	267.77787	267.77825 -	267.77846 -	267.77881 -	267.77884 -	267.77893 -	267.77904 -	
Source	CXOU J		(2)	175105.38 - 294008.2	175105.38 - 293031.0	175105.50 - 293135.4	175105.51 - 293444.7	175105.54 - 293345.9	175105.55 - 293250.3	175105.57 - 293730.6	175105.63 - 293602.9	175105.65 - 293433.1	175105.65 - 294041.0	175105.69 - 293803.6	175105.71 - 293331.5	175105.73 - 293459.0	175105.78 - 293315.4	175105.78 - 293745.4	175106.01 - 293320.7	175106.05 - 293428.7	175106.07 - 294355.4	175106.10 - 293228.6	175106.12 - 293405.7	175106.24 - 293036.4	175106.35 - 293257.0	175106.37 - 293550.3	175106.43 - 293916.6	175106.55 - 294205.2	175106.58 - 293521.8	175106.67 - 294131.4	175106.68 - 293457.2	175106.78 - 293137.3	175106.83 - 293516.1	175106.91 - 293627.7	175106.92 - 293654.6	175106.94 - 294046.5	175106.96 - 293110.5	
	Seq	#	(1)	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	(cont.)

list
source
Chandra
A.1:
Table

U S S	Source	< C	Position	Ē	<		Extra	cted Co	unts	100	מ	V		Character	ristics E	D11-
peq	CAUCI	К.А.	Dect.	Err	Р	Unet A	Unet	ر ت _{bkg} ر	net,hard	л Ч Л		Anon	n var	. Entexp	$L_{ m median}$	F noto $F_{\rm X}$
#		(deg)	(deg)	()	C						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)	(16)	(17)	(18)
273	175107.02 - 293254.1	267.77929	-29.54837	0.1	5.2	115.4	13.2	44.6	75.2	0.90	8.4 < -	5 0.	:	825.7	2.6	$2.5 imes 10^{-15}$
274	175107.06 - 293605.4	267.77943	-29.60152	0.2	4.6	22.0	7.6	28.0	2.6	0.90	2.7 - 3.	ю. Э	:	548.2	1.5	$4.0 imes 10^{-16}$
275	175107.14 - 293445.7	267.77979	-29.57938	0.1	4.6	109.2	12.4	31.8	77.3	0.90	8.4 < -	5 6.	:	828.2	2.8	$2.6\! imes\!10^{-15}$
276	175107.24 - 294256.6	267.78019	-29.71572	0.2	8.7	197.5	21.8	249.5	67.4	0.90	8.8 <-	5 :	а :	701.3	1.7	$3.2 imes 10^{-15}$
277	175107.30 - 293810.1	267.78045	-29.63615	0.2	5.3	60.0	11.2	53.0	25.0	0.90	5.1 < -	5 8.	:	794.9	1.8	$9.2 imes 10^{-16}$
278	175107.32 - 293343.8	267.78053	-29.56219	0.2	4.8	31.4	8.6	33.6	17.1	0.90	3.4 < -	5 8.	:	796.9	2.0	$5.6\! imes\!10^{-16}$
279	175107.32 - 293632.9	267.78054	-29.60915	0.1	4.6	96.1	11.9	32.9	50.6	0.90	7.7 <-	5 6.	:	722.6	2.1	$1.9 { imes} 10^{-15}$
280	175107.37 - 293211.9	267.78071	-29.53664	0.1	5.5	172.9	15.8	58.1	104.1	0.90	10.6 < -	5 8.	:	827.7	2.7	$3.9 imes 10^{-15}$
281	175107.39 - 293836.6	267.78080	-29.64350	0.2	5.5	32.2	10.1	58.8	3.2	0.90	3.0 - 4.	1. 8.	:	774.0	1.2	$3.5 imes 10^{-16}$
282	175107.46 - 294049.1	267.78111	-29.68032	0.2	7.0	52.1	11.6	67.9	13.5	0.77	4.3 < -	5 :	а :	769.6	1.3	$6.8 { imes} 10^{-16}$
283	175107.48 - 293513.0	267.78120	-29.58696	0.2	4.5	20.3	7.9	32.7	14.0	0.90	2.4 - 3.	1. 8.	:	825.7	2.3	4.1×10^{-16}
284	175107.50 - 293532.0	267.78128	-29.59222	0.2	4.4	31.4	8.6	33.6	8.7	0.90	3.4 < -	ы С	:	832.3	1.4	$3.7 { imes} 10^{-16}$
285	175107.57 - 293923.2	267.78158	-29.65647	0.2	6.0	89.8	13.5	77.2	44.1	0.90	6.4 < -	5 6.	:	763.6	1.9	1.6×10^{-15}
286	175107.65 - 292949.5	267.78191	-29.49710	0.3	7.1	36.9	13.2	120.1	5.3	0.90	2.7 - 3.	1 %	:	778.3	1.2	4.1×10^{-16}
287	175107.66 - 294037.3	267.78195	-29.67704	0.0	6.8 3	252.3	58.6	114.7	834.6	0.90	55.1 < -	5 6	:	755.5	1.4	4.4×10^{-14}
288	175107.71 - 293406.8	267.78215	-29.56858	0.2	4.6	53.2	9.6	27.8	2.9	0.90	5.3 < -	5 8.	:	824.0	1.2	$5.6\! imes\!10^{-16}$
289	175107.73 - 293316.7	267.78223	-29.55466	0.2	4.9	33.1	8.9	35.9	18.5	0.90	3.5 < -	5 6.	:	817.8	2.2	$6.2\! imes\!10^{-16}$
290	175107.73 - 293947.2	267.78223	-29.66313	0.2	6.2	108.7	14.3	80.3	65.2	0.90	7.3 <	5 8.	:	764.8	2.5	2.4×10^{-15}
291	175107.78 - 293733.1	267.78242	-29.62586	0.2	4.9	32.6	9.2	42.4	2.5	0.90	3.3 < -	5 :	в :	821.6	1.0	$2.7 imes 10^{-16}$
292	175107.81 - 293425.7	267.78258	-29.57383	0.1	4.5	60.0	9.9	27.0	49.2	0.90	5.8 < -	5 8.	:	823.1	3.0	1.6×10^{-15}
293	175107.96 - 294321.1	267.78319	-29.72254	0.3	9.0	62.9	18.8	264.1	11.3	0.90	3.3 - 4.	1 .	в :	687.5	1.7	$1.0\! imes\!10^{-15}$
294	175108.01 - 293453.0	267.78339	-29.58140	0.1	4.4	161.8	14.3	27.2	108.8	0.90	10.9 < -	5 6	:	816.8	2.7	$3.9 imes 10^{-15}$
295	175108.14 - 293520.2	267.78393	-29.58895	0.2	4.3	31.2	8.3	28.8	23.4	0.90	3.5 < -	5 6.	:	818.1	3.0	8.3×10^{-16}
296	175108.19 - 294048.6	267.78416	-29.68018	0.2	6.9	107.4	15.7	118.6	46.6	0.90	6.6 < -	5 8.	:	757.2	1.7	1.7×10^{-15}
297	175108.24 - 293937.0	267.78436	-29.66030	0.2	6.0	34.5	11.1	74.5	2.5	0.90	3.0 - 3.	9 g.	:	776.0	1.1	$3.5 imes 10^{-16}$
298	175108.35 - 293822.9	267.78483	-29.63972	0.2	5.2	25.8	9.5	53.2	12.9	0.90	2.6 - 3.	2 8.	:	814.3	2.2	$4.7 imes 10^{-16}$
299	175108.39 - 293946.8	267.78499	-29.66301	0.2	6.1	34.1	11.3	78.9	0.0	0.90	2.9 - 3.	6 8.	:	775.1	1.1	$3.5 imes 10^{-16}$
300	175108.41 - 292959.0	267.78506	-29.49973	0.3	6.9	32.0	12.7	114.0	0.0	0.90	2.4 - 2.		в :	799.7	1.1	$2.9{ imes}10^{-16}$
301	175108.45 - 293842.5	267.78521	-29.64515	0.2	5.4	30.8	10.2	61.2	19.0	0.90	2.9 - 3.	7 g.	:	804.8	2.4	$6.2\! imes\!10^{-16}$
302	175108.53 - 293437.2	267.78556	-29.57701	0.1	4.3	50.9	9.2	24.1	25.6	0.90	5.2 < -	5 8.	:	824.3	2.1	$9.2 imes 10^{-16}$
303	175108.59 - 293914.6	267.78582	-29.65408	0.2	5.7	102.3	13.6	66.7	73.2	0.90	7.3 <	5 8.	:	801.0	3.0	$2.7 { imes} 10^{-15}$
304	175108.68 - 293251.4	267.78620	-29.54762	0.1	4.9	183.7	15.3	33.3	69.0	0.88	11.6 < -	5 0.	:	820.1	1.8	$2.9{ imes}10^{-15}$
305	175108.78 - 293654.8	267.78662	-29.61523	0.2	4.4	20.7	7.7	30.3	5.8	0.89	2.5 - 3.	3 9 0	:	832.5	1.7	$2.9 imes 10^{-16}$
306	175108.87 - 293138.4	267.78696	-29.52734	0.2	5.6	59.7	11.2	52.3	41.6	0.90	5.1 < -	5 6.	:	806.7	2.6	1.4×10^{-15}
(cont.)																

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts					CP	aracteris	stics	
Seq	CXOU J	R. A.	Decl.	Err	θ	Cnet A	$C_{\rm net}$	$C'_{\rm bkg}$ C	'net,hard	PSF	PS I	^B AI	, mon	Var E	GffExp 1	\mathcal{I}_{median}	Photo $F_{\mathbf{x}}$
#		(deg)	(deg)		S						Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (1	3) (5	4) (15)	(16)	(17)	(18)
341	175110.43 - 293332.8	267.79349	-29.55912	0.2	4.2	16.5	7.1	25.5	0.3	0.90	2.2 -	2.7	: :: ::	:	837.6	1.1	1.5×10^{-16}
342	175110.51 - 293656.5	267.79382	-29.61572	0.2	4.1	20.0	7.0	22.0	9.9	0.90	2.6 -	3.9	: :: ::	÷	835.9	1.7	$2.8 imes 10^{-16}$
343	175110.55 - 293348.6	267.79398	-29.56351	0.1	4.1	48.0	9.0	23.0	24.5	0.90	5.0 <	-5	: 60	÷	822.5	2.0	$7.8 { imes} 10^{-16}$
344	175110.57 - 294409.0	267.79405	-29.73585	0.2	9.5	191.7	22.4	278.3	67.9	0.90	8.4 <	-5	: :: ::	÷	655.7	1.7	$3.5\! imes\!10^{-15}$
345	175110.58 - 293832.7	267.79410	-29.64244	0.1	4.9	121.1	13.5	45.9	81.4	0.89	8.6 <	-5	: :	÷	817.8	2.7	$2.8 imes 10^{-15}$
346	175110.64 - 293140.2	267.79435	-29.52785	0.2	5.3	21.8	8.8	46.2	2.1	0.90	2.3 -	2.7	÷	а	826.4	1.3	$2.2\! imes\!10^{-16}$
347	175110.69 - 293741.9	267.79458	-29.62832	0.2	4.4	22.5	8.2	35.5	0.0	0.90	2.6 -	3.4	: 60	÷	836.4	1.1	$2.0\! imes\!10^{-16}$
348	175110.72 - 293441.1	267.79467	-29.57810	0.2	3.8	14.7	6.4	19.3	7.3	0.90	2.1 -	2.7	÷	c	854.3	2.2	$2.5\! imes\!10^{-16}$
349	175110.73 - 293839.2	267.79472	-29.64424	0.1	5.0	72.8	11.4	45.2	33.4	0.89	6.1 <	-5	: യ	÷	812.2	1.8	$1.1\! imes\!10^{-15}$
350	175110.76 - 294142.1	267.79487	-29.69505	0.2	7.3	100.7	16.4	148.3	41.6	0.90	5.9 <	-5	ł	q	765.1	1.7	$1.5\! imes\!10^{-15}$
351	175110.77 - 294115.5	267.79491	-29.68765	0.3	6.9	41.6	13.5	123.4	0.1	0.90	3.0 -	3.6	: 60	:	7.797	1.3	$5.0\! imes\!10^{-16}$
352	175110.78 - 293947.0	267.79493	-29.66308	0.1	5.8	463.7	23.6	66.3	337.4	0.90	19.3 <	-5	: യ	÷	801.7	3.0	$1.2 { imes} 10^{-14}$
353	175110.82 - 293811.9	267.79509	-29.63665	0.2	4.7	26.7	9.0	43.3	4.1	0.90	2.8 -	3.8	: 60	÷	826.0	1.5	$3.2 imes 10^{-16}$
354	175110.87 - 292928.1	267.79533	-29.49117	0.3	7.0	25.9	9.6	54.1	9.4	0.69	2.6 -	3.1	: :00	÷	788.8	1.3	$3.9 imes 10^{-16}$
355	175110.93 - 294333.1	267.79555	-29.72587	0.3	8.9	72.6	18.4	240.4	0.0	0.90	3.8 $<$	-5	: :: ::	÷	670.2	1.2	$2.2 imes 10^{-15}$
356	175110.93 - 294216.1	267.79557	-29.70448	0.2	7.8	119.8	16.0	115.2	76.1	0.79	7.3 <	-5	: :: ::	÷	730.9	2.8	$1.6\! imes\!10^{-15}$
357	175111.00 - 293130.5	267.79585	-29.52516	0.2	5.4	30.7	9.4	46.3	18.4	0.90	3.1	4.5	÷	а	813.2	2.6	$6.5\! imes\!10^{-16}$
358	175111.01 - 293408.3	267.79590	-29.56899	0.2	3.9	24.9	7.4	22.1	10.3	0.90	3.1 <	-5	÷	а	857.2	1.5	$2.9 imes 10^{-16}$
359	175111.03 - 293118.8	267.79597	-29.52190	0.2	5.5	35.1	9.9	50.9	23.5	0.90	3.4 <	-5	: :	÷	814.0	2.8	$8.1 imes 10^{-16}$
360	175111.04 - 292856.3	267.79604	-29.48231	0.3	7.4	47.0	14.3	138.0	52.1	0.90	3.2 -	4.3	: 60	÷	776.1	4.7	$2.0\! imes\!10^{-15}$
361	175111.07 - 292923.2	267.79616	-29.48979	0.3	7.0	30.0	9.9	57.0	20.9	0.73	2.9 -	3.8	: 60	÷	789.1	2.6	8.4×10^{-16}
362	175111.18 - 293235.6	267.79659	-29.54323	0.2	4.6	21.4	7.7	29.6	13.0	0.90	2.6 -	3.5	ł	в	849.3	3.1	5.1×10^{-16}
363	175111.30 - 293054.0	267.79710	-29.51501	0.2	5.8	28.2	10.0	60.8	13.6	0.90	2.7 -	3.3	ł	q	811.5	1.9	4.4×10^{-16}
364	175111.34 - 293608.6	267.79726	-29.60240	0.2	3.7	11.8	5.6	13.2	4.2	0.90	1.9 -	2.5	:. 60	÷	531.9	1.8	3.3×10^{-16}
365	175111.34 - 293416.3	267.79729	-29.57120	0.1	3.8	47.6	8.7	19.4	26.1	0.90	5.1 <	-5	: 60	÷	852.2	2.3	6.8×10^{-16}
366	175111.39 - 293200.3	267.79747	-29.53343	0.2	4.9	28.4	8.8	38.6	20.5	0.90	3.0	4.5	:. 00	÷	821.3	2.7	6.3×10^{-16}
367	175111.46 - 294016.1	267.79779	-29.67114	0.2	6.0	50.6	11.7	73.4	29.1	0.90	4.1 <	-5	ł	q	802.1	2.8	1.2×10^{-15}
368	175111.47 - 293140.2	267.79782	-29.52785	0.2	5.2	17.7	8.4	43.3	0.0	0.90	2.0 -	2.1	: 60	÷	825.6	1.0	1.4×10^{-16}
369	175111.47 - 294243.9	267.79783	-29.71222	0.3	8.1	42.9	15.5	176.1	27.2	0.90	2.7 -	3.1	: 60	÷	687.4	2.3	$1.0\! imes\!10^{-15}$
370	175111.48 - 293148.7	267.79786	-29.53021	0.1	5.1	89.6	11.9	39.4	61.2	0.90	7.2 <	-5	ł	в	826.3	2.8	$2.0{ imes}10^{-15}$
371	175111.58 - 293532.6	267.79826	-29.59242	0.0	3.6	783.6	28.9	21.4	556.3	0.90	26.7 <	-5 -5	: 60	÷	857.0	2.8	$1.7 { imes} 10^{-14}$
372	175111.59 - 293426.8	267.79832	-29.57411	0.2	3.7	24.0	7.0	17.0	7.7	0.90	3.2 <	-5	: 60	÷	850.1	1.7	3.3×10^{-16}
373	175111.72 - 293613.0	267.79884	-29.60362	0.2	3.6	15.4	5.9	13.6	3.0	0.90	2.4 -	3.6	: 60	÷	605.7	1.4	$1.5 \! imes \! 10^{-16}$
374	175111.72 - 293132.1	267.79887	-29.52560	0.1	5.2	136.7	14.0	44.3	0.0	0.90	9.4 <	-5	: 60	÷	822.3	0.9	$1.6\! imes\!10^{-15}$
(cont.)																	

	Photo $F_{\mathbf{x}}$	$(ergs s^{-1} cm^{-2})$	(18)	5.9×10^{-15}	1.6×10^{-16}	1.3×10^{-14}	1.0×10^{-15}	1.3×10^{-15}	$7.6 imes 10^{-15}$	1.9×10^{-16}	2.3×10^{-16}	7.2×10^{-16}	4.9×10^{-16}	1.4×10^{-14}	$4.0 imes 10^{-16}$	6.0×10^{-16}	1.1×10^{-15}	2.3×10^{-15}	6.6×10^{-16}	$4.3 { imes} 10^{-16}$	1.8×10^{-16}	1.1×10^{-15}	$3.1 imes 10^{-16}$	1.6×10^{-16}	4.1×10^{-16}	1.3×10^{-15}	7.3×10^{-16}	$1.2 imes 10^{-16}$	5.3×10^{-16}	$2.0 imes 10^{-16}$	1.6×10^{-16}	4.2×10^{-16}	1.9×10^{-16}	4.1×10^{-16}	4.8×10^{-16}	$1.7 { imes} 10^{-16}$	2.9×10^{-16}
ristics	$E_{ m mediar}$	(keV)	(17)	3.6	1.0	4.1	2.0	1.4	3.3	1.9	1.8	2.8	1.5	2.7	2.0	1.9	3.0	2.7	2.4	2.6	1.5	3.1	1.3	1.2	1.1	1.6	1.1	1.2	1.3	1.5	1.5	1.3	1.0	2.9	3.1	1.6	1.2
Character	EffExp	(ks)	(16)	856.0	852.3	832.3	832.5	849.4	779.8	856.9	852.0	823.1	789.0	855.1	855.2	851.5	790.4	721.0	814.7	841.3	726.7	766.3	838.5	860.2	846.5	822.3	483.3	816.8	834.5	848.1	844.7	834.5	835.5	779.8	855.0	860.9	852.8
	Var		(15)	÷	а	÷	в	q	i	÷	а	ł	c	÷	ł	q	:	i	i	в	÷	q	÷	а	ပ	q	÷	÷	÷	÷	÷	в	÷	÷	q	q	ł
	Anom		(14)	: :00	i	50 60	÷	÷	50 60	50 60	:	50 60	:	50 60	50 60	÷	: 60	: 60	: 60	÷	50 60	:	50 60	:	÷	ł	5.0	: 60	: 60	5.0	: 60	i	5.0	50 60	÷	÷	50 60
	$P_{\rm B}$.		(13)	< -5	3 -4.3	< -5	~ -5	- 2 - 2	-0 -0) -2.8	-3.4	< -5	-3.5	< -5	< -5	< -5	-4.1	~ -5	-4.7	-2.9	-2.9	,3.3	< -5	6 -4.1	<-5	- - 5	-4.2	-2.3	-5-	-3.6	-2.3	< -5	- - 5	-4.0	-3.1) -2.1	5 -5
	\mathbf{PS}	Frac	(12)	12.9	2.8	18.7	5.0	9.2	12.8	2.0	2.4	3.3	2.0	23.8	3.2	4.7	3.1	5.2	3.2	2.4	2.1	2.7	с. С	2.6	4.5	7.2	с. С.	1.0	5.4	2.4	1.0	4.0	3.2	2	2.4	1.0	3.0
	PSF		(11)	0.90	0.90	0.90	0.90	0.90	0.90	0.89	0.90	0.90	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.87	0.90	0.82	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.89
ounts	$\mathcal{C}_{net,hard}$		(10)	199.2	0.0	370.6	34.1	24.4	200.6	6.8	5.0	20.1	8.2	431.9	13.0	19.8	28.7	57.5	18.6	10.6	4.8	28.7	6.8	4.7	3.9	29.8	0.0	5.0	8.8	6.3	1.5	3.8	0.0	12.5	12.0	4.5	1.6
acted C	$C'_{\rm bkg}$)	(6)	14.6	20.4	23.7	32.4	21.8	116.3	14.1	19.1	39.7	104.2	19.2	20.1	18.2	95.7	159.2	51.0	34.9	14.4	137.5	24.8	15.2	38.3	61.4	119.4	18.4	19.1	17.1	20.8	40.5	18.8	14.9	31.7	26.1	12.8
Extra	$\Delta C_{\rm net}$		(8)	15.4	7.0	21.3	10.4	12.4	20.1	5.7	6.6	9.0	12.6	26.1	7.3	8.3	12.3	16.4	9.8	8.0	5.8	14.0	8.0	6.3	9.8	13.3	13.5	6.1	8.9	6.4	6.4	9.6	7.1	6.2	7.8	6.9	7.1
	$C_{\rm net}$ 2		(2)	205.4	20.6	408.3	64.6	119.2	262.7	12.9	16.9	31.3	37.8	633.8	24.9	41.8	40.3	88.8	33.0	20.1	13.6	39.5	30.2	17.8	46.7	99.6	45.6	12.6	50.9	16.9	13.2	40.5	24.2	17.1	20.3	13.9	30.2
	θ	S	(9)	3.5	3.8	4.2	4.7	3.9	6.8	3.6	3.8	4.6	6.7	3.5	3.5	3.6	6.5	7.7	5.5	5.2	3.5	8.1	4.3	3.4	5.0	5.7	8.4	3.7	3.8	3.6	4.0	4.9	3.8	3.5	4.6	4.0	3.4
	Err	$\tilde{\boldsymbol{\boldsymbol{y}}}$	(5)	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.0	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.4	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1
Position	Decl.	(deg)	(4)	-29.58406	-29.61315	-29.54996	-29.53826	-29.62061	-29.68776	-29.57667	-29.61438	-29.64152	-29.68477	-29.59103	-29.59323	-29.60943	-29.68229	-29.70660	-29.66094	-29.52520	-29.60525	-29.46664	-29.54551	-29.59489	-29.52823	-29.51227	-29.45911	-29.56497	-29.55866	-29.56814	-29.55234	-29.64945	-29.55723	-29.60659	-29.53735	-29.62735	-29.58000
	R.A.	(deg)	(3)	- 60667.79	67.79922 -	67.79940 -	67.79943 -	67.79962 -	67.79962 -	67.79963 -	- 67.0979 -	- 26667.79	- 66667.79	- 71008.79	- 71008.79	67.80054 -	- 07008.70	- 77008.73	- 68008.79	- 26008.79	67.80107 -	67.80135 -	67.80161 -	67.80168 -	67.80187 -	67.80190 -	67.80206 -	67.80215 -	67.80225 -	67.80247 -	67.80268 -	67.80283 -	67.80284 -	67.80284 -	67.80303 -	67.80314 -	67.80319 -
Source	CXOU J		(2)	175111.78 - 293502.6 20	175111.81 - 293647.3 20	$175111.85 - 293259.8 \ 20$	175111.86 - 293217.7 20	$175111.90 - 293714.1 \ 20$	175111.90 - 294115.9 20	175111.91 - 293435.9 20	175111.94 - 293651.7 20	175111.98 - 293829.4 20	175111.99-294105.1 20	175112.04 - 293527.7 20	175112.04 - 293535.6 20	175112.12 - 293633.9 20	175112.16 - 294056.2 20	175112.18 - 294223.7 20	175112.21 - 293939.3 20	175112.22 - 293130.7 20	$175112.25 - 293618.8 \ 20$	175112.32 - 292759.9 20	175112.38-293243.8 20	175112.40 - 293541.6 20	175112.44 - 293141.6 20	175112.45 - 293044.1 20	175112.49 - 292732.7 20	$175112.51 - 293353.8 \ 20$	175112.54 - 293331.1 20	175112.59 - 293405.2	175112.64 - 293308.4 20	175112.67 - 293858.0 20	175112.68 - 293326.0 20	175112.68 - 293623.7 20	175112.72 - 293214.4 20	175112.75 - 293738.4 20	175112.76 - 293447.9 20
	Seq	#	(1)	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408

(cont.)

list
source
Chandra
A.1:
Table

i	Source		Position				Extra	cted Cc	unts				- P	aracteris	stics	
Seq	CXOU J	R.A.	Decl.	Err	θ	Cnet Z	$^{\Delta C_{ m net}}$	$C'_{\rm bkg}$ (net,hard	PSF	PS $P_{\rm B}$	Anom	Var]	EffExp 1	$\mathbf{F}_{\mathbf{median}}$	Photo $F_{\rm x}$
#		(deg)	(deg)	<i>"</i>	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)	(16)	(17)	(18)
409	175112.80 - 294038.5	267.80337	-29.67739	0.2	6.2	52.1	12.2	82.9	23.6	0.90	4.1 < -5	 20	:	793.3	1.9	$8.7 imes 10^{-16}$
410	175112.82 - 293751.4	267.80342	-29.63096	0.1	4.1	37.5	8.8	30.5	17.2	0.89	4.0 < -5	:	а	856.1	1.9	5.4×10^{-16}
411	175112.83 - 293905.8	267.80346	-29.65161	0.2	4.9	21.5	8.4	39.5	14.8	0.90	2.4 - 3.0	:	в	834.0	2.4	$5.1 imes 10^{-16}$
412	175112.83 - 293434.6	267.80347	-29.57629	0.2	3.4	16.6	5.9	12.4	11.3	0.89	2.6 - 4.3	:. 50	÷	850.4	3.0	$3.1\! imes\!10^{-16}$
413	175112.90 - 293645.5	267.80376	-29.61264	0.2	3.5	15.9	6.3	17.1	10.4	0.90	2.3 - 3.3	:	q	862.4	2.5	$3.0 imes 10^{-16}$
414	175112.97 - 293244.1	267.80405	-29.54560	0.2	4.2	28.3	7.7	22.7	23.7	0.90	3.4 < -5	:	а	854.7	3.0	$6.4 { imes} 10^{-16}$
415	175112.98 - 293407.1	267.80412	-29.56864	0.2	3.5	12.0	5.8	16.0	4.3	0.90	1.9 - 2.3	: 20	÷	838.6	1.6	1.5×10^{-16}
416	175113.04 - 293449.5	267.80434	-29.58042	0.2	3.3	15.6	5.8	12.4	7.8	0.89	2.4 - 3.9	ം. മ	÷	843.3	2.3	$2.9 { imes} 10^{-16}$
417	175113.11 - 293440.4	267.80466	-29.57790	0.1	3.3	83.9	10.3	12.1	48.4	0.90	7.7 < -5	: 20	÷	846.2	2.4	1.6×10^{-15}
418	175113.12 - 293503.7	267.80470	-29.58437	0.2	3.2	13.0	5.5	12.0	7.6	0.90	2.1 - 3.1	: 20	÷	847.7	2.3	$2.4 { imes} 10^{-16}$
419	175113.13 - 293351.8	267.80471	-29.56440	0.2	3.6	18.7	6.6	17.3	3.4	0.90	2.6 - 4.1	න ම	÷	813.8	1.4	$2.1 { imes} 10^{-16}$
420	175113.15 - 294224.3	267.80481	-29.70677	0.2	7.7	97.8	16.4	150.2	53.3	0.89	5.8 < -5	: හ	÷	730.3	2.1	$1.9 { imes} 10^{-15}$
421	175113.21 - 292932.1	267.80505	-29.49226	0.2	6.7	61.2	13.4	101.8	43.1	0.90	4.4 < -5	:	q	805.6	2.9	1.4×10^{-15}
422	175113.25 - 293948.6	267.80522	-29.66351	0.2	5.4	53.7	10.9	52.3	7.9	0.90	4.7 < -5	:	q	819.7	1.2	$5.2{ imes}10^{-16}$
423	175113.30 - 293846.1	267.80543	-29.64615	0.1	4.6	58.8	10.5	39.2	39.2	0.90	5.4 < -5	:	а	844.7	2.9	1.3×10^{-15}
424	175113.31 - 294000.4	267.80548	-29.66679	0.2	5.6	16.3	5.8	11.7	7.2	0.52	2.5 - 4.3	:	а	816.7	1.9	4.4×10^{-16}
425	175113.32 - 293610.9	267.80552	-29.60305	0.2	3.2	25.0	6.5	10.0	0.0	0.90	3.6 < -5	50 50	÷	616.5	1.6	4.3×10^{-16}
426	175113.47 - 293635.1	267.80613	-29.60975	0.1	3.4	91.3	10.9	15.7	71.2	0.90	8.0 < -5	:	q	869.8	3.4	2.3×10^{-15}
427	175113.52 - 293959.1	267.80634	-29.66642	0.2	5.6	24.4	6.5	10.6	14.0	0.53	3.5 < -5	:	в	819.9	2.2	7.3×10^{-16}
428	175113.56 - 292944.6	267.80651	-29.49574	0.2	6.5	92.9	14.2	92.1	67.1	0.90	6.3 < -5	:	c	813.4	2.7	$2.0 imes 10^{-15}$
429	175113.56 - 293820.2	267.80653	-29.63897	0.1	4.3	48.1	9.8	36.9	24.1	0.90	4.7 < -5	:	а	855.2	2.0	7.3×10^{-16}
430	175113.58 - 293902.9	267.80659	-29.65082	0.2	4.8	29.6	8.7	36.4	26.9	0.90	3.2 < -5	:	в	841.2	3.9	$6.2\! imes\!10^{-16}$
431	175113.58 - 293456.4	267.80660	-29.58234	0.1	3.2	34.9	7.3	11.1	20.7	0.90	4.4 < -5	:	а	849.0	2.7	1.0×10^{-15}
432	175113.59 - 294251.0	267.80664	-29.71418	0.3	8.0	60.4	16.0	174.6	7.9	0.90	3.6 < -5	:	в	699.4	1.4	8.3×10^{-16}
433	175113.60 - 293202.5	267.80667	-29.53404	0.2	4.6	29.6	8.5	33.4	10.0	0.90	3.3 < -5	: 60	÷	835.1	1.6	3.8×10^{-16}
434	175113.64 - 293527.0	267.80686	-29.59084	0.2	3.1	18.2	5.9	10.8	3.0	0.90	2.8 < -5	න ම	÷	841.9	1.4	$2.0 imes 10^{-16}$
435	175113.68 - 293518.5	267.80700	-29.58850	0.1	3.1	29.7	6.9	10.3	9.4	0.90	4.0 < -5	: :00	÷	851.5	1.4	3.3×10^{-16}
436	175113.69 - 293851.5	267.80707	-29.64766	0.2	4.6	19.8	8.1	37.2	5.8	0.90	2.3 - 2.7	:	c	844.9	1.5	$4.7 imes 10^{-16}$
437	175113.69 - 293549.5	267.80708	-29.59710	0.2	3.2	11.8	5.2	10.2	11.1	0.90	2.0 - 3.0	:. 50	÷	654.5	3.1	1.8×10^{-16}
438	175113.70 - 293110.1	267.80711	-29.51948	0.0	$5.2 \ 4$	325.4	66.6	48.6	3523.3	0.90	64.4 < -5	:	c	826.2	3.4	$1.2\mathrm{e}{-13}$
439	175113.73 - 292823.5	267.80724	-29.47321	0.2	7.7	104.5	16.8	156.5	14.2	0.90	6.0 < -5	:	q	787.4	1.3	1.1×10^{-15}
440	175113.79 - 293101.7	267.80748	-29.51716	0.2	5.3	25.2	9.4	51.8	5.5	0.90	2.5 - 3.1	: 50	÷	824.8	1.1	2.3×10^{-16}
441	175113.84 - 294333.5	267.80769	-29.72598	0.3	8.6	99.7	19.0	233.3	67.0	0.91	5.1 < -5	: 50	÷	683.6	2.8	$2.8 imes 10^{-15}$
442	175113.85 - 293651.5	267.80772	-29.61432	0.2	3.4	22.7	6.7	15.3	4.1	0.90	3.1 < -5	:	в	871.1	1.5	$2.5 imes 10^{-16}$
(cont.)																

	Source		Position				Extrs	Inted Cr	unts						haracter	istics	
Seq	CXOU J	R. A.	Decl. I	Er	θ	C _{net}	$\Delta C_{\rm net}$	$C'_{\rm bke}$ (7net,hard	\mathbf{PSF}	\mathbf{PS}	$P_{\rm B}$	Anom	Var	EffExp	$E_{ m median}$	Photo $F_{\mathbf{x}}$
#		(deg)	(deg) (S			0			Frac				(ks)	(keV)	$(ergs \ s^{-1} \ cm^{-2})$
(1)	(2)	(3)	(4) ((2)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
443	175113.89 - 293447.3	267.80790	-29.57981 (0.0	3.1	268.3	17.2	11.7	203.4	0.89	15.1	$\stackrel{>}{\sim}$:	в	860.2	3.2	6.5×10^{-15}
444	175113.91 - 293514.4	267.80796	-29.58735 (0.1	3.1	86.5	10.4	10.5	25.3	0.90	7.9	$^{-5}$: :00	ł	843.8	1.5	1.0×10^{-15}
445	175113.92 - 292905.1	267.80802	-29.48476 (0.3	7.0	36.7	12.9	113.3	24.4	0.90	2.7	-3.2	÷	а	806.3	2.3	6.8×10^{-16}
446	175113.95 - 293336.5	267.80816	-29.56014 (0.1	3.5	28.5	7.3	16.5	16.1	0.90	3.7	~ -5	:	а	860.6	2.2	$4.7 { imes} 10^{-16}$
447	175113.96 - 293257.7	267.80820	-29.54939 (0.1	3.9	48.9	8.9	21.1	40.5	0.90	5.2	$^{-5}$	÷	а	858.5	3.9	1.4×10^{-15}
448	175113.98 - 293018.0	267.80827	-29.50501 (0.2	5.9	37.4	10.8	66.6	18.1	0.90	3.3	-4.7	÷	а	826.9	2.0	$5.9 { imes} 10^{-16}$
449	175114.00 - 293743.2	267.80836	-29.62869 (0.1	3.8	33.7	8.2	25.3	5.2	0.90	3.8	$^{-5}$	÷	а	864.0	1.3	3.3×10^{-16}
450	175114.01 - 293314.6	267.80839	-29.55408 (0.2	3.7	25.6	7.0	16.4	14.0	0.90	3.4	$\stackrel{>}{\sim}$:	а	863.5	2.3	4.4×10^{-16}
451	175114.10 - 293529.3	267.80879	-29.59149 (0.1	3.0	20.6	6.2	11.4	0.0	0.90	3.1	$\stackrel{>}{\sim}$	i	а	857.0	1.4	$2.2 imes 10^{-16}$
452	175114.14 - 293821.2	267.80893	-29.63922 (0.2	4.2	35.0	8.9	34.0	13.2	0.89	3.7	~ -5	i	q	856.7	1.7	4.5×10^{-16}
453	175114.16 - 293505.6	267.80900	-29.58489 (0.1	3.0	120.2	12.0	10.8	46.6	0.89	9.6	$\stackrel{>}{\sim}$:	q	858.9	1.7	1.6×10^{-15}
454	175114.22 - 293223.9	267.80927	-29.53999 (0.1	4.2	283.3	18.1	24.7	200.6	0.90	15.2	$\stackrel{>}{\sim}$	i	q	840.7	2.8	6.3×10^{-15}
455	175114.24 - 294008.0	267.80935	-29.66891 (0.2	5.6	49.5	11.3	64.5	31.2	0.91	4.2	~ -5	:	q	824.8	2.3	$9.0 imes 10^{-16}$
456	175114.30 - 293711.2	267.80962	-29.61980 (0.1	3.5	37.2	7.8	15.8	33.1	0.90	4.5	~ -5	:	а	870.1	3.0	8.3×10^{-16}
457	175114.44 - 292746.2	267.81018	-29.46286 (0.3	8.2	36.9	15.4	179.1	14.7	0.90	2.3	-2.4	: 60	i	744.2	1.9	$6.5\! imes\!10^{-16}$
458	175114.56 - 293755.8	267.81067	-29.63218 (0.1	3.9	46.3	9.3	29.7	28.5	0.90	4.7	$\stackrel{>}{\sim}$	i	а	863.2	2.5	$8.7 { imes} 10^{-16}$
459	175114.61 - 293512.4	267.81088	-29.58679 (0.1	2.9	33.6	7.2	10.4	9.6	0.89	4.4	~ -5	i	а	861.1	1.5	3.8×10^{-16}
460	175114.64 - 294310.7	267.81103	-29.71966 (0.3	8.2	42.4	16.3	200.6	16.4	0.90	2.5	-2.7	:	а	695.9	1.8	7.6×10^{-16}
461	175114.68 - 293849.9	267.81119	-29.64721 (0.1	4.5	53.1	9.1	20.9	36.6	0.81	5.5	$^{-5}$	÷	ပ	851.6	3.0	1.3×10^{-15}
462	175114.69 - 293200.9	267.81121	-29.53361 (0.2	4.4	35.3	8.4	26.7	22.3	0.90	3.9	$\stackrel{>}{_{-5}}$	50 60	ł	845.0	2.4	6.8×10^{-16}
463	175114.70 - 293549.4	267.81127	-29.59708 (0.1	2.9	22.1	6.0	7.9	16.8	0.90	3.4	~ -5	50 50	÷	620.8	3.6	$8.5\! imes\!10^{-16}$
464	175114.79 - 293006.9	267.81164	-29.50194 (0.1	6.0	229.1	17.9	70.9	20.1	0.90	12.4	~ -5	÷	q	826.5	1.3	2.4×10^{-15}
465	175114.86 - 293634.2	267.81194	-29.60951 (0.1	3.1	36.8	7.6	13.2	21.5	0.90	4.5	~ -5	÷	а	863.1	2.5	6.9×10^{-16}
466	175114.95 - 293314.0	267.81230	-29.55390 (0.1	3.5	103.2	11.4	14.8	63.4	0.89	8.7	~ -5	÷	q	856.1	2.4	1.9×10^{-15}
467	175114.95 - 293631.6	267.81232	-29.60881 (0.1	3.0	21.3	6.3	11.7	9.2	0.89	3.1	$\stackrel{-2}{\sim}$:	а	851.7	1.6	2.6×10^{-16}
468	175114.95 - 293846.6	267.81232	-29.64628 (0.1	4.4	87.5	11.3	27.5	68.0	0.86	7.4	$\stackrel{>}{\sim}$	i	а	853.1	3.2	2.2×10^{-15}
469	175114.96 - 293457.4	267.81237	-29.58263 (0.1	2.9	28.0	6.7	10.0	12.2	0.89	3.9	~ -5	÷	а	857.2	1.9	$4.0 imes 10^{-16}$
470	175115.02 - 293533.4	267.81262	-29.59262 (0.2	2.8	13.3	5.4	10.7	4.1	0.89	2.2	-3.4	:	а	868.0	1.5	1.5×10^{-16}
471	175115.03 - 293908.8	267.81266	-29.65245 (0.2	4.7	22.2	8.2	35.8	0.0	0.90	2.5	-3.3	÷	а	845.3	0.9	1.5×10^{-16}
472	175115.06 - 293121.2	267.81276	-29.52258 (0.1	4.9	109.2	12.7	38.8	47.4	0.90	8.2	~ -5	÷	а	856.1	1.7	1.4×10^{-15}
473	175115.09 - 293355.7	267.81288	-29.56549 (0.1	3.2	140.6	12.9	13.4	95.0	0.89	10.5	~ -5	: 60	÷	821.4	2.9	3.3×10^{-15}
474	175115.20 - 293702.8	267.81336	-29.61746 (0.2	3.2	18.4	6.1	12.6	9.9	0.89	2.8	-4.9	÷	а	851.5	2.0	2.8×10^{-16}
475	175115.20 - 293726.6	267.81337	-29.62407 (0.2	3.4	12.0	5.8	15.0	9.9	0.89	1.9	-2.4	÷	а	856.2	3.0	$2.7 imes 10^{-16}$
476	175115.27 - 292910.0	267.81364	-29.48614 (0.3	6.8	38.0	12.7	107.0	21.4	0.90	2.9	-3.5	50 60	÷	791.1	2.4	8.1×10^{-16}
(cont.)																	

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts					Cha	uracteris	tics	
Seq	CXOU J	R.A.	Decl.	Err	θ	$C_{\rm net} \ge$	$\Delta C_{\rm net}$	$C'_{\rm bkg}$ C	net,hard	PSF	PS F	B And	- mo	ar E	HEXP I	$\tau_{ m median}$	Photo $F_{\rm x}$
#		(deg)	(deg)	$\tilde{\boldsymbol{\boldsymbol{x}}}$	C						Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (1	3) (1 ²	 (1	15)	(16)	(17)	(18)
477	175115.28-293432.3	267.81368	-29.57564	0.2	2.9	10.2	5.1	10.8	4.9	0.89	1.8 - 5	2.4	:	a S	359.3	1.8	1.4×10^{-16}
478	175115.29 - 293822.5	267.81372	-29.63959	0.2	4.1	25.2	8.1	30.8	15.1	0.90	2.9 - 4	I .4	÷	a a	858.8	2.7	$5.1\! imes\!10^{-16}$
479	175115.37 - 293735.7	267.81405	-29.62659	0.2	3.5	21.1	6.8	17.9	22.4	0.89	2.9 - 4	1.8	÷	я д	350.9	3.6	$5.8 imes 10^{-16}$
480	175115.37 - 293927.3	267.81406	-29.65760	0.1	4.9	74.9	11.3	40.1	43.8	0.90	6.3 < -	-5	÷	a S	841.2	2.2	$1.3 { imes} 10^{-15}$
481	175115.39 - 293903.5	267.81413	-29.65098	0.1	4.6	104.5	12.3	34.5	4.4	0.90	8.1 < -	5	÷	я р	846.5	1.1	$8.7 imes 10^{-16}$
482	175115.40 - 293325.1	267.81420	-29.55699	0.2	3.4	14.9	5.8	13.1	6.4	0.90	2.3 -6	3.5	÷	a a	362.7	1.5	$1.7 imes 10^{-16}$
483	175115.42 - 293335.3	267.81426	-29.55983	0.2	3.3	14.1	5.7	12.9	3.4	0.90	2.2 - 5	3.3	:	р р	363.9	1.2	1.3×10^{-16}
484	175115.47 - 293707.6	267.81447	-29.61880	0.1	3.2	25.6	6.7	12.4	3.9	0.89	3.5 < -	-5	÷	ы в	351.2	1.2	$2.3 { imes} 10^{-16}$
485	175115.49 - 293527.4	267.81458	-29.59096	0.1	2.7	15.6	5.5	9.4	1.6	0.89	2.6 - 4	1.6	÷	a a	366.6	1.5	$1.8 { imes} 10^{-16}$
486	175115.66 - 293518.3	267.81529	-29.58844	0.1	2.7	18.5	5.7	8.5	11.0	0.89	2.9 < -	-5	:	и С	363.3	2.3	$3.2 imes 10^{-16}$
487	175115.75 - 293142.6	267.81565	-29.52851	0.2	4.5	20.0	6.2	12.0	12.8	0.69	3.0 < -	-5	:	ы в	360.2	2.9	$5.7{ imes}10^{-16}$
488	175115.79 - 293957.4	267.81581	-29.66595	0.2	5.3	43.6	10.3	51.4	17.7	0.90	4.0 < -	-5	:	р р	333.1	1.8	$6.2\! imes\!10^{-16}$
489	175115.81 - 293802.5	267.81588	-29.63404	0.2	3.7	18.3	7.1	24.7	7.0	0.90	2.4 - 5	3.2	:	ы в	338.5	1.6	$2.3 { imes} 10^{-16}$
490	175115.83 - 293753.0	267.81597	-29.63141	0.1	3.6	31.9	8.1	25.1	18.2	0.90	3.7 < -	-5	÷	а в	844.0	2.5	$6.1\! imes\!10^{-16}$
491	175115.83 - 294216.4	267.81597	-29.70458	0.3	7.4	37.8	14.7	159.2	13.3	0.90	2.5 - 5	2.7	÷	a 1	781.6	1.7	$5.4 { imes} 10^{-16}$
492	175115.87 - 293348.0	267.81615	-29.56335	0.1	3.1	32.7	7.2	11.3	14.7	0.90	4.2 < -	-5- ~~	:	:	343.5	1.9	4.8×10^{-16}
493	175115.90 - 293215.5	267.81629	-29.53765	0.2	4.1	33.9	8.0	22.1	9.3	0.90	4.0 < -	-5	÷	a a	367.4	1.5	$3.8 imes 10^{-16}$
494	175115.92 - 293315.1	267.81635	-29.55420	0.2	3.4	15.6	5.9	13.4	4.0	0.90	2.4 - 5	3.7	:	ы в	877.3	1.5	1.7×10^{-16}
495	175115.94 - 293842.5	267.81643	-29.64516	0.1	4.2	44.8	9.2	29.2	17.4	0.90	4.6 < -	5	÷	ы в	325.5	1.8	6.4×10^{-16}
496	175115.95 - 293144.2	267.81648	-29.52895	0.2	4.5	19.8	5.9	9.2	12.2	0.65	3.1 < -	5-	÷	ы в	854.9	2.4	$5.1\! imes\!10^{-16}$
497	175115.95 - 293151.4	267.81649	-29.53095	0.1	4.4	116.8	12.5	27.2	120.5	0.90	-> 6.8	5	:	ы в	358.8	4.4	$3.9 imes 10^{-15}$
498	175115.99 - 293656.2	267.81665	-29.61561	0.1	3.0	26.2	6.7	11.8	17.4	0.90	3.6 < -	5	÷	ы в	354.5	2.8	$5.5 imes 10^{-16}$
499	175116.02 - 293037.8	267.81679	-29.51050	0.2	5.4	46.2	10.5	51.8	34.8	0.90	4.2 < -	10 10	:	:	825.2	2.5	$9.6 imes 10^{-16}$
500	175116.13 - 293951.0	267.81723	-29.66419	0.2	5.1	21.5	8.8	45.5	20.1	0.89	2.3 - 2.3	2.7	:	х q	337.9	4.1	$2.5 imes 10^{-16}$
501	175116.13 - 293247.8	267.81724	-29.54662	0.2	3.6	24.5	7.0	17.5	6.4	0.90	3.2 < -	5	:	ы в	874.1	1.5	7.4×10^{-16}
502	175116.16 - 293139.1	267.81735	-29.52754	0.2	4.5	32.3	8.4	28.7	18.9	0.90	3.6 < -	-5	:	ы в	349.6	2.4	$6.1\! imes\!10^{-16}$
503	175116.19 - 293512.8	267.81746	-29.58690	0.1	2.6	19.0	5.7	8.0	2.4	0.89	3.0 < -	5-	÷	ы в	869.0	1.1	1.6×10^{-16}
504	175116.21 - 293358.6	267.81758	-29.56629	0.1	2.9	17.8	5.8	10.2	12.5	0.89	2.8 < -	5-	÷	я р	846.7	2.6	$3.6 imes 10^{-16}$
505	175116.31 - 293446.2	267.81797	-29.57953	0.1	2.6	24.3	6.3	8.7	13.4	0.89	3.6 < -	5	÷	я р	881.7	2.2	$4.0 imes 10^{-16}$
506	175116.31 - 293805.7	267.81800	-29.63492	0.2	3.7	24.6	7.5	23.4	0.0	0.90	3.1 < -	5-	÷	ы в	827.1	1.3	$2.5 imes 10^{-16}$
507	175116.36 - 293644.3	267.81817	-29.61231	0.2	2.9	9.9	4.9	9.1	3.4	0.89	1.8 - 2	2.5	:	ы в	355.8	1.6	1.2×10^{-16}
508	175116.40 - 293516.8	267.81834	-29.58801	0.1	2.5	32.5	7.0	9.5	2.6	0.89	4.3 < -	-5	:	ы в	879.9	1.3	3.1×10^{-16}
509	175116.41 - 293846.0	267.81839	-29.64612	0.2	4.2	19.1	7.4	27.9	6.4	0.90	2.4 - 5	3.1	÷	ы в	329.3	1.6	2.4×10^{-16}
510	175116.45 - 294155.5	267.81857	-29.69876	0.3	7.0	33.2	13.7	135.8	11.6	0.90	2.3 -2	2.5	÷	а 1	794.9	1.5	$4.2 imes 10^{-16}$
(cont.)																	

	$_{\rm n}$ Photo $F_{\rm x}$	$(ergs \ s^{-1} \ cm^{-2})$	(18)	3.4×10^{-16}	7.8×10^{-16}	$3.6 imes 10^{-15}$	1.3×10^{-15}	$3.5 imes 10^{-16}$	2.4×10^{-16}	4.9×10^{-16}	1.7×10^{-16}	$1.5 imes 10^{-15}$	$3.7 imes 10^{-16}$	2.3×10^{-16}	1.4×10^{-16}	$2.9 imes 10^{-16}$	8.3×10^{-16}	4.4×10^{-16}	3.2×10^{-16}	2.9×10^{-15}	6.4×10^{-16}	1.8×10^{-15}	$3.7 imes 10^{-16}$	3.4×10^{-16}	1.3×10^{-15}	$9.6e{-17}$	$1.2 imes 10^{-16}$	$3.7 imes 10^{-16}$	$3.6 imes 10^{-15}$	1.2×10^{-15}	1.6×10^{-16}	1.9×10^{-15}	$2.2{ imes}10^{-16}$	2.4×10^{-16}	3.3×10^{-16}	2.8×10^{-16}	9.1×10^{-16}	
ristics	$E_{ m media}$	(keV)	(17)	1.9	1.4	3.0	2.4	1.3	2.1	3.1	1.7	1.5	1.7	2.0	1.8	1.0	2.5	1.7	1.4	2.9	1.9	2.8	2.0	1.1	1.9	1.3	1.4	1.7	3.7	1.6	1.1	2.5	1.4	1.2	1.3	2.3	2.3	
haracte	EffExp	(ks)	(16)	827.2	827.9	809.6	823.4	871.7	824.7	878.0	875.9	818.3	822.0	861.1	813.9	818.9	814.9	806.1	686.9	822.9	840.8	817.5	816.7	823.5	805.7	825.7	862.3	844.9	822.8	782.6	848.4	843.4	488.0	789.3	805.5	868.8	873.5	
0	Var		(15)	в	ပ	÷	ъ	ъ	ъ	ъ	ъ	с	ъ	ъ	÷	ъ	q	q	÷	ъ	÷	ъ	ъ	÷	q	ł	q	÷	÷	c	в	ပ	÷	ł	ъ	ъ	в	
	Anom		(14)	:	:	: 60	:	:	:	÷	:	÷	÷	:	: 20	:	:	:	: 20	:	: 60	:	:	: 60	÷	: 60	÷	: 60	: 60	÷	:	:	: 60	: 60	:	÷	:	
	$P_{ m B}$		(13)	-4.2	$\stackrel{<}{-}$	$\stackrel{>}{\sim}$	$\stackrel{>}{\sim}$	-5.0	-4.7	$\stackrel{>}{\sim}$	-3.9	$\stackrel{>}{\sim}$	-4.2	-4.8	-2.5	$\stackrel{>}{\sim}$	$\stackrel{>}{\sim}$	-3.3	$\stackrel{-2}{\sim}$	$\stackrel{<}{\sim}$	~ -5	$\stackrel{<}{-}$	-2.6	~ -5	$\stackrel{<}{-5}$	-2.4	-2.7	$\stackrel{<}{\sim}$	\sim -5	$\stackrel{>}{\sim}$	-3.2	$\stackrel{>}{\sim}$	-4.2	\sim^{-2}	-3.0	-3.4		
	\mathbf{PS}	Frac	(12)	5.8	6.6	8.9	6.1	2.8	2.9	3.1	2.3	0.0	$^{5.8}_{8}$	2.6	1.8	4.1	4.2	2.7	3.6	9.3	4.4	7.0	2.3	3.5	5.7	1.7	2.0	3.2	8.5	5.3	2.4	8.0	2.2	3.6	2.6	2.4	5.9	
	$^{\rm I}$ PSF		(11)	0.90	0.90	0.90	0.89	0.90	0.86	0.90	0.89	0.90	0.77	0.89	0.89	0.90	0.88	0.90	0.90	0.91	0.90	0.90	0.85	0.90	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.89	0.90	0.90	0.90	
ounts	$C_{\rm net,harc}$		(10)	11.9	19.9	97.8	45.5	1.9	12.1	16.4	3.7	37.9	9.9	6.7	4.8	0.0	27.1	8.9	8.6	91.8	19.2	61.4	11.5	4.2	32.9	0.4	4.6	6.5	111.6	32.1	0.5	60.1	2.2	3.5	9.2	10.1	27.8	
ucted C	$C_{\rm bkg}^{\prime}$	I	(6)	26.4	23.4	63.5	54.7	13.8	22.3	11.5	8.6	38.4	29.1	8.6	9.0	24.2	36.4	77.6	7.5	33.5	26.0	35.5	50.9	47.1	92.0	7.9	12.1	23.9	48.3	157.8	26.8	29.2	5.4	7.5	85.8	16.8	11.4	
Extra	ΔC_{net}		(8)	7.6	10.3	14.7	12.1	6.3	7.3	6.3	5.2	13.3	7.9	5.4	4.9	8.4	9.4	11.1	6.2	13.3	8.7	11.5	9.1	9.7	13.8	4.7	5.4	7.6	13.5	16.4	7.4	11.9	4.7	6.2	11.5	6.3	8.6	
	$C_{\rm net}$		(-2	22.6	71.6	135.5	77.3	19.2	22.7	21.5	13.4	124.6	23.9	15.4	10.0	36.8	41.6	31.4	24.5	128.5	41.0	83.5	22.1	35.9	82.0	9.1	11.9	26.1	119.7	90.2	19.2	98.8	11.6	24.5	31.2	16.2	53.6	
	θ	S	(9)	3.9	3.6	5.8	5.5	3.4	3.8	3.2	2.5	4.8	5.4	2.7	2.6	3.8	4.9	6.1	2.5	4.5	4.4	4.7	5.7	5.2	6.3	2.4	3.0	4.1	5.3	7.3	3.8	3.9	2.4	2.4	6.4	3.6	2.9	
	Err	((2)	0.2	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.2	0.3	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.1	0.3	0.2	0.1	
Position	Decl.	(deg)	(4)	-29.64014	-29.63244	-29.50196	-29.67192	-29.55100	-29.63707	-29.55631	-29.59307	-29.65947	-29.67041	-29.61108	-29.60472	-29.63785	-29.66112	-29.49613	-29.60239	-29.65423	-29.52809	-29.65834	-29.67582	-29.51298	-29.68673	-29.59345	-29.62043	-29.53286	-29.51097	-29.70545	-29.63971	-29.64257	-29.59939	-29.60390	-29.49114	-29.54347	-29.61985	
	R.A.	(deg)	(3)	267.81891	267.81896	267.81903	267.81909	267.81910	267.81910	267.81913	267.81922	267.81928	267.81966	267.81973	267.81980	267.81982	267.82006	267.82048	267.82052	267.82066	267.82072	267.82084	267.82091	267.82107	267.82118	267.82126	267.82136	267.82160	267.82169	267.82170	267.82173	267.82179	267.82200	267.82238	267.82242	267.82242	267.82243	
Source	CXOU J		(2)	175116.53 - 293824.4	175116.55 - 293756.7	175116.56 - 293007.0	175116.58 - 294018.9	175116.58 - 293303.5	175116.58 - 293813.4	175116.59 - 293322.7	175116.61 - 293535.0	175116.62 - 293934.0	175116.71 - 294013.4	175116.73 - 293639.8	175116.75 - 293616.9	175116.75 - 293816.2	175116.81 - 293940.0	175116.91 - 292946.0	175116.92 - 293608.5	175116.95 - 293915.2	175116.97 - 293141.1	175117.00 - 293930.0	175117.01 - 294032.9	175117.05 - 293046.7	175117.08 - 294112.2	175117.10 - 293536.4	175117.12 - 293713.5	175117.18 - 293158.3	175117.20 - 293039.4	175117.20 - 294219.6	175117.21 - 293822.9	175117.22 - 293833.2	175117.28 - 293557.8	175117.37 - 293614.0	175117.38 - 292928.1	175117.38 - 293236.4	175117.38-293711.4	
	Seq	#	(1)	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	(cont.)

list
source
Chandra
A.1:
Table

7	Source		Position	1	<	0	Extra	cted Co	unts		C L	1		Ū ;	naracteri	stics	1
Seq	CXOU J	R.A.	Decl.	Err	θ	Cnet Z	$^{\Delta C_{ m net}}$	$C'_{\rm bkg} C$	net,hard	PSF	\mathbf{Ps}	$P_{\rm B}$ A	nom	Var	EffExp	$E_{ m median}$	Photo $F_{\rm x}$
#		(deg)	(deg)	()	S						Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
545	175117.41 - 293828.6	67.82257	-29.64130	0.2	3.8	17.4	7.3	27.6	9.8	0.90	2.2 -	-2.8	:	q	845.8	2.5	3.3×10^{-16}
546	175117.41 - 294033.6	67.82258	-29.67602	0.2	5.6	51.3	10.8	52.7	37.0	0.87	4.5 <	1.5	:	в	794.3	2.6	$1.1 \! imes \! 10^{-15}$
547	175117.42 - 292811.85	67.82260	-29.46996	0.2	7.6	104.8	16.1	133.2	80.6	0.90	6.3 <	-5	50 60	÷	701.0	3.0	$3.0\! imes\!10^{-15}$
548	175117.43 - 293247.1	67.82265	-29.54643	0.2	3.5	13.7	5.9	15.3	4.7	0.90	2.1 -	-2.9	÷	в	871.6	1.4	1.4×10^{-16}
549	175117.43 - 293323.7 2	67.82266	-29.55659	0.2	3.0	18.4	5.9	10.6	7.0	0.89	2.8	15	:	с	878.7	1.5	$2.0 imes 10^{-16}$
550	175117.45 - 292939.6 2	67.82272	-29.49434	0.2	6.2	72.7	12.9	79.3	34.6	0.90	5.4 <	15	:	ъ	809.0	2.0	1.2×10^{-15}
551	175117.45 - 293936.7 2	67.82273	-29.66022	0.2	4.8	65.3	10.6	35.7	22.6	0.90	5.9	-5	:	ъ	813.7	1.8	9.4×10^{-16}
552	175117.47 - 293007.3 2	67.82281	-29.50205	0.2	5.7	67.3	12.0	61.7	44.9	0.90	5.4 <	-5	: 60	÷	810.3	3.3	$1.9 { imes} 10^{-15}$
553	175117.51 - 293329.9 2	67.82296	-29.55831	0.2	3.0	9.7	5.0	10.3	5.7	0.89	1.7 -	-2.3	:	ъ	880.5	2.6	$1.9 { imes} 10^{-16}$
554	175117.51 - 293438.5	67.82299	-29.57737	0.1	2.4	17.2	5.5	7.8	7.6	0.89	2.8	15	÷	ъ	886.6	1.8	$2.3 imes 10^{-16}$
555	175117.51 - 293822.1 2	67.82300	-29.63948	0.2	3.7	17.9	7.1	25.1	3.7	0.90	2.3 -	-3.1	:	q	843.3	1.6	$2.2 imes 10^{-16}$
556	175117.52 - 293734.7 5	67.82303	-29.62632	0.1	3.1	54.4	9.0	17.6	19.4	0.90	5.7 <	-5	:	ъ	873.2	1.6	6.4×10^{-16}
557	175117.56 - 294139.7	67.82317	-29.69439	0.2	6.7	86.6	15.0	118.4	73.8	0.90	5.6	-5	:	q	794.2	3.7	$1.6 imes 10^{-15}$
558	175117.56 - 292735.0	67.82318	-29.45974	0.2	8.1	371.3	22.9	125.7	200.0	0.90	15.9 <	-5	: 60	÷	538.4	2.2	$1.8 { imes} 10^{-14}$
559	175117.65 - 293621.65	67.82356	-29.60600	0.1	2.4	91.2	10.5	7.8	39.1	0.89	8.3	-5	:	q	874.1	1.8	$1.2 { imes} 10^{-15}$
560	175117.65 - 293130.8 2	67.82358	-29.52522	0.2	4.5	29.4	8.1	26.6	12.1	0.89	3.4 <	-5	: :00	ł	833.2	1.8	4.4×10^{-16}
561	175117.69 - 293444.4	67.82372	-29.57901	0.1	2.3	16.5	5.4	7.5	5.4	0.90	2.8	15	÷	ъ	885.9	1.7	$2.1\! imes\!10^{-16}$
562	175117.70 - 293404.05	67.82375	-29.56779	0.2	2.6	10.4	4.8	7.6	2.3	0.89	1.9 -	-2.9	÷	в	857.2	1.6	1.3×10^{-16}
563	175117.70 - 293726.95	67.82377	-29.62415	0.2	3.0	14.7	5.9	14.3	0.4	0.90	2.3 -	-3.3	÷	в	875.3	1.5	1.6×10^{-16}
564	175117.73 - 293441.1	67.82391	-29.57810	0.1	2.3	34.7	7.0	7.3	9.7	0.90	4.6 <	-5	÷	c	884.0	1.8	$4.6 imes 10^{-16}$
565	175117.74 - 293714.85	67.82393	-29.62079	0.1	2.9	26.1	6.6	10.9	8.1	0.90	3.6 <	-5	÷	в	877.8	1.7	$3.2\! imes\!10^{-16}$
566	175117.80 - 293134.4	67.82418	-29.52625	0.2	4.4	26.4	7.8	25.6	15.8	0.90	3.2 <	-5	: 60	÷	832.3	2.3	$5.0\! imes\!10^{-16}$
567	175117.86 - 294301.6	67.82445	-29.71712	0.3	7.9	69.3	16.5	180.7	25.1	0.89	4.1	-5	ł	q	711.7	1.7	$1.1 \! imes \! 10^{-15}$
568	175117.87 - 293415.65	67.82446	-29.57102	0.1	2.5	17.5	5.5	7.5	5.7	0.90	2.9 <	-5-5	÷	5	889.4	1.5	2.3×10^{-16}
569	175117.87 - 293158.5	67.82449	-29.53294	0.2	4.1	21.4	7.2	22.6	10.8	0.90	2.8	-4.2	: 60	÷	849.3	1.8	$2.5\! imes\!10^{-16}$
570	175117.88 - 293038.5	67.82452	-29.51069	0.2	5.2	55.8	10.7	47.2	38.6	0.90	5.0 <	1.5	: 60	÷	818.9	2.8	1.3×10^{-15}
571	175117.89 - 293946.1	67.82458	-29.66281	0.2	4.9	16.8	8.0	38.2	0.5	0.90	2.0 -	-2.2	÷	ъ	818.9	1.4	$1.9 { imes} 10^{-16}$
572	175117.95 - 293356.45	67.82481	-29.56567	0.1	2.7	14.0	5.2	8.0	2.1	0.89	2.4 -	-4.3	: 60	÷	843.9	1.6	$1.8 { imes} 10^{-16}$
573	175117.98 - 293214.05	67.82493	-29.53722	0.1	3.8	175.9	14.5	18.1	149.4	0.90	11.7 <	15	:	ъ	862.0	3.6	4.8×10^{-15}
574	175117.98-293716.3 2	67.82493	-29.62120	0.2	2.9	12.8	5.4	11.2	2.2	0.90	2.1 -	-3.1	÷	ъ	877.6	1.4	1.3×10^{-16}
575	175118.00 - 293018.0 2	67.82502	-29.50503	0.2	5.5	29.5	9.7	53.5	2.0	0.90	2.9 -	-3.8	÷	ъ	824.7	1.4	$3.2 imes 10^{-16}$
576	175118.03 - 292758.5	67.82516	-29.46626	0.2	7.7	300.6	21.2	123.4	95.1	0.90	13.8 <	-5	: :00	÷	587.6	1.6	$6.1\! imes\!10^{-15}$
577	175118.11 - 293503.9 2	67.82550	-29.58443	0.2	2.2	9.3	4.5	6.7	4.4	0.90	1.8	-2.7	÷	ъ	887.0	2.4	$1.6\! imes\!10^{-16}$
578	175118.14 - 293523.8 2	67.82562	-29.58996	0.1	2.1	22.6	6.0	7.4	8.1	0.90	3.4 <	-5	÷	ъ	880.7	1.4	2.4×10^{-16}
(cont.)																	

	¹ Photo F _x	$(ergs s^{-1} cm^{-2})$	(18)	$5.8 imes 10^{-15}$	$6.8 imes 10^{-16}$	1.6×10^{-16}	$4.7 imes 10^{-16}$	2.1×10^{-16}	1.3×10^{-15}	1.7×10^{-16}	9.9×10^{-16}	$2.7 { imes} 10^{-16}$	$1.1 \! imes \! 10^{-16}$	$1.6\! imes\!10^{-16}$	$5.7 imes 10^{-16}$	2.9×10^{-16}	1.7×10^{-15}	1.2×10^{-15}	1.7×10^{-15}	1.3×10^{-16}	1.4×10^{-16}	$2.0\! imes\!10^{-15}$	$8.7e{-}17$	7.3×10^{-16}	2.4×10^{-16}	$3.6\! imes\!10^{-16}$	$3.6\! imes\!10^{-15}$	1.3×10^{-16}	1.3×10^{-15}	4.3×10^{-16}	4.8×10^{-16}	$2.7 imes 10^{-16}$	$5.7 imes 10^{-16}$	2.4×10^{-16}	$5.9{ imes}10^{-15}$	$8.5 imes 10^{-16}$	1.0×10^{-15}
istics	$E_{ m median}$	(keV)	(17)	2.4	1.3	2.0	1.8	2.0	2.0	1.2	1.3	1.4	1.5	1.8	1.2	1.5	3.2	2.5	3.2	1.5	1.4	2.8	1.3	1.7	2.2	1.2	3.0	1.3	3.0	3.6	2.2	2.0	1.5	1.8	3.2	1.9	1.5
haracter	EffExp	(ks)	(16)	818.5	881.9	888.0	864.1	566.0	870.8	852.6	818.9	805.3	882.4	699.4	510.0	866.6	827.2	835.5	789.7	871.8	887.6	877.1	885.1	809.0	866.9	796.5	818.1	883.3	882.2	872.6	849.7	886.9	886.5	871.8	868.2	876.1	683.7
	Var		(15)	в	U	а	ъ	÷	q	ы	q	а	а	÷	ł	q	÷	q	ы	q	а	а	a	ပ	q	ł	÷	a	ы	ъ	÷	ပ	υ	ъ	ы	а	q
	Anom		(14)	:	:	÷	:	: 60	:	:	:	:	:	50 60	: :00	:	50 60	:	:	:	:	:	:	:	:	: 60	50 60	:	:	:	: 60	:	:	:	:	:	:
	$P_{ m B}$	U) (13)	3 < -5	0 <-5) -3.2	3 < -5	9 -3.1	8 <-5	4 -3.1	2 < -5	2 -2.4	0 - 3.0	9 -3.1	2 -2.3	2 < -5	0 <-5	3 < -5	8 <-5) -2.8	5 -4.7	4 < -5	8 -2.6	7 <-5	2 -3.1	3 -4.9	$\overset{\circ}{-5}$	3 -3.8	4 < -5	5 -4.3	0 <-5	0 <-5	2 < -5	3 <-5	3 < -5	0 <-5	7 <-5
	$_{\rm PS}$	Fra	(12)	15.0	7.0	5.	4.(1.	2.	5°		5.5	5.		2.5	с; С	6.0	<u></u>	4.8	2.(5.	ò	÷	4	5.7	ŝ	9.6	2	$0.^{7}$	2	4.(с. С	5.	ŝ	14.5	6.0	ς. Έ
	¹ PSF		(11)	0.89	0.89	0.90	0.89	0.90	0.89	0.90	0.71	0.90	0.89	0.90	0.85	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.89	0.89	0.89	0.89	0.89	0.89	0.90	0.90
ounts	$C_{\rm net,hard}$		(10)	187.9	13.2	4.4	13.1	4.1	45.0	4.0	9.5	4.4	0.2	3.1	0.0	3.1	52.4	39.7	44.4	4.1	1.6	58.7	0.0	19.8	7.0	3.6	119.4	3.5	36.9	13.2	15.3	9.9	8.7	8.2	187.3	25.0	17.7
acted C	$C'_{\rm bkg}$	I	(6)	38.6	9.8	7.2	7.4	4.9	19.1	25.6	14.6	64.7	7.5	5.5	153.9	22.1	27.6	37.3	94.1	10.6	6.9	17.3	6.9	52.7	14.1	57.3	47.1	10.0	6.5	10.5	7.2	8.2	8.7	7.9	20.3	21.3	249.9
Extra	ΔC_{net}		(8)	19.1	9.5	4.8	7.0	4.3	11.0	7.2	10.1	10.0	4.8	4.4	14.4	7.5	10.1	10.6	13.3	5.2	5.1	11.3	4.5	10.9	5.8	10.2	14.5	5.4	8.6	5.6	6.4	5.7	7.7	5.9	16.9	9.6	18.6
	$C_{\rm net}$		(-)	305.4	70.2	10.8	34.6	9.1	89.9	18.4	76.4	23.3	10.5	9.5	33.1	25.9	63.4	62.7	65.9	11.4	14.1	99.7	9.1	53.3	13.9	35.7	146.9	14.0	58.5	15.5	27.8	18.8	43.3	21.1	248.7	60.7	70.1
	θ	C	(9)	5.0	2.8	2.2	2.7	2.2	3.3	3.8	4.9	5.8	2.3	2.2	9.1	3.5	4.6	4.8	6.3	2.9	2.2	3.0	2.4	5.5	3.2	5.7	5.3	2.6	2.0	2.9	2.6	2.4	2.4	2.7	3.4	3.0	8.8
	Err	$\tilde{\boldsymbol{\boldsymbol{z}}}$	(2)	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3	0.2	0.2	0.4	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.3
Position	Decl.	(deg)	(4)	-29.66579	-29.55902	-29.57952	-29.56347	-29.59666	-29.63153	-29.64230	-29.66463	-29.49914	-29.60676	-29.60185	-29.73910	-29.63695	-29.52156	-29.66213	-29.68976	-29.55597	-29.57921	-29.62575	-29.57023	-29.50426	-29.54768	-29.50180	-29.50755	-29.61740	-29.58762	-29.55483	-29.56394	-29.61159	-29.61262	-29.56095	-29.63650	-29.62771	-29.73471
	R.A.	(deg)	(3)	267.82569 -	267.82578 -	267.82587 -	267.82593 -	267.82593 -	267.82593 -	267.82599 -	267.82608 -	267.82624 -	267.82643 -	267.82652 -	267.82653 -	267.82672 -	267.82675 -	267.82683 -	267.82685 -	267.82706 -	267.82708 -	267.82724 -	267.82729 -	267.82739 -	267.82740 -	267.82748 -	267.82761 -	267.82766	267.82770 -	267.82782 -	267.82784 -	267.82789 -	267.82817 -	267.82819 -	267.82829 -	267.82840 -	267.82841
Source	CXOU J		(2)	175118.16 - 293956.8	175118.18 - 293332.4	175118.20 - 293446.2	175118.22 - 293348.5	175118.22 - 293547.9	175118.22 - 293753.4	175118.23 - 293832.2	175118.25 - 293952.6	175118.29 - 292956.9	175118.34 - 293624.3	175118.36 - 293606.6	175118.36 - 294420.7	175118.41 - 293813.0	175118.42 - 293117.6	175118.43 - 293943.6	175118.44 - 294123.1	175118.49 - 293321.5	175118.49 - 293445.1	175118.53 - 293732.7	175118.54 - 293412.8	175118.57 - 293015.3	175118.57 - 293251.6	175118.59 - 293006.4	175118.62 - 293027.1	175118.63 - 293702.6	175118.64 - 293515.4	175118.67 - 293317.3	175118.68 - 293350.1	175118.69 - 293641.7	175118.76 - 293645.4	175118.76 - 293339.4	175118.78 - 293811.3	175118.81 - 293739.7	175118.81 - 294404.9
	Seq	#	(1)	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	009	601	602	603	604	605	606	209	608	609	610	611	612

161

(cont.)

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts				อ	naracteri	stics	
Seq	CXOU J	R. A.	Decl.	Err	θ	Cnet Z	$\Delta C_{ m net}$	$C'_{\rm bkg}$ C	net,hard	PSF	PS $P_{\rm B}$	Anom	Var	EffExp .	$E_{ m median}$	Photo $F_{\mathbf{x}}$
#		(deg)	(deg)	$\tilde{\boldsymbol{\boldsymbol{z}}}$	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)	(16)	(17)	(18)
613	175118.83 - 293554.7	267.82847	-29.59855	0.2	2.1	9.7	4.3	4.3	4.5	0.90	2.0 - 3.6	: :00	÷	493.2	1.9	2.4×10^{-16}
614	175118.91 - 293733.8	267.82881	-29.62607	0.1	2.9	50.3	8.8	17.7	21.8	0.90	5.4 < -5	ł	а	877.5	1.7	6.3×10^{-16}
615	175118.91 - 293757.8	267.82882	-29.63273	0.2	3.2	13.3	6.2	18.7	3.1	0.89	2.0 - 2.4	:	а	872.2	1.4	1.4×10^{-16}
616	175118.93 - 293547.2	267.82889	-29.59645	0.2	2.0	9.6	4.4	5.4	2.1	0.90	1.9 - 3.2	: 60	ł	551.8	1.3	$1.5\! imes\!10^{-16}$
617	175118.95 - 294105.9	267.82899	-29.68499	0.3	6.0	23.1	10.8	79.9	10.3	0.90	2.0 - 2.1	:	а	805.5	1.7	$3.2 imes 10^{-16}$
618	175119.01 - 294044.7	267.82924	-29.67909	0.2	5.7	29.4	10.4	65.6	5.4	0.90	2.7 - 3.3	:	q	816.0	1.3	$3.1 imes 10^{-16}$
619	175119.04 - 293613.7	267.82934	-29.60381	0.1	2.1	11.1	4.8	6.9	5.5	0.90	2.1 - 3.4	:	q	852.8	2.0	$1.7 { imes} 10^{-16}$
620	175119.06 - 293440.7	267.82944	-29.57799	0.1	2.1	12.5	4.9	6.5	4.8	0.90	2.3 - 4.2	:	а	880.2	1.6	$1.5\! imes\!10^{-16}$
621	175119.09 - 293345.3	267.82957	-29.56260	0.1	2.5	18.7	5.6	7.3	4.5	0.89	3.0 < -5	:	а	872.3	1.2	$1.7 imes 10^{-16}$
622	175119.10 - 292956.3	267.82962	-29.49898	0.2	5.8	78.7	12.1	53.3	40.8	0.90	6.2 < -5	50 60	ł	687.7	2.3	1.9×10^{-15}
623	175119.13 - 293646.0	267.82972	-29.61280	0.1	2.4	33.9	7.0	8.1	10.1	0.89	4.5 < -5	:	а	887.2	1.6	$3.9 imes 10^{-16}$
624	175119.14 - 293457.6	267.82976	-29.58267	0.1	2.0	9.5	4.5	6.5	3.6	0.90	1.9 - 2.8	:	а	891.3	1.7	$1.2\! imes\!10^{-16}$
625	175119.15 - 293551.5	267.82982	-29.59765	0.0	2.0	119.7	11.6	4.3	50.6	0.90	9.8 < -5	50 60	ł	512.9	1.7	$2.5\! imes\!10^{-15}$
626	175119.17 - 293740.7	267.82988	-29.62798	0.0	3.0	365.9	20.2	20.1	255.9	0.90	17.7 < -5	:	q	876.5	3.2	$3.8 imes 10^{-15}$
627	175119.17 - 293543.9	267.82991	-29.59553	0.1	2.0	61.2	8.7	5.8	14.3	0.90	6.6 < -5	: 00	÷	643.5	1.4	1.9×10^{-15}
628	175119.20 - 293411.5	267.83003	-29.56987	0.2	2.3	8.7	4.4	6.3	2.4	0.90	1.7 - 2.6	: :00	ł	860.3	1.6	1.1×10^{-16}
629	175119.21 - 293801.2	267.83005	-29.63368	0.1	3.2	107.2	11.8	18.8	17.4	0.89	8.7 < -5	:	c	871.9	1.4	1.1×10^{-15}
630	175119.23 - 293322.2	267.83015	-29.55617	0.2	2.8	15.2	5.4	8.8	1.9	0.89	2.5 - 4.6	: 60	÷	850.9	1.3	$1.6\! imes\!10^{-16}$
631	175119.23 - 293917.4	267.83015	-29.65485	0.1	4.3	50.8	9.5	29.2	6.6	0.90	5.1 < -5	:	а	850.6	1.3	$5.0\! imes\!10^{-16}$
632	175119.25 - 294246.3	267.83022	-29.71288	0.3	7.5	51.8	15.3	161.2	49.5	0.90	3.3 - 4.4	:	а	704.3	4.0	1.9×10^{-15}
633	175119.31 - 293814.1	267.83047	-29.63725	0.1	3.4	26.0	7.6	23.0	13.4	0.90	3.2 < -5	:	а	869.0	2.0	$2.9 imes 10^{-16}$
634	175119.31 - 293738.4	267.83048	-29.62734	0.1	2.9	44.8	8.5	18.2	14.4	0.87	5.0 < -5	:	С	877.2	1.5	$6.8 imes 10^{-16}$
635	175119.34 - 293238.1	267.83062	-29.54393	0.1	3.3	35.4	7.5	13.6	0.0	0.90	4.4 < -5	: 60	÷	838.5	1.3	3.8×10^{-16}
636	175119.36 - 293317.8	267.83067	-29.55496	0.1	2.8	16.3	5.6	9.7	9.6	0.89	2.6 - 4.8	: 60	÷	859.5	2.4	3.1×10^{-16}
637	175119.38 - 293711.1	267.83079	-29.61976	0.1	2.6	23.9	6.4	10.1	9.6	0.90	3.5 < -5	÷	а	883.1	1.9	3.3×10^{-16}
638	175119.39 - 293624.3	267.83080	-29.60677	0.1	2.1	110.8	11.4	7.2	84.7	0.90	9.3 < -5	ł	q	887.2	3.6	$2.9{ imes}10^{-15}$
639	175119.43 - 293608.4	267.83096	-29.60234	0.1	2.0	19.2	5.5	5.8	4.9	0.90	3.1 < -5	: 60	ł	756.6	1.6	4.2×10^{-16}
640	175119.43 - 293521.3	267.83099	-29.58928	0.1	1.9	11.9	4.8	6.1	7.7	0.90	2.2 - 4.0	÷	а	890.9	2.6	1.4×10^{-16}
641	175119.47 - 293659.4	267.83115	-29.61650	0.0	2.4	349.9	19.5	9.1	274.7	0.89	17.5 < -5	ł	а	885.4	3.5	8.9×10^{-15}
642	175119.49 - 293734.3	267.83121	-29.62621	0.1	2.9	31.3	7.5	17.7	12.8	0.90	3.9 < -5	ł	а	878.4	1.6	$3.7 imes 10^{-16}$
643	175119.51 - 293118.0	267.83131	-29.52168	0.2	4.5	24.8	7.6	25.2	6.2	0.89	3.0 - 4.9	: 60	÷	814.5	1.5	$3.1\! imes\!10^{-16}$
644	175119.51 - 293935.8	267.83132	-29.65996	0.1	4.6	58.3	10.2	34.7	28.4	0.90	5.4 < -5	:	ပ	845.9	1.9	1.1×10^{-15}
645	175119.51 - 293256.6	267.83133	-29.54908	0.2	3.1	14.7	5.5	10.3	11.2	0.90	2.4 - 4.0	: 60	ł	850.4	2.5	$2.2 imes 10^{-16}$
646	175119.52 - 293127.8	267.83137	-29.52439	0.2	4.3	44.9	8.8	23.1	32.9	0.89	4.8 < -5	: :00	:	824.4	3.0	1.1×10^{-15}
(cont.)																

	an Photo $F_{\rm x}$) (ergs $s^{-1} \text{ cm}^{-2}$)	(18)	$2.5 imes 10^{-16}$	1.9×10^{-16}	6.9×10^{-16}	1.8×10^{-16}	6.3×10^{-16}	2.3×10^{-16}	1.1×10^{-15}	$2.7 imes 10^{-16}$	$7.6 imes 10^{-16}$	1.9×10^{-16}	7.1×10^{-16}	$6.0\! imes\!10^{-16}$	$5.6\! imes\!10^{-16}$	1.6×10^{-15}	1.4×10^{-15}	$3.0 imes 10^{-15}$	$8.4 imes 10^{-16}$	1.7×10^{-16}	6.3×10^{-15}	1.9×10^{-16}	$6.1\! imes\!10^{-16}$	1.8×10^{-16}	$2.8 imes 10^{-16}$	1.8×10^{-16}	1.4×10^{-15}	$2.1\! imes\!10^{-16}$	1.8×10^{-16}	1.5×10^{-16}	1.8×10^{-15}	$9.7 imes 10^{-16}$	$6.7 imes 10^{-16}$	1.1×10^{-16}	$2.6 imes 10^{-16}$	$2.6 imes 10^{-15}$	
ristics	$E_{\rm medis}$	(keV)	(17)	1.1	1.1	2.0	1.8	1.3	1.4	2.6	1.8	2.5	1.6	1.4	1.7	2.2	2.6	1.3	2.3	1.4	1.1	4.8	1.0	1.7	1.5	2.0	2.4	2.1	1.8	1.0	1.0	2.7	1.6	5.1	1.6	1.2	2.5	
Characte	· EffExp	(ks)	(16)	837.9	839.4	751.3	855.4	827.4	871.0	843.9	856.6	835.4	881.8	858.2	849.1	822.0	854.8	691.1	876.2	730.2	879.6	705.6	839.6	857.9	622.0	589.5	872.9	852.5	886.9	845.0	874.6	773.7	827.6	879.3	844.8	870.7	793.8	
	Var		(15)	q	ł	i	q	i	ъ	i	:	ł	c	÷	ł	q	÷	C	i	ł	в	а	i	÷	i	i	i	в	ъ	8	÷	ပ	i	ರ	i	а	а	
	Anom		(14)		: :00	50 60	÷	: 60	:	: 60	: 60	: :00	:	50 60	: :00	÷	50 60	÷	: 60	: Ю	÷	÷	: 60	: 60	: 60	6.0	50 60	÷	i	÷	50 60	:	: 60	:	: 60	:	:	
	$P_{\rm B}$.		(13)	-4.7	$\stackrel{<}{\sim}$ -2	~ -5	-3.2	< -5	-4.8	$^{-5}$	<-5	$\stackrel{<}{\sim}$ -2	$^{-5}$	< -5	$\stackrel{<}{\sim}$ -2	-4.3	< -5	~ -5	< -5	~ -5	~ -5	< -5	$^{-5}$	~ -5	-2.8	-2.2	-3.3	< -5	\sim -5	-3.5	< -5	$\stackrel{<}{\sim}$ -2	$^{-5}$	\sim	-2.0	$^{-5}$	$\stackrel{<}{-5}$	
	$_{\mathrm{PS}}$	Frac	(12)	3.1	3.1	4.0	2.4	4.7	2.9	5.8	3.0	4.8	2.7	6.8	5.1	3.1	7.4	6.0	12.0	4.9	2.9	7.4	3.2	5.3	1.8	1.9	2.0	7.6	2.6	2.6	3.2	5.1	7.0	2.9	1.6	3.6	7.3	
	$^{\rm I}$ PSF		(11)	0.90	0.90	0.90	0.89	0.90	0.89	0.90	0.89	0.89	0.90	0.89	0.90	0.90	0.89	0.70	0.90	0.78	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.89	0.89	0.90	0.90	0.90	0.90	0.91	0.89	0.89	0.67	
ounts	7 net,hard		(10)	10.4	0.0	17.9	5.5	9.2	6.8	29.6	8.0	22.8	4.4	14.4	16.6	17.8	50.1	21.8	94.8	18.5	0.0	146.7	0.0	21.6	0.0	7.5	6.8	46.4	4.2	1.3	2.0	45.4	26.8	18.8	3.4	2.8	60.1	
ucted Co	$C'_{\rm bkg}$ (I	(6)	40.4	13.6	31.3	25.5	20.9	19.9	11.1	8.3	6.0	6.5	7.5	14.0	54.0	8.0	106.1	6.2	57.4	15.2	176.2	14.1	11.8	5.4	30.6	5.2	26.2	8.2	37.6	6.1	119.9	15.1	6.4	8.0	20.9	46.7	
Extra	${}^{\rm C_{net}}$		(8)	0.0	6.5	8.9	7.2	8.5	7.0	8.5	5.7	7.1	5.2	9.0	8.2	9.9	9.7	14.7	13.9	11.3	6.5	18.4	6.6	8.1	4.3	7.4	4.4	11.3	5.4	8.4	5.6	14.7	9.9	5.4	4.5	7.6	12.4	
	$C_{\rm net}$ Δ		(2)	29.6	21.4	37.7	18.5	42.1	22.1	51.9	18.7	37.0	15.5	64.5	45.0	32.0	76.0	90.9	172.8	57.6	20.8	139.8	22.9	46.2	8.6	15.4	9.8	89.8	15.8	23.4	19.9	78.1	72.9	17.6	8.0	29.1	94.3	
	θ	S	(9)	4.8	3.4	4.9	4.1	4.1	3.3	3.1	2.5	2.4	1.8	2.6	3.3	5.3	2.7	8.4	1.8	6.9	2.8	7.8	3.4	3.1	1.8	5.2	1.7	4.3	2.3	4.7	1.8	7.2	3.5	1.7	2.6	3.2	6.7	
	Err	<i>…</i>	(5)	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.0	0.2	0.1	0.2	0.2	0.1	0.2	0.3	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.2	
Position	Decl.	(deg)	(4)	-29.66471	-29.54236	-29.51424	-29.65214	-29.52860	-29.63546	-29.54719	-29.56005	-29.56469	-29.58507	-29.55803	-29.54446	-29.67339	-29.55593	-29.72809	-29.58286	-29.47832	-29.62561	-29.71910	-29.53993	-29.54745	-29.60039	-29.50886	-29.58710	-29.65553	-29.61651	-29.66284	-29.58153	-29.47367	-29.53860	-29.58430	-29.55569	-29.63667	-29.69896	
	R.A.	(deg)	(3)	267.83159	267.83162	267.83185	267.83192	267.83193	267.83206	267.83213	267.83219	267.83221	267.83230	267.83249	267.83256	267.83258	267.83298	267.83312	267.83316	267.83341	267.83341	267.83368	267.83378	267.83382	267.83400	267.83402	267.83414	267.83428	267.83439	267.83440	267.83453	267.83457	267.83459	267.83474	267.83477	267.83505	267.83515	
Source	CXOU J		(2)	175119.58 - 293952.9	175119.58 - 293232.4	175119.64 - 293051.2	175119.66 - 293907.6	175119.66 - 293142.9	175119.69 - 293807.6	175119.71 - 293249.8	175119.72 - 293336.1	175119.73 - 293352.8	175119.75 - 293506.2	175119.79 - 293328.8	175119.81 - 293240.0	175119.81 - 294024.1	175119.91 - 293321.3	175119.94 - 294341.1	175119.95 - 293458.2	175120.01 - 292841.9	175120.01 - 293732.2	175120.08 - 294308.7	175120.10 - 293223.7	175120.11 - 293250.8	175120.16 - 293601.4	175120.16 - 293031.9	175120.19 - 293513.5	175120.22 - 293919.9	175120.25 - 293659.4	175120.25 - 293946.2	175120.28 - 293453.5	175120.29 - 292825.2	175120.30 - 293218.9	175120.33 - 293503.4	175120.34 - 293320.4	175120.41 - 293812.0	175120.43 - 294156.2	
	Seq	#	(1)	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	(cont.)

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts					Characte	eristics	
Seq	CXOU J	R.A.	Decl.	Err	θ	$C_{\rm net}$ Z	$\Delta C_{ m net}$	$C_{\rm bkg}^{\prime}$ C	net,hard	PSF	PS $P_{\rm B}$	Anor	n Va	r EffExi	E_{median}	Photo $F_{\rm x}$
#		(deg)	(deg)	<u>()</u>	S						Frac			(ks)	(keV)	$(ergs \ s^{-1} \ cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15) (16)	(17)	(18)
681	175120.43 - 294343.5	267.83515	-29.72875	0.2	8.4	111.1	13.8	62.9	32.6	0.58	7.8 <-	5 :	Э	694.6	1.7	2.8×10^{-15}
682	175120.47 - 293727.7	267.83533	-29.62439	0.1	2.6	80.9	10.2	12.1	15.0	0.90	7.6 <-	5 :	م :	881.2	1.3	7.7×10^{-16}
683	175120.49 - 292942.8	267.83540	-29.49522	0.3	5.9	31.4	10.0	56.6	11.9	0.90	3.0 - 4.	о. ю	:	. 683.0	1.5	$4.6\! imes\!10^{-16}$
684	175120.51 - 293906.7	267.83546	-29.65188	0.2	4.0	17.0	6.9	23.0	12.2	0.90	2.3 -3.	·· 0	с :	856.4	2.7	2.4×10^{-16}
685	175120.51 - 293840.6	267.83548	-29.64462	0.1	3.7	63.6	9.8	22.4	29.4	0.90	6.1 < -	5 :	م :	863.5	1.9	1.3×10^{-15}
686	175120.55 - 293331.7	267.83563	-29.55881	0.1	2.5	91.4	10.5	7.6	68.6	0.89	8.3 <-	5 6	:	. 848.6	2.6	$2.0\! imes\!10^{-15}$
687	175120.61 - 293025.6	267.83589	-29.50713	0.3	5.2	25.4	8.1	30.6	9.8	0.90	3.0 - 4.	4 g.	:	. 597.9	1.7	$5.0\! imes\!10^{-16}$
688	175120.62 - 293358.7	267.83593	-29.56633	0.2	2.2	9.9	4.5	6.1	2.6	0.90	1.9 - 3.	1 	:	. 809.5	1.7	1.8×10^{-16}
689	175120.62 - 293159.6	267.83595	-29.53323	0.1	3.8	45.8	8.4	16.2	22.0	0.90	5.1 < -	ы 2	:	. 754.8	2.1	7.1×10^{-16}
690	175120.63 - 293306.1	267.83598	-29.55170	0.2	2.8	12.7	5.2	9.3	4.1	0.89	2.2 - 3.	ы С	:	. 852.9	1.7	1.7×10^{-16}
691	175120.66 - 293259.7	267.83609	-29.54994	0.1	2.9	27.6	6.6	9.4	8.0	0.90	3.9 < -	ы ы	:	. 844.8	1.4	$3.2 imes 10^{-16}$
692	175120.73 - 293413.6	267.83640	-29.57047	0.2	2.0	7.2	4.2	5.8	2.6	0.90	1.5 - 2.	1 ფ	:	. 842.0	1.1	$6.4e{-}17$
693	175120.74 - 294152.0	267.83643	-29.69780	0.2	6.7	26.6	6.9	14.4	18.0	0.45	3.6 < -	5 :	م :	796.1	2.4	1.1×10^{-15}
694	175120.75 - 292856.0	267.83649	-29.48224	0.3	6.6	49.8	12.8	98.2	22.7	0.90	3.7 < -	5 :	م :	793.5	1.9	$7.7 { imes} 10^{-16}$
695	175120.75 - 293739.2	267.83649	-29.62756	0.1	2.7	108.1	11.7	16.9	47.2	0.90	8.8 <-	5 :	ъ :	879.0	1.9	$1.5\! imes\!10^{-15}$
696	175120.76 - 293319.8	267.83650	-29.55551	0.1	2.6	15.4	5.4	8.6	9.3	0.89	2.6 - 4.	ы х	:	. 861.0	2.6	$3.2 imes 10^{-16}$
697	175120.78 - 293231.7	267.83659	-29.54215	0.1	3.3	21.5	6.5	13.5	5.9	0.90	3.1 < -	ы С	:	. 803.2	1.5	$2.7 imes 10^{-16}$
698	175120.78 - 294106.4	267.83659	-29.68512	0.2	5.9	60.9	12.4	79.1	8.1	0.90	4.7 <	5 :	ъ :	817.2	1.4	1.3×10^{-15}
669	175120.78 - 293516.9	267.83662	-29.58805	0.1	1.6	18.4	5.4	5.6	13.7	0.90	3.1 < -	ы С	:	. 867.1	2.6	$2.0 imes 10^{-16}$
700	175120.80 - 292845.7	267.83669	-29.47936	0.2	6.8	105.2	14.4	85.8	66.2	0.85	7.0 <-	5 :	ں :	798.5	2.4	$2.2 imes 10^{-15}$
701	175120.80 - 293325.3	267.83669	-29.55704	0.1	2.5	15.2	5.3	7.8	6.3	0.89	2.6 - 4.	9 .9	:	. 863.4	1.9	2.3×10^{-16}
702	175120.84 - 293048.3	267.83685	-29.51342	0.3	4.9	15.0	6.5	20.0	4.4	0.86	2.1 - 2.	ы х	:	. 594.2	1.4	$2.6\! imes\!10^{-16}$
703	175120.85 - 294405.7	267.83690	-29.73494	0.2	8.7	160.2	20.6	234.8	130.4	0.90	7.6 <-	5 :	ъ :	669.5	3.1	4.8×10^{-15}
704	175120.89 - 293450.0	267.83705	-29.58057	0.1	1.6	9.3	4.4	5.7	0.0	0.90	1.9 - 3.	0 छ.	:	. 850.5	1.0	$7.7e{-}17$
705	175120.91 - 294248.1	267.83716	-29.71338	0.2	7.5	116.1	17.1	154.9	72.7	0.90	6.6 < -	5 :	ъ :	718.3	2.6	2.8×10^{-15}
706	175120.93 - 293318.0	267.83724	-29.55501	0.1	2.6	37.5	7.3	8.5	19.2	0.89	4.8 <	5 0:	:	. 852.7	2.1	6.3×10^{-16}
707	175120.94 - 293855.1	267.83727	-29.64864	0.2	3.8	23.0	7.3	22.0	8.8	0.90	2.9 - 4.	: %	ю :	860.0	1.7	2.9×10^{-16}
708	175121.09 - 292919.4	267.83789	-29.48872	0.2	6.3	52.1	12.1	79.9	19.1	0.90	4.1 < -	5 :	م :	806.1	1.5	6.3×10^{-16}
209	175121.12 - 293436.6	267.83804	-29.57685	0.1	1.7	26.0	6.2	6.0	14.9	0.90	3.9 < -	ы С	:	. 855.7	2.3	4.8×10^{-16}
710	175121.12 - 293728.1	267.83804	-29.62450	0.2	2.6	9.6	5.0	10.4	2.2	0.89	1.7 - 2.	2	ю :	864.4	1.2	$8.9e{-}17$
711	175121.15 - 293415.2	267.83814	-29.57090	0.1	1.9	10.2	4.5	5.8	0.0	0.90	2.0 - 3.	4 g.	:	. 841.8	1.3	1.1×10^{-16}
712	175121.16 - 293706.6	267.83817	-29.61852	0.1	2.3	13.3	5.1	7.7	5.6	0.89	2.3 - 4.	1	ъ :	871.4	1.6	1.6×10^{-16}
713	175121.19 - 293442.4	267.83833	-29.57846	0.1	1.6	17.6	5.4	6.4	10.9	0.90	2.9 < -	ы ы	:	. 859.6	2.3	$3.2 imes 10^{-16}$
714	175121.20 - 293649.8	267.83837	-29.61384	0.1	2.1	9.8	4.7	7.2	3.6	0.90	1.9 - 2.	8 B.	:	. 868.8	1.8	1.4×10^{-16}
(cont.)																

	an Photo $F_{\rm x}$) (ergs $s^{-1} \text{ cm}^{-2}$)	(18)	8.6×10^{-16}	1.9×10^{-16}	4.4×10^{-16}	1.8×10^{-16}	$2.6 imes 10^{-16}$	2.9×10^{-16}	$2.2 imes 10^{-16}$	3.1×10^{-16}	4.2×10^{-16}	6.0×10^{-16}	8.2×10^{-15}	$9.5 imes 10^{-16}$	2.2×10^{-16}	$4.0 imes 10^{-16}$	1.6×10^{-16}	$2.0 imes 10^{-15}$	1.1×10^{-15}	$4.0 imes 10^{-16}$	3.2×10^{-16}	1.7×10^{-16}	6.2×10^{-15}	1.6×10^{-16}	2.4×10^{-16}	1.4×10^{-16}	5.1×10^{-15}	4.2×10^{-15}	4.6×10^{-16}	2.5×10^{-16}	$2.0 imes 10^{-16}$	$2.7 imes 10^{-16}$	4.8×10^{-16}	4.3×10^{-16}	9.9×10^{-16}	6.0×10^{-15}
eristics	$E_{\rm medis}$	(keV)	(17)	1.5	1.6	1.9	1.7	1.3	2.4	1.5	1.3	1.4	1.8	3.6	1.3	1.3	1.5	1.4	3.2	2.0	1.7	1.8	1.4	3.0	1.6	1.1	1.3	3.2	3.6	1.3	2.0	1.9	1.9	2.0	1.4	2.2	2.6
Characte	· EffExt	(ks)	(16)	798.8	598.6	764.3	867.4	851.4	848.2	854.1	813.0	678.8	824.3	762.6	836.3	841.0	812.1	818.7	484.6	864.3	591.6	860.1	855.9	847.7	861.9	487.3	511.5	683.8	823.0	643.2	725.6	790.4	853.1	841.1	854.4	814.1	846.5
	ı Var		(15)	в	:	:	q	:	:	в	q	:	в	с	р	:	в	:	:	в	:	р	ъ	:	:	:	:	:	q	:	:	:	:	-	с	ъ	:
	Anon		(14)	:	: 60	50 60	÷	: :00	ы 60	÷	÷	: :00	÷	÷	:	ъ0	÷	50 50	ы 60	÷	50 50	÷	÷	50 50	: 60	50 60	60	50 60	÷	50 60	50 60	ы 60	ъ0	: 60	÷	÷	ы 10
	$P_{\rm B}$	0	(13)	× -5	l —4.1	3 -3.7	3 -3.9	7 <-5	3 < -5	6 -3.4	7 -3.3	~ -5	${\sim}$	-5 - 5	$^{-2}_{-2}$	-5	3 -3.4	~ -5	-5	2 − 2 − 2	7 -4.4) -5.0	-2.6	-5 - 5	2 -3.6	-5-5	3 -3.3	- 2 - 2	$\stackrel{<}{\sim}$	1 < -5	3 -3.8	2 -3.8	6 -3.5	- - 5	< -5	< -5	5
	PS	Frac	(12)	4.8	2.]	2.8	2.9	3.	2.6	2.5	2.7	3.0	3.6	12.9	- 7.9	3.0	2.8	5.2	5.6	6.8	2.7	3.0	2.1	14.9	2.2	2.5	1.8	9.5	3.6	4.4	2.0	2.2	5.0	4.2	4.4	4.2	15.4
	I PSF		(11)	0.88	0.90	0.90	0.89	0.90	0.90	0.89	0.89	0.86	0.90	0.90	0.90	0.90	0.89	0.90	0.90	0.89	0.90	0.90	0.90	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
ounts	7 net,hard		(10)	18.4	4.6	11.3	3.1	4.8	8.2	2.8	0.0	8.4	18.5	226.5	18.8	1.2	7.2	3.8	37.6	35.2	7.9	8.2	1.5	189.9	3.2	2.6	2.6	130.9	121.7	5.3	6.4	3.9	6.9	14.6	6.0	29.5	180.6
acted C	$C'_{\rm bkg}$ ()	(6)	105.7	4.4	45.2	8.6	6.1	6.2	25.6	69.0	21.8	68.7	110.4	46.8	6.1	73.3	5.4	3.5	21.5	14.8	22.3	24.9	5.9	9.1	3.4	3.6	109.1	43.2	8.1	8.2	6.9	20.0	4.9	25.3	91.9	20.1
Extr	ΔC_{net}		(8)	13.8	4.4	9.1	5.2	6.1	5.1	7.3	10.6	7.8	11.1	19.9	12.4	5.7	10.9	4.9	7.5	10.3	6.3	7.3	7.0	16.7	5.2	4.9	4.0	17.0	14.3	6.9	5.1	4.9	6.7	6.4	8.7	12.8	18.0
	$C_{\rm net}$,		(2)	68.3	10.6	26.8	13.4	24.9	14.8	19.4	30.0	30.2	42.3	263.6	94.2	20.9	31.7	13.6	45.5	73.5	18.2	23.7	16.1	256.1	12.9	15.6	8.4	160.9	144.8	32.9	12.8	12.1	18.0	29.1	40.7	56.1	284.9
	θ	S	(9)	6.6	1.6	5.4	2.4	1.5	1.7	4.1	6.0	4.8	5.7	7.0	5.1	1.7	6.0	1.9	1.5	3.3	3.8	3.8	4.0	1.4	2.4	1.5	1.4	7.2	5.3	3.0	2.5	2.3	2.8	1.5	4.1	6.1	3.2
	Err	<i>"</i>	(5)	0.2	0.1	0.2	0.1	0.1	0.1	0.2	0.3	0.2	0.2	0.2	0.1	0.1	0.3	0.1	0.1	0.1	0.2	0.2	0.2	0.0	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.0
Position	Decl.	(deg)	(4)	-29.69648	-29.59987	-29.50318	-29.62140	-29.58679	-29.57485	-29.65471	-29.49361	-29.51387	-29.68129	-29.47525	-29.67138	-29.60521	-29.49192	-29.56875	-29.59622	-29.63959	-29.53104	-29.64902	-29.65324	-29.58384	-29.62297	-29.59720	-29.59771	-29.47189	-29.50523	-29.54629	-29.55434	-29.55932	-29.63101	-29.57706	-29.65480	-29.68966	-29.63906
	R.A.	(deg)	(3)	267.83837 -	267.83838 -	267.83858 -	267.83863 -	267.83867 -	267.83875 -	267.83877 -	267.83887 -	267.83887 -	267.83897 -	267.83910 -	267.83918 -	267.83921 -	267.83943 -	267.83955 -	267.83960 -	267.83979 -	267.83999 -	267.84038 -	267.84042 -	267.84059 -	267.84061 -	267.84066 -	267.84083 -	267.84085 -	267.84087 -	267.84087 -	267.84099 -	267.84101 -	267.84114 -	267.84118 -	267.84121 -	267.84132 -	267.84136 -
Source	CXOU J		(2)	175121.20-294147.3	175121.21 - 293559.5	175121.25 - 293011.4	175121.27 - 293717.0	175121.28 - 293512.4	175121.30 - 293429.4	175121.30 - 293916.9	175121.32 - 292937.0	175121.32 - 293049.9	175121.35 - 294052.6	175121.38 - 292830.8	175121.40 - 294016.9	175121.41 - 293618.7	175121.46 - 292930.9	175121.49 - 293407.5	175121.50 - 293546.3	175121.54 - 293822.5	175121.59 - 293151.7	175121.69 - 293856.4	175121.70 - 293911.6	175121.74 - 293501.8	175121.74 - 293722.6	175121.75 - 293549.9	175121.79 - 293551.7	175121.80 - 292818.8	175121.80 - 293018.8	175121.80 - 293246.6	175121.83 - 293315.6	175121.84 - 293333.5	175121.87 - 293751.6	175121.88 - 293437.4	175121.89 - 293917.2	175121.91 - 294122.7	175121.92-293820.6
	Seq	#	(1)	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748 (cont.)

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts		1		Character	istics	
Seq	CXOU J	R.A.	Decl.	Err	θ	$C_{\rm net} \ge$	$C_{\rm net}$	$C_{\rm bkg}^{\prime}$ C	net,hard	PSF	PS $P_{\rm B}$	Anom Var	EffExp	$E_{ m median}$	Photo $F_{\rm x}$
#		(deg)	(deg)		S					-	Trac		(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11) ((12) (13)	(14) (15)	(16)	(17)	(18)
749	175121.95 - 293834.6	367.84147	-29.64295	0.1	3.4	28.8	7.5	19.2	5.3	0.89	3.6 < -5	 	844.7	1.2	$5.7 imes 10^{-16}$
750	175121.95 - 293351.25	367.84150	-29.56423	0.1	2.1	10.0	4.7	7.0	5.6	0.90	1.9 - 2.9	 20	794.0	2.4	$1.0 imes 10^{-16}$
751	175121.96 - 293707.7 2	367.84151	-29.61883	0.1	2.2	19.1	5.6	6.9	13.8	0.90	3.1 < -5	 Ю	829.4	2.4	$4.0 imes 10^{-16}$
752	175121.96 - 293712.0 2	367.84152	-29.62001	0.1	2.2	13.5	5.1	7.5	0.5	0.89	2.4 - 4.2	 	830.8	1.2	1.4×10^{-16}
753	175122.02 - 293530.7 5	367.84177	-29.59188	0.1	1.4	8.4	4.1	4.6	0.6	0.90	1.8 - 2.9	 00	716.9	1.2	$9.8e{-}17$
754	175122.05 - 293817.1	367.84188	-29.63811	0.1	3.2	26.8	7.2	17.2	9.5	0.88	3.5 < -5	:. :00	845.6	1.5	3.3×10^{-16}
755	175122.07 - 293413.6	367.84197	-29.57045	0.2	1.8	7.7	4.1	5.3	5.2	0.90	1.6 - 2.4	 Ю	788.7	2.2	$1.5 \! imes \! 10^{-16}$
756	175122.08 - 293344.2	367.84202	-29.56230	0.2	2.1	9.4	4.5	6.6	1.6	0.90	1.8 - 2.8	 20	746.0	1.1	$9.7e{-}17$
757	175122.08 - 293735.9 2	367.84204	-29.62665	0.2	2.6	10.1	5.2	11.9	2.3	0.90	1.7 - 2.2	:. :00	848.5	1.2	$9.9e{-}17$
758	175122.09 - 293943.0	367.84208	-29.66197	0.2	4.5	22.3	7.9	30.7	10.7	0.90	2.7 - 3.7	е 	847.0	2.0	3.4×10^{-16}
759	175122.10 - 293454.2 5	367.84212	-29.58173	0.1	1.4	13.0	4.9	6.0	8.0	0.90	2.4 - 4.6	g	847.6	2.3	$2.5\! imes\!10^{-16}$
760	175122.10 - 293539.1 2	367.84212	-29.59420	0.1	1.4	11.3	4.4	3.7	3.5	0.90	2.3 - 4.9	:. :. :00	588.2	1.4	1.9×10^{-16}
761	175122.11 - 293739.6	367.84215	-29.62769	0.1	2.6	20.1	6.4	13.9	8.2	0.90	2.9 < -5	 50	849.7	1.7	$2.8 { imes} 10^{-16}$
762	175122.12 - 294146.8 5	367.84218	-29.69636	0.2	6.5	41.0	13.0	111.0	8.7	0.89	3.0 - 3.8	a	805.6	1.8	$6.0\! imes\!10^{-16}$
763	175122.16 - 293457.6	367.84237	-29.58268	0.1	1.4	18.4	5.4	5.6	6.2	0.90	3.1 < -5	 20	852.0	1.6	2.4×10^{-16}
764	175122.18 - 293819.4 2	367.84243	-29.63874	0.1	3.2	48.8	8.7	17.2	2.6	0.88	5.3 < -5	:. :00	849.3	1.3	$5.2 imes 10^{-16}$
765	175122.19 - 293617.05	367.84247	-29.60474	0.1	1.6	22.5	5.8	5.5	8.0	0.90	3.5 < -5	 Ю	827.5	1.8	$3.2 imes 10^{-16}$
766	175122.19 - 293427.8	367.84248	-29.57441	0.1	1.6	18.4	5.4	5.6	6.4	0.90	3.1 < -5	:. :. 00	820.8	1.7	$2.7 imes 10^{-16}$
767	175122.23 - 293334.6	367.84266	-29.55962	0.2	2.2	7.2	4.2	5.8	1.2	0.90	1.5 - 2.1	 	686.3	1.4	1.1×10^{-16}
768	175122.32 - 293244.05	367.84304	-29.54558	0.1	2.9	21.9	6.0	8.1	7.5	0.90	3.3 < -5	:. :.0	611.3	1.7	4.1×10^{-16}
769	175122.33 - 293609.4	367.84307	-29.60264	0.1	1.5	35.6	6.9	5.4	22.3	0.90	4.8 < -5	 50	785.9	3.6	$3.9 imes 10^{-16}$
770	175122.33 - 293429.3	367.84308	-29.57483	0.1	1.5	13.6	4.9	5.4	1.5	0.90	2.5 < -5	 00	802.7	1.2	4.2×10^{-16}
771	175122.37 - 293601.7 5	367.84322	-29.60049	0.1	1.4	45.6	7.7	5.4	18.2	0.90	5.6 < -5	ы Со Со	693.1	1.8	7.8×10^{-16}
772	175122.40 - 293744.2	267.84336	-29.62895	0.1	2.6	33.4	7.5	14.6	5.6	0.90	4.2 < -5	: :.00	818.0	1.3	3.9×10^{-16}
773	175122.49 - 293333.2 5	367.84371	-29.55923	0.2	2.2	11.4	4.7	5.6	6.2	0.90	2.2 - 4.0	 	644.8	2.0	2.4×10^{-16}
774	175122.51 - 293425.2 5	267.84382	-29.57368	0.1	1.6	14.4	5.0	5.6	2.2	0.90	2.6 < -5	 ස	781.3	1.5	1.8×10^{-16}
775	175122.52 - 292757.6	367.84385	-29.46600	0.3	7.5	70.0	14.4	118.0	45.2	0.90	4.7 < -5	 	629.0	3.1	2.4×10^{-15}
776	175122.52 - 293405.3	367.84386	-29.56816	0.1	1.9	12.9	4.8	5.1	0.4	0.90	2.4 < -5	 	682.6	1.0	1.3×10^{-16}
777	175122.54 - 294116.0	367.84395	-29.68779	0.2	6.0	58.4	12.6	85.6	7.5	0.90	4.4 < -5	ы 	816.8	1.1	5.1×10^{-16}
778	175122.55 - 293536.9	367.84396	-29.59360	0.1	1.3	8.4	4.0	3.6	2.6	0.90	1.8 - 3.3	:. :.0	615.1	1.3	1.2×10^{-16}
779	175122.56 - 293019.1	367.84401	-29.50531	0.2	5.2	33.8	9.1	39.2	29.7	0.90	3.5 < -5	:. :. 00	738.8	3.1	9.3×10^{-16}
780	175122.60 - 293429.2 5	367.84417	-29.57480	0.0	1.5	87.5	10.2	5.5	63.4	0.90	8.2 < -5	 	775.4	2.9	$2.2 imes 10^{-15}$
781	175122.64 - 293516.65	367.84436	-29.58796	0.1	1.2	10.4	4.1	2.6	7.0	0.79	2.2 < -5	:. :.0	862.2	2.6	2.4×10^{-16}
782	175122.64 - 294254.85	367.84437	-29.71524	0.2	7.5	163.4	18.7	160.6	124.0	0.90	8.5 < -5	ч. Э	723.0	3.1	$4.6 imes 10^{-15}$
(cont.)															

	Photo $F_{\mathbf{x}}$	$(ergs s^{-1} cm^{-2})$	(18)	1.1×10^{-16}	$1.0 imes 10^{-16}$	$9.0 imes 10^{-16}$	$7.8 imes 10^{-16}$	$6.8 imes 10^{-16}$	$7.5 imes 10^{-15}$	$2.8 { imes} 10^{-16}$	$2.7 imes 10^{-15}$	$2.2 imes 10^{-16}$	$5.9 imes 10^{-16}$	2.4×10^{-16}	1.2×10^{-16}	$3.6 imes 10^{-16}$	$2.7 imes 10^{-16}$	$3.1 imes 10^{-16}$	$1.7 imes 10^{-15}$	1.7×10^{-15}	1.9×10^{-15}	$8.2e{-}17$	1.9×10^{-16}	4.8×10^{-16}	$3.3 imes 10^{-16}$	$2.5 imes 10^{-16}$	1.8×10^{-16}	$3.6 imes 10^{-16}$	6.6×10^{-16}	4.3×10^{-16}	$7.6e{-}17$	$2.6 imes 10^{-16}$	$7.7 imes 10^{-16}$	9.4×10^{-16}	$7.9 { imes} 10^{-16}$	$1.2 imes 10^{-16}$	1.5×10^{-15}
ristics	$E_{ m median}$	(keV)	(17)	1.4	1.1	4.5	1.6	2.0	3.7	1.8	2.6	1.1	1.3	1.4	1.2	1.5	2.9	3.0	2.4	3.3	1.4	1.2	1.8	1.7	1.2	1.3	1.8	1.7	2.2	2.9	1.1	1.5	1.9	2.3	1.2	1.5	2.8
haracter	EffExp	(ks)	(16)	618.4	700.2	844.5	829.4	677.0	756.6	837.0	632.0	779.9	808.1	825.5	821.3	833.0	593.7	836.1	753.9	816.5	714.1	829.5	796.6	779.2	715.1	672.7	833.3	733.5	825.7	608.7	720.3	815.2	727.1	701.6	804.6	599.7	832.3
0	Var		(15)	÷	ł	ł	q	÷	ł	ł	ł	ł	ł	ರ	÷	ł	÷	÷	ł	ł	q	÷	ł	ъ	÷	÷	÷	ł	ł	÷	÷	÷	÷	÷	q	÷	÷
	Anom		(14)	50 50	50 60	50 60	:	50 60	50 60	: 60	50 60	50 60	50 60	-	: 60	50 60	50 60	50 60	50 60	50 60	:	: 60	50 60	:	50 60	5.0	5.0	50 60	: 60	5.0	: 60	: 60	50	: 60	i	50 60	ы 60
	$P_{\rm B}$	J) (13)	5 - 2.2	0 - 3.3	8 < -5	4 < -5	4 < -5	9 < -5	1 < -5	5 < -5	2 < -5	1 < -5	4 - 2.9	2 -3.8	6 < -5	8 -3.0	2 - 3.3	4 < -5	9 < -5	6 < -5	6 - 2.1	2 - 3.7	3 - 4.5	3 < -5	5 -3.3	9 - 2.4	4 < -5	2 < -5	4 - 4.9	6 - 2.3	4 - 3.0	3 -4.2	8 -3.4	8 <-5	5 - 2.1	9 < -5
	S L S	Fra	(12)	9 1.	.2	7 3.) 5.	.3.) 13.	г 	0.) 6.	2.) 2.) 1.	9 2.		5.	.7	9 1.	L 2.) 3.	2.	0	с. С	.4.	.2.	.1.	2.		2.	5.) 1.	.9
	I PSI		(11)	0.8	0.9(0.8	0.85	0.9(0.9(0.9	0.9(0.9(0.9(0.85	0.9(0.9(0.9(0.85	0.9(0.9(0.9(0.85	0.9	0.9(0.9(0.85	0.9(0.9(0.9(0.9(0.9(0.9(0.9(0.9	0.9(0.9(0.9(
ounts	$C_{\rm net,harc}$		(10)	2.3	0.3	22.2	20.0	16.6	181.3	5.9	62.8	6.5	5.1	8.1	1.7	7.1	4.9	8.4	53.9	55.2	38.1	1.5	4.5	15.4	2.5	2.7	1.0	2.6	18.4	8.4	0.0	7.7	20.1	22.1	12.8	0.0	46.9
acted C	$C'_{ m bkg}$)	(6)	5.7	5.2	4.5	43.9	44.1	5.2	6.7	81.2	16.0	4.9	39.7	7.0	17.6	4.5	9.5	20.2	29.0	188.9	7.9	7.1	133.3	4.8	25.7	15.7	10.3	21.0	5.2	4.8	33.0	115.1	160.2	80.5	5.2	6.4
Extr	$\Delta C_{\rm net}$		(8)	4.2	4.4	5.9	10.8	9.4	15.7	5.6	13.8	6.9	8.1	8.4	4.9	7.3	4.1	5.2	10.7	10.1	19.0	4.5	4.9	14.1	5.5	7.3	5.8	6.4	8.1	4.8	4.0	7.9	13.3	15.0	13.3	4.0	9.0
	$C_{\rm net}$ 2		(2)	7.3	9.8	24.5	61.1	33.9	224.8	19.3	93.8	24.0	53.1	21.3	12.0	28.4	8.5	12.5	82.8	63.0	148.1	8.1	11.9	47.7	20.2	19.3	12.3	23.7	36.0	12.8	7.2	20.0	44.9	43.8	80.5	6.8	65.6
	θ	S	(9)	2.3	1.7	1.2	5.0	5.4	1.4	2.0	6.6	3.5	1.2	4.9	1.8	3.5	1.8	2.5	4.0	4.4	7.9	2.3	2.0	6.9	1.1	4.7	2.6	2.9	2.9	2.0	1.2	4.6	7.2	8.0	5.9	1.8	1.7
	Err	<i>"</i>	(2)	0.2	0.1	0.1	0.2	0.2	0.0	0.1	0.2	0.2	0.1	0.2	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.3	0.2	0.2	0.1
Position	Decl.	(deg)	(4)	-29.55813	-29.57134	-29.58826	-29.67192	-29.50075	-29.57677	-29.61788	-29.48014	-29.53405	-29.58738	-29.66947	-29.61286	-29.64617	-29.56790	-29.62666	-29.52433	-29.66199	-29.7239	-29.62323	-29.61826	-29.70406	-29.59067	-29.51320	-29.63033	-29.54513	-29.63548	-29.56187	-29.60103	-29.66505	-29.47154	-29.45751	-29.68730	-29.56578	-29.61284
	R.A.	(deg)	(3)	267.84444	267.84455	267.84461	267.84467	267.84484	267.84484	267.84495	267.84513	267.84522	267.84522	267.84555	267.84560	267.84583	267.84605	267.84609	267.84615	267.84621	267.84630	267.84643	267.84651	267.84655	267.84656	267.84665	267.84680	267.84685	267.84685	267.84696	267.84713	267.84721	267.84733	267.84735	267.84741	267.84756	267.84766
Source	CXOU J		(2)	175122.66 - 293329.2	175122.69 - 293416.8 2	175122.70 - 293517.7 5	175122.72 - 294018.85	175122.76 - 293002.6 5	175122.76 - 293436.3	175122.78 - 293704.3 2	175122.83 - 292848.5	175122.85 - 293202.5	175122.85 - 293514.5	175122.93 - 294010.1	175122.94 - 293646.3	175122.99 - 293846.2	175123.05 - 293404.4	175123.06 - 293735.9	175123.07 - 293127.5	175123.09 - 293943.1 2	175123.11 - 294320.6 2	175123.14 - 293723.65	175123.16 - 293705.7 5	175123.17 - 294214.6	175123.17 - 293526.4 2	175123.19 - 293047.5	175123.23 - 293749.2	175123.24 - 293242.45	175123.24 - 293807.7 5	175123.27 - 293342.7 5	175123.31 - 293603.7 2	175123.33 - 293954.1	175123.35 - 292817.5	175123.36 - 292727.05	175123.37 - 294114.2	175123.41 - 293356.8 2	175123.43 - 293646.2
	Seq	#	(1)	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816

(cont.)

list
source
Chandra
A.1:
Table

	Source		Position			1	Extra	cted Cc	unts					Ch	aracteri	stics	
Seq	CXOU J	R.A.	Decl.	Err	θ	$C_{\rm net}$ Z	$\Delta C_{ m net}$	$C'_{\rm bkg}$ (net,hard	PSF	PS I	B A1	non	Var I	EffExp	$E_{ m median}$	Photo $F_{\mathbf{x}}$
#		(deg)	(deg)	()	S						Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (1	3) (5	(4)	(15)	(16)	(17)	(18)
817	175123.44 - 293254.8	267.84768	-29.54857	0.1	2.6	61.1	9.0	9.9	4.2	0.90	6.4 <	-5	: :00	:	726.4	1.0	$5.6\! imes\!10^{-16}$
818	175123.46 - 293442.5	267.84778	-29.57849	0.1	1.3	14.0	4.8	4.0	3.8	0.90	2.6 <	-5	: :00	:	652.0	1.7	2.4×10^{-16}
819	175123.47 - 293222.7	267.84780	-29.53966	0.2	3.1	18.6	6.1	12.4	4.6	0.90	2.8 <	-5	: 50	÷	768.1	1.5	2.4×10^{-16}
820	175123.50 - 293900.8	267.84792	-29.65025	0.2	3.7	16.6	6.5	18.4	2.3	0.90	2.4 -	3.3	: :00	÷	780.9	1.1	1.8×10^{-16}
821	175123.57 - 293741.5	267.84821	-29.62821	0.1	2.5	21.0	6.2	11.0	1.4	0.89	3.1 <	-5	: :00	÷	803.2	1.4	$2.6\! imes\!10^{-16}$
822	175123.58 - 293421.3	267.84825	-29.57260	0.1	1.5	8.4	4.1	4.6	5.5	0.90	1.8	2.9	: :00	÷	635.3	3.1	$2.7 imes 10^{-16}$
823	175123.59 - 293623.8	267.84830	-29.60662	0.1	1.4	16.1	5.3	6.9	1.5	0.90	2.7 <	-5	: 50	÷	801.8	1.5	$2.1 { imes} 10^{-16}$
824	175123.59 - 293755.5	267.84833	-29.63209	0.0	2.7	291.0	18.0	16.0	211.2	0.90	15.7 <	-5	: 60	÷	806.0	3.0	7.7×10^{-15}
825	175123.62 - 293232.3	267.84842	-29.54233	0.2	3.0	19.3	6.0	10.7	11.0	0.90	2.9 <	-5	: :00	÷	748.5	2.2	$3.8 imes 10^{-16}$
826	175123.65 - 293458.4	267.84856	-29.58291	0.1	1.1	12.1	4.5	3.9	1.7	0.90	2.4 <	-5	: 50	÷	658.0	1.3	1.6×10^{-16}
827	175123.69 - 293036.2	267.84873	-29.51008	0.2	4.8	47.9	9.2	27.1	0.9	0.90	4.9 <	-5	: 60	÷	659.5	0.9	4.3×10^{-16}
828	175123.70 - 293514.5	267.84878	-29.58739	0.1	1.0	8.7	4.1	4.3	3.4	0.90	1.8 - 1.8	3.1	: :00	÷	712.4	1.9	1.5×10^{-16}
829	175123.72 - 293521.4	267.84885	-29.58930	0.1	1.0	9.0	4.3	5.0	2.3	0.90	1.9 -	3.1	: 50	÷	691.8	1.8	1.6×10^{-16}
830	175123.75 - 293606.5	267.84897	-29.60182	0.1	1.2	13.3	4.9	5.7	5.2	0.90	2.4 -	4.9	: 60	÷	736.8	1.8	$2.2\! imes\!10^{-16}$
831	175123.76 - 293705.2	267.84903	-29.61812	0.1	1.9	18.3	5.5	6.7	8.9	0.91	3.0 <	-5	: 00	÷	820.5	2.0	$3.0 imes 10^{-16}$
832	175123.77 - 294019.0	267.84907	-29.67196	0.2	5.0	16.3	7.3	28.7	5.8	0.79	2.1 -	2.5	: :00	÷	807.0	1.7	$2.7 imes 10^{-16}$
833	175123.79 - 293308.0	267.84913	-29.55224	0.1	2.4	16.8	5.3	6.2	6.3	0.89	2.9 <	-5	: 60	:	722.2	1.7	$2.6\! imes\!10^{-16}$
834	175123.79 - 293926.7	267.84914	-29.65744	0.2	4.1	46.1	8.9	22.9	10.5	0.90	4.9 <	-5	: 60	:	788.8	1.6	$6.6\! imes\!10^{-16}$
835	175123.82 - 293602.6	267.84929	-29.60074	0.1	1.2	11.1	4.4	3.9	4.0	0.90	2.2	4.7	: :00	÷	656.8	1.6	1.8×10^{-16}
836	175123.83 - 293844.0	267.84931	-29.64556	0.1	3.5	192.3	15.0	17.7	115.4	0.89	12.4 <	-5	: 60	:	806.0	2.5	4.1×10^{-15}
837	175123.84 - 292916.8	267.84934	-29.48803	0.2	6.2	163.4	15.9	70.6	21.2	0.90	10.0 <	-5	: :00	÷	752.9	1.4	$2.0\! imes\!10^{-15}$
838	175123.84 - 293530.7	267.84934	-29.59188	0.1	1.0	7.5	4.0	4.5	1.4	0.90	1.6 -	2.5	: :00	÷	632.9	1.3	$3.0\! imes\!10^{-16}$
839	175123.84 - 293202.0	267.84936	-29.53392	0.1	3.3	14.7	4.5	1.3	12.5	0.45	2.9 <	-5	÷	в	529.5	3.7	$4.7 imes 10^{-16}$
840	175123.89 - 293807.1	267.84958	-29.63533	0.1	2.9	25.2	7.3	20.8	5.8	0.90	3.2 <	-5	: 60	÷	807.4	1.3	$2.8 imes 10^{-16}$
841	175123.91 - 293631.1	267.84963	-29.60866	0.1	1.5	31.6	6.7	6.4	1.0	0.90	4.4 <	-5	: 60	÷	785.4	1.1	$3.0{ imes}10^{-16}$
842	175123.94 - 293202.6	267.84979	-29.53407	0.2	3.3	6.5	3.4	1.5	4.4	0.45	1.7 - 1.7	3.7	÷	q	528.5	3.2	$5.1\! imes\!10^{-16}$
843	175123.96 - 293959.8	267.84984	-29.66663	0.2	4.7	23.9	8.3	35.1	0.0	0.90	2.7 - 2.2	3.7	: 60	÷	799.1	1.0	$2.1\! imes\!10^{-16}$
844	175124.02 - 293526.6	267.85011	-29.59073	0.1	1.0	13.1	4.7	3.9	6.6	0.90	2.5 <	-5	: 60	:	608.3	2.7	3.9×10^{-16}
845	175124.04 - 293216.9	267.85018	-29.53805	0.2	3.2	12.4	5.3	10.6	4.1	0.90	2.1 - 2.1	3.1	: :00	÷	664.6	1.5	1.8×10^{-16}
846	175124.05 - 292852.9	267.85024	-29.48136	0.2	6.6	131.3	15.5	89.7	90.6	0.90	8.2 <	-5	ł	ъ	792.9	2.8	$3.0 imes 10^{-15}$
847	175124.06 - 293648.8	267.85028	-29.61356	0.1	1.7	22.2	5.8	5.8	0.8	0.90	3.5 <	-5	: 60	÷	774.9	1.2	3.1×10^{-16}
848	175124.06 - 293158.7	267.85029	-29.53299	0.2	3.4	12.9	5.7	13.1	4.5	0.90	2.1	2.9	: :00	÷	655.4	1.6	1.6×10^{-16}
849	175124.06 - 294015.0	267.85029	-29.67085	0.2	4.9	39.9	8.9	30.1	6.6	0.81	4.2 <	-5	: 50	÷	792.7	1.3	$5.1 imes 10^{-16}$
850	175124.07 - 293444.0	267.85030	-29.57890	0.1	1.1	11.1	4.4	3.9	6.9	0.90	2.2 -	4.6	: 50	÷	597.3	3.4	4.1×10^{-16}
(cont.)																	

	n Photo $F_{\rm x}$	$(ergs s^{-1} cm^{-2})$	(18)	2.4×10^{-16}	1.9×10^{-16}	7.4×10^{-16}	1.1×10^{-14}	1.1×10^{-16}	$1.5 imes 10^{-15}$	$1.5\! imes\!10^{-16}$	$3.2 imes 10^{-16}$	$2.2 imes 10^{-16}$	4.1×10^{-16}	1.4×10^{-15}	$3.6\! imes\!10^{-16}$	1.5×10^{-16}	2.4×10^{-16}	$2.2 imes 10^{-16}$	$2.2 imes 10^{-16}$	$2.0\! imes\!10^{-15}$	$2.7 imes 10^{-16}$	$5.0\! imes\!10^{-16}$	2.8×10^{-16}	$5.6\! imes\!10^{-16}$	1.8×10^{-15}	1.3×10^{-16}	7.8×10^{-16}	$2.7 imes 10^{-16}$	5.4×10^{-16}	1.8×10^{-16}	1.8×10^{-15}	1.3×10^{-15}	$2.0 imes 10^{-16}$	$5.6\! imes\!10^{-16}$	$1.9 { imes} 10^{-16}$	$2.2\! imes\!10^{-16}$	3.9×10^{-16}
istics	$E_{ m mediar}$	(keV)	(17)	1.7	1.6	1.9	3.0	1.3	1.3	1.7	1.4	1.7	2.8	1.3	2.0	1.3	1.6	1.3	1.7	2.9	2.0	2.3	1.6	2.0	2.9	1.6	2.1	1.8	1.1	1.0	1.3	3.8	1.4	2.5	2.1	1.7	1.8
haracter	EffExp	(ks)	(16)	634.2	699.3	742.9	832.9	770.0	833.5	606.4	619.0	386.2	764.6	809.4	693.7	702.3	658.6	740.7	820.9	762.7	675.0	691.6	788.6	755.8	680.8	688.1	824.0	759.9	748.0	608.2	682.5	169.3	752.4	817.6	732.9	633.3	777.0
С	nom Var		(14) (15)	 20	:. :. :0	 50	 20	 20	 20	 50	 20	 20	 20	ч 	 20	 20	 20	 20	 20	 ъ0	: :. 00	 	 ъ0	 20	р 	 ъ0	р 	 	 	 ъ0	 20	 20	 20	с 	 	 	g
	S $P_{\rm B}$ A	ac	2) (13) (.7 < -5	2 - 3.9	3 <-5	.9 < -5	.9 -3.0	.7 <-5	.8 -3.4	5 < -5	.8 -3.5	.8 <-5	.7 <-5	.7 - 4.2	.3 - 4.3	.6 - 5.0	1 < -5	.4 - 3.9	2 < -5	.3 -3.8	.6 < -5	.5 - 3.2	.9 -3.8	.6 - 4.9	.6 - 2.1	.0 <-5	.4 - 3.4	.7 <-5	.8 <-5	.7 < -5	.7 - 3.5	.4 - 3.6	1.1 - 5.0	.7 - 2.1	4 < -5	.3 <-5
	PSF P	Ηr	(11) (12)	0.90 2	0.90 2	0.90 4	$0.89 \ 19$	0.90 1	0.90 10	0.90 1	0.90 3	0.90 1	0.90 2	0.90 8	0.90 2	0.90 2	0.89 2	0.90 3	0.90 2	0.90 7	0.90 2	0.90 3	0.90 2	0.90 2	0.91 3	0.89 1	0.90 4	0.90 2	0.90 4	0.90 2	0.90 5	0.90 2	0.89 2	0.90 3	0.90 1	0.90 2	0.90 3
ounts	net,hard		(10)	2.5	4.1	22.1	322.4	0.0	27.6	3.9	0.3	3.3	9.8	27.3	9.4	2.0	5.6	1.7	7.6	61.2	6.8	13.0	7.6	18.2	49.3	2.2	30.9	6.6	6.7	0.0	7.0	26.0	5.0	16.9	5.3	4.6	7.9
icted Cc	$C'_{\rm bkg}$ ()	(6)	4.2	6.2	41.4	9.6	5.6	15.2	3.5	5.0	2.4	5.9	85.1	17.1	6.3	7.2	5.4	12.4	29.1	9.3	5.8	29.0	58.4	221.5	8.6	68.0	20.3	67.3	3.8	5.0	36.5	15.7	32.1	13.6	5.0	13.9
Extra	ΔC_{net}		(8)	4.9	4.8	9.9	21.8	4.4	13.3	4.0	5.7	3.7	5.2	15.6	6.6	4.9	5.2	5.4	5.8	11.2	5.3	5.9	7.6	10.0	17.6	4.7	11.3	6.7	11.8	4.9	7.7	8.3	6.2	8.3	5.5	4.8	6.7
	$C_{\rm net}$		(2)	14.8	11.8	44.6	444.4	9.4	146.8	8.5	22.0	7.6	16.1	139.9	18.9	12.7	14.8	18.6	15.6	83.9	13.7	23.2	20.0	30.6	64.5	8.4	47.0	17.7	58.7	15.2	47.0	23.5	16.3	27.9	10.4	13.0	24.1
	θ	C	(9)	1.0	2.3	5.2	2.4	1.7	2.7	1.0	1.5	1.0	1.8	6.4	3.9	2.1	2.8	1.7	2.6	4.6	3.0	2.0	4.4	5.5	8.5	2.8	5.9	4.1	5.8	1.1	1.7	8.1	3.7	4.7	3.4	1.2	2.7
Position	Decl. Err	(deg) $('')$	(4) (5)	-29.58570 0.1	-29.55393 0.1	-29.50439 0.2	-29.62746 0.0	-29.61484 0.1	-29.63234 0.1	-29.58425 0.1	-29.57039 0.1	-29.59596 0.2	-29.61647 0.1	-29.48378 0.2	-29.52455 0.2	-29.55633 0.1	-29.54381 0.2	-29.61497 0.1	-29.63037 0.1	-29.51377 0.1	-29.54034 0.2	-29.55813 0.1	-29.66157 0.2	-29.68203 0.2	-29.73242 0.3	-29.54293 0.2	-29.49205 0.2	-29.52318 0.2	-29.68715 0.2	-29.57570 0.1	-29.61553 0.1	-29.44856 0.5	-29.52889 0.2	-29.51267 0.2	-29.53408 0.2	-29.57184 0.1	-29.63351 0.1
	R. A.	(deg)	(3)	267.85038	267.85040	267.85044	\$ 267.85056	267.85064	267.85066	267.85070	267.85080	267.85089	267.85094	5 267.85121	267.85121	267.85139	267.85156	267.85165	267.85166	267.85167	267.85188	267.85198	5 267.85214	267.85220	267.85231	267.85240	: 267.85242	267.85266	267.85276	267.85277	\$ 267.85280	3 267.85283	267.85299	5 267.85306	5 267.85313	3 267.85319	267.85337
Source	CXOU J		(2)	175124.09 - 293508.5	175124.09 - 293314.1	175124.10 - 293015.8	175124.13 - 293738.8	175124.15 - 293653.4	175124.15 - 293756.4	175124.16 - 293503.2	175124.19 - 293413.4	175124.21 - 293545.4	175124.22 - 293659.2	175124.29 - 292901.6	175124.29 - 293128.3	175124.33 - 293322.7	175124.37 - 293237.7	175124.39 - 293653.8	175124.39 - 293749.3	175124.40 - 293049.5	175124.45 - 293225.2	175124.47 - 293329.2	175124.51 - 293941.6	175124.52 - 294055.3	175124.55 - 294356.7	175124.57 - 293234.5	175124.58 - 292931.3	175124.63 - 293123.4	175124.66 - 294113.7	175124.66 - 293432.5	175124.67 - 293655.8	175124.67 - 292654.8	175124.71 - 293143.9	175124.73 - 293045.6	175124.75 - 293202.6	175124.76 - 293418.6	175124.80 - 293800.6
	Seq	#	(1)	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884

169

(cont.)

source list
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts					5	laracteri	stics		
Seq	CXOU J	R.A.	Decl.	Err	θ	$C_{\rm net}$ Z	$\Delta C_{ m net}$	$C'_{\rm bkg}$ C	net,hard	PSF	PS	$P_{\rm B}$ A	, mon	Var	EffExp .	$E_{ m median}$	Photo $F_{\mathbf{x}}$	
#		(deg)	(deg)	1	S						Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$	
(1)	(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13) (14) ((15)	(16)	(17)	(18)	
885	175124.83 - 293830.5	267.85347	-29.64183	0.1	3.2	44.9	8.5	19.1	32.9	0.90	4.9 <	-5	: :: ::	:	817.6	2.8	1.0×10^{-15}	
886	175124.87 - 293850.1	267.85364	-29.64727	0.2	3.5	15.2	6.1	15.8	2.2	0.90	2.3 -	-3.2	: :00	÷	828.0	1.5	$1.8 { imes} 10^{-16}$	
887	175124.96 - 293444.1	267.85401	-29.57893	0.1	0.9	12.5	4.7	4.5	1.6	0.90	2.4 <	-5	: 60	÷	641.1	1.3	$1.6\! imes\!10^{-16}$	
888	175125.00 - 293016.1	267.85418	-29.50448	0.1	5.2	610.9	26.2	46.1	399.2	0.90	22.9 <	-5	:	q	844.4	2.7	$1.3 { imes} 10^{-14}$	
889	175125.00 - 293159.4	267.85418	-29.53318	0.1	3.4	33.3	7.5	14.7	7.0	0.90	4.2 <	-5	: :00	÷	792.4	1.5	4.1×10^{-16}	
890	175125.08 - 293430.7	267.85454	-29.57521	0.1	1.0	13.2	4.7	3.8	1.0	0.90	2.5 <	-5	: :00	÷	638.1	1.3	$1.7 { imes} 10^{-16}$	
891	175125.10 - 293323.4	267.85459	-29.55650	0.1	2.0	13.1	4.9	5.9	10.1	0.90	2.4 -	-4.7	: 60	÷	709.9	3.1	$3.7 { imes} 10^{-16}$	
892	175125.12 - 292749.2	267.85470	-29.46367	0.1	7.6	443.1	25.0	152.9	365.9	0.90	17.4 <	-5	:	ъ	791.0	3.5	$1.3 { imes} 10^{-14}$	
893	175125.12 - 293611.8	267.85470	-29.60330	0.1	1.1	22.1	5.5	2.9	7.7	0.90	3.6 <	-5	: :00	÷	468.2	1.5	$5.1\! imes\!10^{-16}$	
894	175125.20 - 293606.1	267.85504	-29.60169	0.1	1.0	8.4	3.9	2.6	0.9	0.90	1.9 -	-3.9	: 60	÷	428.3	1.5	$2.2 imes 10^{-16}$	
895	175125.32 - 293456.0	267.85550	-29.58224	0.2	0.7	5.6	3.5	3.4	0.0	0.89	1.4 –	-2.0	: 60	:	620.4	1.2	$7.1e{-}17$	
896	175125.36 - 293827.6	267.85569	-29.64101	0.2	3.1	18.9	6.6	18.1	11.0	0.90	2.6 -	-4.1	: :00	:	754.6	2.3	$4.0 imes 10^{-16}$	
897	175125.41 - 293742.0	267.85588	-29.62834	0.1	2.4	27.0	6.3	6.0	0.0	0.89	4.0 <	-5	: 60	÷	560.0	1.3	$4.0 imes 10^{-16}$	
898	175125.41 - 293459.9	267.85591	-29.58333	0.1	0.7	10.8	4.3	3.2	1.8	0.89	2.2 -	-4.9	: 60	÷	621.3	1.1	$1.5\! imes\!10^{-16}$	
899	175125.44 - 294041.5	267.85603	-29.67822	0.2	5.3	19.6	5.6	6.4	6.4	0.46	3.2 <	-5	: :00	:	760.7	1.8	$6.2\! imes\!10^{-16}$	
006	175125.47 - 293843.0	267.85615	-29.64529	0.2	3.3	23.6	6.6	13.4	5.3	0.89	3.3 <	-5	: :00	÷	752.6	1.2	$2.6\! imes\!10^{-16}$	
901	175125.48 - 293528.8	267.85617	-29.59135	0.1	0.7	11.4	4.3	2.6	7.2	0.90	2.3 <	-5	ю. Ю	:	423.7	3.4	$6.0\! imes\!10^{-16}$	
902	175125.49 - 294107.2	267.85623	-29.68534	0.1	5.7	178.2	16.3	67.8	91.8	0.90	10.6 <	-5	: 60	÷	756.8	2.1	$3.0\! imes\!10^{-15}$	
903	175125.49 - 293852.0	267.85625	-29.64780	0.2	3.5	18.8	6.3	14.2	6.3	0.90	2.8 -	-4.7	: :00	÷	747.5	1.8	$3.7 { imes} 10^{-16}$	
904	175125.51 - 294048.9	267.85633	-29.68026	0.2	5.4	34.1	10.1	55.9	20.0	0.90	3.2 –	-4.6	ю. Ю	:	761.1	2.8	$8.5\! imes\!10^{-16}$	
905	175125.58 - 293430.1	267.85661	-29.57505	0.1	1.0	13.6	4.8	4.4	2.6	0.90	2.6 <	-5	: 60	:	711.7	1.3	$1.6\! imes\!10^{-16}$	
906	175125.59 - 293444.4	267.85665	-29.57901	0.1	0.8	9.5	4.3	4.5	2.5	0.90	2.0 -	-3.5	: 60	÷	715.0	1.3	1.1×10^{-16}	
206	175125.60 - 294038.8	267.85669	-29.67747	0.2	5.2	31.3	6.9	8.7	16.5	0.48	4.2 <	-5	: 60	÷	770.0	2.2	1.1×10^{-15}	
908	175125.61 - 293311.7	267.85672	-29.55327	0.1	2.2	24.0	6.2	8.0	9.6	0.90	3.6 <	15	: 60	÷	821.7	1.6	$3.0 imes 10^{-16}$	
606	175125.62 - 293806.5	267.85679	-29.63516	0.1	2.7	29.3	6.9	10.7	7.7	0.90	4.0 <	-5	: 60	÷	566.2	1.5	$5.8 imes 10^{-16}$	
910	175125.64 - 293603.5	267.85685	-29.60099	0.1	0.9	53.6	8.1	3.4	3.8	0.90	6.2 <	-5	:. 20	÷	509.4	1.1	$8.0 imes 10^{-16}$	
911	175125.67 - 292929.0	267.85696	-29.49141	0.2	5.9	45.1	11.1	64.9	31.7	0.90	3.9 <	-5	÷	q	825.1	2.9	$1.0\! imes\!10^{-15}$	
912	175125.67 - 293142.6	267.85699	-29.52852	0.1	3.7	85.2	10.7	18.8	7.4	0.90	7.6 <	-5	÷	q	863.7	1.1	$7.0 imes 10^{-16}$	
913	175125.72 - 293134.5	267.85718	-29.52626	0.2	3.9	30.8	7.5	18.2	18.2	0.90	3.8 <	-5	i	в	858.6	2.4	$5.6\! imes\!10^{-16}$	
914	175125.81 - 293832.5	267.85757	-29.64238	0.2	3.1	17.0	5.9	12.0	7.2	0.90	2.6 -	-4.5	ю. Ю	:	575.0	1.7	$3.6\! imes\!10^{-16}$	
915	175125.83 - 293016.7	267.85766	-29.50466	0.2	5.2	22.8	7.0	19.2	5.4	0.73	3.0 <	-5	÷	в	840.2	1.4	3.1×10^{-16}	
916	175125.85 - 293629.8	267.85774	-29.60830	0.1	1.3	10.1	4.1	2.9	3.1	0.90	2.1 -	-4.7	: 60	÷	483.5	1.2	1.8×10^{-16}	
917	175125.86 - 293505.3	267.85778	-29.58483	0.1	0.6	20.0	5.4	4.0	10.8	0.89	3.3 <	-5	: 60	÷	716.2	2.7	4.8×10^{-16}	
918	175125.97 - 292939.8	267.85822	-29.49441	0.2	5.8	61.2	11.7	61.8	43.7	0.90	5.0 <	-5	÷	q	825.8	2.8	1.4×10^{-15}	
(cont.)																		

	Photo $F_{\mathbf{x}}$	$(ergs s^{-1} cm^{-2})$	(18)	1.0×10^{-15}	$2.7 imes 10^{-15}$	$3.9 imes 10^{-16}$	7.1×10^{-16}	1.4×10^{-16}	$5.2\! imes\!10^{-16}$	1.8×10^{-16}	$9.6 imes 10^{-16}$	$1.7 imes 10^{-16}$	2.8×10^{-15}	$5.7 imes 10^{-16}$	$2.6\! imes\!10^{-16}$	$5.5 imes 10^{-15}$	$5.5 imes 10^{-16}$	$3.0 imes 10^{-16}$	1.5×10^{-15}	1.3×10^{-16}	$3.7 imes 10^{-16}$	$2.0 imes 10^{-16}$	2.9×10^{-16}	8.4×10^{-16}	$7.6\! imes\!10^{-16}$	$5.1\! imes\!10^{-16}$	1.5×10^{-16}	$8.4e{-}17$	1.0×10^{-16}	2.3×10^{-16}	$2.5 imes 10^{-16}$	$5.3 imes 10^{-15}$	1.9×10^{-16}	$6.8 { imes} 10^{-16}$	1.8×10^{-16}	$5.4 imes 10^{-16}$	1.3×10^{-15}
istics	$E_{ m median}$	(keV)	(17)	3.0	3.5	1.2	1.5	1.3	1.4	1.9	2.1	1.1	4.1	1.7	2.0	2.5	2.4	1.6	1.9	1.6	1.8	1.5	1.7	1.1	1.6	1.4	1.6	1.4	1.8	1.1	3.2	4.2	1.6	2.0	1.9	1.8	3.3
haracter	EffExp	(ks)	(16)	801.2	803.8	507.6	791.3	447.5	886.9	873.2	884.7	874.9	622.3	880.0	871.9	630.1	754.1	867.4	668.7	841.7	864.2	877.9	839.7	447.0	759.6	823.6	872.6	858.9	738.1	869.5	533.9	815.3	891.3	818.0	861.8	637.2	880.2
	Var		(15)	q	ł	i	÷	÷	ပ	8	8	q	ł	а	8	ł	÷	а	÷	q	8	ъ	8	÷	÷	÷	ъ	a	÷	8	÷	g	8	÷	÷	ł	в
	Anom		(14)	:	: :	50 60	: 60	: 60	:	:	:	:	50 60	:	:	: 60	: :00	:	: 60	:	:	:	:	: :	: 60	: 60	÷	:	: 60	:	: :	:	:	: :	i	: 60	:
	S P _B	ac	2) (13)	.9 -3.5	.7 <-5	.7 <-5	.5 <-5	.8 -3.4	.9 < -5	.5 -3.8	.5 <-5	.9 < -5	.9 <-5	.3 <-5	.5 -3.8	5 < -5	.9 - 3.5	.4 - 3.4	.6 < -5	.2 - 4.1	4 < -5	.7 -4.4	5 <-5	.2 < -5	4 < -5	.7 <-5	.3 -4.2	.7 - 2.6	.1 - 4.0	.9 < -5	.5 - 2.4	.6 < -5	.8 <-5	5 <-5	.3 -4.3	.9 < -5	.7 <-5
	ц Ц	Frê) (12	0 2	0 8	0 3	9 6	0 1	0 4	9 2	9 6	0 2	0 5	0 5	0 2	0 12	0 2	0 2	0 6	0 2	0 3	0 2	0 3	0 5	0 4	9	0 2	9 1	0 2	0 2	0 1	0 9	0 2	0 5	0 2	9 2	0 8
	¹ PS		(11)	0.9	0.9	0.9	0.8	0.9	0.9	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.9	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.9
ounts	$C_{ m net,hard}$		(10)	32.3	85.3	2.8	17.4	3.1	7.7	7.2	32.5	0.0	53.5	16.8	8.3	115.8	23.5	9.1	29.3	3.2	11.3	4.7	8.2	0.0	18.9	12.3	1.3	2.5	4.6	3.0	5.8	146.0	5.0	22.5	6.0	7.6	80.4
acted C	$C'_{\rm bkg}$		(6)	118.4	5.5	3.7	4.7	2.5	7.2	15.9	11.1	15.9	17.1	12.2	17.4	18.5	93.8	17.5	23.6	4.9	20.6	14.0	6.3	10.1	69.3	4.8	6.4	5.0	4.5	6.6	3.5	76.2	9.0	4.4	6.4	4.1	10.3
Extr	$\Delta C_{\rm net}$		(8)	13.3	10.7	5.7	8.5	3.7	7.2	6.3	9.1	6.6	9.2	8.1	6.5	15.2	12.0	6.4	10.3	4.5	7.5	6.2	5.9	7.9	11.7	7.7	4.9	4.1	4.4	5.4	3.7	15.9	5.6	7.4	4.9	5.0	11.1
	$C_{\rm net}$		(2)	40.6	97.5	23.3	58.3	7.5	37.8	17.1	62.9	21.1	57.9	45.8	17.6	197.5	36.2	16.5	71.4	11.1	27.4	18.0	22.7	43.9	53.7	47.2	12.6	8.0	10.5	17.4	6.5	157.8	17.0	43.6	12.6	15.9	100.7
	θ	C	(9)	7.1	1.0	1.5	0.7	0.6	2.0	3.5	2.7	3.4	4.0	3.0	3.5	4.2	6.4	3.8	4.4	0.9	4.0	3.1	1.3	3.7	5.8	0.5	1.1	0.6	0.9	1.4	0.6	6.3	2.1	0.4	1.4	0.6	2.9
	Err	()	(5)	0.3	0.0	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.3	0.2	0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Position	Decl.	(deg)	(4)	-29.47121	-29.57505	-29.61140	-29.58191	-29.59492	-29.55676	-29.53274	-29.54578	-29.53459	-29.65706	-29.54038	-29.53140	-29.65926	-29.69633	-29.52662	-29.66299	-29.57626	-29.52333	-29.53812	-29.57073	-29.65146	-29.68588	-29.58655	-29.57365	-29.58398	-29.60314	-29.56739	-29.59535	-29.48489	-29.55605	-29.58765	-29.56840	-29.59788	-29.54122
	R. A.	(deg)	(3)	67.85831	67.85831	67.85852	67.85880	67.85888	67.85894	67.85895	67.85905	67.85909	67.85916	67.85944	67.85953	67.85955	67.85956	67.85958	67.85963	67.85984	67.85998	67.86005	67.86007	67.86034	67.86043	67.86046	67.86084	67.86109	67.86114	67.86115	67.86145	67.86166	67.86177	67.86177	67.86185	67.86194	67.86195
Source	CXOU J		(2)	175125.99 - 292816.3 20	175125.99 - 293430.1 20	175126.04 - 293641.0 20	175126.11 - 293454.8 20	175126.13 - 293541.7 20	175126.14 - 293324.3 20	175126.14 - 293157.8 20	175126.17 - 293244.8 20	175126.18 - 293204.5 20	175126.19 - 293925.4 20	175126.26 - 293225.3 20	175126.28 - 293153.0 20	175126.29 - 293933.3 20	175126.29 - 294146.7 20	$175126.29 - 293135.8 \ 20$	175126.31 - 293946.7 20	175126.36 - 293434.5 20	175126.39 - 293123.9 20	175126.41 - 293217.2 20	175126.41 - 293414.6 20	175126.48 - 293905.2 20	175126.50 - 294109.1 20	175126.51 - 293511.5 20	175126.60 - 293425.1 20	175126.66 - 293502.3 20	175126.67 - 293611.2 20	175126.67 - 293402.6 20	175126.74 - 293543.2	175126.79-292905.5 20	175126.82 - 293321.7 20	175126.82 - 293515.5 20	175126.84 - 293406.2 20	175126.86 - 293552.3 20	175126.86-293228.3 20
	Seq	#	(1)	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952

171

(cont.)

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts				G	aracteri	stics	
Seq	CXOU J	R. A.	Decl.	Err	θ	$C_{\rm net} \ge$	$C_{\rm net}$	$C'_{ m bkg}$ C	'net,hard	PSF	PS $P_{\rm B}$	Anom	Var	EffExp]	$E_{ m median}$	Photo $F_{\mathbf{x}}$
#		(deg)	(deg)	<i></i>	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)	(16)	(17)	(18)
953	175126.89 - 293451.3	267.86207	-29.58094	0.1	0.7	11.9	4.7	5.1	4.5	0.89	2.3 - 4.4	:	а	886.8	1.6	1.4×10^{-16}
954	175126.89 - 293627.8	267.86208	-29.60774	0.1	1.1	7.7	4.0	4.3	1.6	0.90	1.7 - 2.7	: 60	÷	721.5	1.2	$8.8e{-}17$
955	175126.98 - 293420.3	267.86242	-29.57231	0.1	1.1	16.9	5.3	6.1	5.6	0.90	2.9 < -5	:	c	862.9	1.6	2.3×10^{-16}
956	175126.98 - 292959.7	267.86244	-29.49993	0.3	5.4	21.9	9.0	49.1	9.4	0.90	2.3 - 2.6	:	q	837.5	1.8	$2.7 { imes} 10^{-16}$
957	175127.00 - 293706.7	267.86252	-29.61855	0.0	1.7	194.3	14.6	4.7	145.7	0.90	12.8 < -5	: 60	÷	640.7	3.2	6.4×10^{-15}
958	175127.06 - 293654.1	267.86275	-29.61504	0.1	1.5	16.1	5.1	4.9	10.4	0.90	2.8 < -5	: 60	÷	677.2	3.4	$5.6\! imes\!10^{-16}$
959	175127.08 - 293127.6	267.86287	-29.52434	0.2	4.0	17.4	6.7	20.6	13.1	0.90	2.4 - 3.3	:	а	864.6	2.4	$3.1\! imes\!10^{-16}$
960	175127.08 - 293214.9	267.86287	-29.53749	0.1	3.2	22.2	6.5	12.8	8.6	0.90	3.2 < -5	:	а	876.7	1.9	3.1×10^{-16}
961	175127.13 - 293135.9	267.86307	-29.52666	0.1	3.8	183.5	14.8	19.5	17.3	0.90	12.0 < -5	:	а	866.7	1.1	$1.5 \! imes \! 10^{-15}$
962	175127.16 - 293837.9	267.86319	-29.64389	0.2	3.3	23.2	6.5	11.8	0.9	0.90	3.3 < -5	: 50	÷	481.2	1.3	4.4×10^{-16}
963	175127.20 - 293115.4	267.86334	-29.52096	0.2	4.2	30.5	8.0	24.5	32.5	0.90	3.6 < -5	:	а	861.2	4.7	1.1×10^{-15}
964	175127.20 - 293154.9	267.86334	-29.53192	0.2	3.5	22.8	6.8	16.2	6.9	0.90	3.1 < -5	:	а	871.6	1.6	$2.7 { imes} 10^{-16}$
965	175127.21 - 293523.8	267.86340	-29.58995	0.1	0.4	8.1	4.0	3.9	0.6	0.90	1.8 - 3.0	: 50	÷	712.0	1.3	$9.5e{-}17$
966	175127.24 - 294205.1	267.86351	-29.70144	0.2	6.7	119.4	15.5	102.6	29.4	0.90	7.4 < -5	: 20	÷	692.9	1.4	$1.7 { imes} 10^{-15}$
967	175127.26 - 293243.6	267.86359	-29.54545	0.1	2.7	117.6	11.8	9.4	94.0	0.89	9.6 < -5	:	а	883.4	3.8	$3.3{ imes}10^{-15}$
968	175127.28 - 293710.7	267.86368	-29.61965	0.1	1.8	76.8	9.6	5.2	7.2	0.90	7.6 < -5	: 60	÷	678.8	1.2	$9.6\! imes\!10^{-16}$
696	175127.29 - 293258.65	267.86374	-29.54963	0.1	2.4	10.6	4.9	8.4	0.0	0.89	1.9 - 2.9	:	в	886.7	1.2	$9.2\mathrm{e}{-17}$
970	175127.31 - 293918.95	267.86382	-29.65526	0.3	4.0	10.7	5.6	14.3	9.6	0.90	1.8 - 2.1	: 60	÷	462.5	2.8	4.6×10^{-16}
971	175127.37 - 293234.45	267.86407	-29.54291	0.2	2.8	10.6	5.1	10.4	4.5	0.90	1.9 - 2.6	:	q	881.1	1.8	1.4×10^{-16}
972	175127.38 - 293750.2	267.86409	-29.63064	0.2	2.5	10.9	4.9	8.1	4.5	0.90	2.0 - 3.0	: 60	÷	650.0	1.8	$2.0 imes 10^{-16}$
973	175127.40 - 293629.6	267.86418	-29.60823	0.1	1.1	11.5	4.5	4.5	2.7	0.90	2.3 - 4.5	: 60	÷	827.7	1.4	$1.3 { imes} 10^{-16}$
974	175127.41 - 293349.9	267.86424	-29.56387	0.1	1.6	66.3	9.1	6.7	7.8	0.90	6.9 < -5	:	c	890.1	1.2	$5.7{ imes}10^{-16}$
975	175127.50 - 294006.45	267.86459	-29.66846	0.1	4.8	113.8	12.2	21.2	82.3	0.90	9.0 < -5	: 50	÷	423.6	2.9	$4.7 imes 10^{-15}$
976	175127.50 - 293323.85	267.86460	-29.55662	0.1	2.0	16.7	5.5	8.3	13.4	0.90	2.7 < -5	:	в	889.9	2.3	$3.5 imes 10^{-16}$
677	175127.58 - 292915.75	267.86494	-29.48771	0.2	6.1	44.2	11.4	71.8	11.2	0.90	3.7 < -5	:	в	823.1	1.1	3.8×10^{-16}
978	175127.63 - 292851.35	267.86514	-29.48093	0.2	6.6	80.3	13.5	86.7	55.4	0.90	5.7 < -5	:	в	812.3	2.9	1.9×10^{-15}
679	175127.64 - 293737.0	267.86518	-29.62696	0.1	2.2	10.2	4.7	6.8	0.0	0.90	1.9 - 3.0	: :00	÷	716.6	1.1	2.4×10^{-16}
980	175127.64 - 293128.45	267.86520	-29.52456	0.2	3.9	22.8	7.1	20.2	13.0	0.90	3.0 - 5.0	:	в	864.4	2.5	1.9×10^{-16}
981	175127.65 - 294046.4	267.86522	-29.67958	0.3	5.4	31.7	8.6	33.3	13.6	0.90	3.5 < -5	: 60	÷	449.4	1.8	$1.0 { imes} 10^{-15}$
982	175127.70 - 294223.8	267.86543	-29.70662	0.2	7.0	80.6	14.5	110.4	28.1	0.90	5.4 < -5	: 60	÷	631.0	1.8	$1.6\! imes\!10^{-15}$
983	175127.70 - 293223.7	267.86544	-29.53993	0.1	3.0	37.8	7.5	11.2	12.2	0.90	4.7 < -5	:	q	878.2	1.8	$5.0\! imes\!10^{-16}$
984	175127.72 - 293209.1	267.86553	-29.53588	0.2	3.3	18.9	6.2	13.1	5.5	0.90	2.8 - 5.0	:	q	874.6	1.6	$2.2 imes 10^{-16}$
985	175127.74 - 294330.45	267.86560	-29.72513	0.3	8.0	39.7	15.1	167.3	15.6	0.90	2.5 - 2.8	: 60	÷	623.7	1.8	8.3×10^{-16}
986	175127.79-293556.5 2	267.86582	-29.59904	0.1	0.6	15.6	5.0	4.4	8.2	0.89	2.8 < -5	ы 10	:	767.1	2.1	$2.8 imes 10^{-16}$
(cont.)																

	Photo $F_{\rm x}$	$(ergs s^{-1} cm^{-2})$	(18)	5.9×10^{-16}	7.4×10^{-16}	$1.7 { imes} 10^{-16}$	$9.5 imes 10^{-16}$	$4.5 imes 10^{-16}$	1.4×10^{-16}	$5.9{ imes}10^{-15}$	$2.0 imes 10^{-16}$	1.4×10^{-16}	$3.0 imes 10^{-15}$	$2.5 imes 10^{-16}$	$1.7 { imes} 10^{-16}$	1.9×10^{-15}	$3.0 imes 10^{-16}$	1.4×10^{-15}	$5.9{ imes}10^{-16}$	1.2×10^{-15}	4.1×10^{-16}	$4.5 imes 10^{-16}$	$1.5 imes 10^{-16}$	$2.1\! imes\!10^{-16}$	1.4×10^{-16}	7.9×10^{-16}	1.8×10^{-16}	$1.5 imes 10^{-16}$	$1.0 { imes} 10^{-16}$	1.2×10^{-16}	$2.5 imes 10^{-16}$	1.3×10^{-16}	6.1×10^{-16}	1.8×10^{-16}	1.7×10^{-16}	1.4×10^{-16}	1.0×10^{-15}
istics	$E_{ m median}$	(keV)	(17)	1.4	1.8	1.6	1.9	2.9	2.1	3.3	1.6	1.9	3.0	1.2	2.6	1.9	1.1	2.7	2.0	1.8	2.6	1.7	2.4	0.9	1.8	1.8	1.8	1.7	1.7	1.4	2.6	1.9	1.9	2.2	1.5	1.0	1.3
haracter	EffExp	(ks)	(16)	626.7	587.2	742.8	827.4	884.1	838.0	853.5	848.2	844.5	617.2	860.8	858.0	485.7	858.1	848.4	769.2	529.6	879.5	859.1	881.6	835.5	849.0	577.7	868.8	866.5	865.6	853.2	873.1	884.8	725.5	865.7	852.9	877.1	870.5
C	Var		(15)	÷	i	i	:	g	ł	q	ъ	i	i	ъ	ų	i	а	:	q	:	q	а	g	ъ	а	÷	5	ы	ы	q	а	а	ł	q	ы	а	٩
	Anom		(14)	: : :00	: 20	: 60	: ©0	:	: :00	:	:	: 20	: 60	:	:	: 60	:	: :00	:	: 60	:	:	:	:	:	: 60	÷	:	÷	÷	:	:	50 60	:	:	:	:
	$P_{\rm B}$		(13)	-3.3	-2.7	-2.7	$\stackrel{-2}{\sim}$	~ -5	-2.9	$\stackrel{>}{\sim}$	$^{-2}$	-3.5	~ -5	$\stackrel{-2}{\sim}$	-2.3	$\stackrel{>}{\sim}$	~ -5	~ -5	-2.7	$\stackrel{>}{\sim}$	$\stackrel{-2}{\sim}$	~ -5	-2.1	-4.2	-3.6	~ -5	~ -5	-3.7	-2.1	-4.3	-3.1	-2.5	~ -5	~ -5	-3.5	~ -5	− 5
	\mathbf{PS}	Frac	(12)	2.8	2.5	1.9	6.8	3.3	1.8	14.3	2.8	2.0	7.8	4.1	1.7	6.6	4.8	7.0	2.5	3.9	4.4	4.0	1.6	3.0	2.1	4.0	2.5	2.2	1.6	2.2	2.1	1.8	4.2	2.6	2.0	3.1	9.1
	PSF		(11)	0.90	0.89	0.90	0.89	0.89	0.90	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.89	0.90	0.89	0.90	0.89	0.90	0.90	0.89	0.89	0.89	0.90	0.90	0.90	0.89	0.91
ounts	7net,hard		(10)	6.0	15.3	1.7	30.1	15.0	4.7	185.9	4.2	3.7	60.6	0.4	4.9	30.8	2.9	51.1	20.9	14.2	21.8	12.1	5.8	0.0	1.4	14.3	5.0	4.0	2.3	2.4	9.7	4.1	14.5	9.3	2.2	0.1	20.4
acted Co	$C'_{\rm bkg}$ ()	(6)	122.0	118.6	10.8	5.0	7.9	4.6	5.3	6.3	4.5	15.8	5.4	7.4	32.6	6.1	5.7	135.0	24.9	6.4	24.7	9.2	50.3	5.5	24.2	5.5	7.1	7.8	5.3	11.3	7.7	16.5	7.4	5.6	5.4	7.0
Extra	$\Delta C_{\rm net}$		(8)	13.4	13.0	5.2	8.8	5.9	4.1	16.1	5.3	4.3	10.7	6.3	4.5	10.9	7.0	9.1	13.7	8.2	6.7	8.3	4.8	9.6	4.5	8.2	4.9	4.9	4.5	4.7	5.4	4.7	7.7	5.3	4.5	5.4	11.1
	$C_{\rm net}$,		(-2)	39.0	33.4	11.2	64.0	21.1	8.4	237.7	16.7	9.5	88.2	27.6	8.6	75.4	35.9	67.3	35.0	34.1	31.6	35.3	8.8	30.7	10.5	34.8	13.5	11.9	8.2	11.7	12.7	9.3	34.5	15.6	10.4	18.6	106.0
	θ	C	(9)	7.3	7.5	2.6	0.4	2.4	1.2	0.4	1.3	1.2	3.8	0.6	2.0	5.2	1.7	1.4	7.6	4.9	1.7	4.2	2.6	5.5	1.1	4.6	0.9	1.9	2.2	0.9	3.2	2.4	3.6	2.2	0.8	1.0	2.0
	Err	$\tilde{\mathbf{x}}$	(5)	0.3	0.3	0.2	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.3	0.2	0.1	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.0
Position	Decl.	(deg)	(4)	-29.71058	-29.71556	-29.63271	-29.58625	-29.55019	-29.61062	-29.58572	-29.56961	-29.60962	-29.65244	-29.58132	-29.62388	-29.67632	-29.61772	-29.61407	-29.46360	-29.67052	-29.56306	-29.51951	-29.54677	-29.49774	-29.57400	-29.66689	-29.60599	-29.62076	-29.62664	-29.57729	-29.53762	-29.55109	-29.65047	-29.62584	-29.57941	-29.60696	-29.55798
	R.A.	(deg)	(3)	67.86583 -	67.86598 -	67.86620 -	67.86628 -	67.86642 -	67.86645 -	67.86648 -	67.86664 -	67.86670 -	- 7738677	67.86682 -	67.86683 -	67.86687 -	67.86721 -	67.86732 -	67.86741 -	67.86752 -	67.86753 -	67.86758 -	67.86773 -	67.86780 -	67.86802 -	67.86812 -	67.86814 -	67.86817 -	67.86825 -	67.86829 -	67.86833 -	67.86833 -	67.86852 -	67.86859 -	67.86861 -	67.86868 -	- 67.86887
Source	CXOU J		(2)	175127.79 - 294238.0 2	175127.83 - 294256.0 2	175127.88-293757.7 2	175127.90 - 293510.4 2	175127.94 - 293300.6 2	175127.94 - 293638.2 2	175127.95 - 293508.5 2	175127.99 - 293410.5 2	175128.00 - 293634.6 2	175128.02 - 293908.7 2	175128.03 - 293452.7 2	175128.03 - 293725.9 2	175128.04 - 294034.7 2	175128.13 - 293703.7 2 ^o	175128.15 - 293650.6 2	175128.17 - 292748.9 2	175128.20 - 294013.8 2	175128.20 - 293347.0 2	175128.21 - 293110.2 2	175128.25 - 293248.3 2	175128.27 - 292951.8 2	175128.32 - 293426.3 2	175128.34 - 294000.8 2	175128.35 - 293621.5 2	175128.36 - 293714.7 2	175128.37 - 293735.9 2	175128.38 - 293438.2 2	175128.39 - 293215.4 2	175128.39 - 293303.9 2	175128.44 - 293901.7 2	175128.46 - 293733.0 2	$175128.46 - 293445.8 \ 2$	175128.48 - 293625.0 2	175128.52-293328.7 2
	Seq	#	(1)	987	988	989	066	991	992	993	994	995	966	266	998	666	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	$\frac{1020}{(cont.)}$

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts				0	haracteri	istics	
Seq	CXOU J	R. A.	Decl.	Err	θ	$C_{\rm net}$ \angle	$\Delta C_{ m net}$	$C'_{ m bkg}$ (net,hard	PSF	PS $P_{\rm B}$	Anom	t Var	EffExp	$E_{ m median}$	Photo $F_{\mathbf{x}}$
#		(deg)	(deg)	()	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)	(16)	(17)	(18)
1021	175128.55 - 293158.6	367.86899	-29.53295	0.1	3.4	30.4	7.2	14.6	20.4	0.90	3.9 < -1		ъ	868.6	2.5	$5.6\! imes\!10^{-16}$
1022	175128.57 - 293220.9	367.86906	-29.53916	0.2	3.1	16.0	5.7	11.0	4.3	0.90	2.5 - 4.4	1	ъ	875.1	1.3	$1.5\! imes\!10^{-16}$
1023	175128.60 - 293630.8	367.86920	-29.60856	0.1	1.1	62.7	8.8	5.3	8.0	0.89	6.7 < -1		с	888.3	1.4	6.4×10^{-16}
1024	175128.61 - 293555.1	367.86922	-29.59865	0.1	0.6	6.9	3.9	4.1	2.5	0.90	1.6 - 2.4	4 8	:	780.9	1.0	$1.5\! imes\!10^{-16}$
1025	175128.61 - 293059.7	367.86923	-29.51659	0.1	4.4	238.1	16.8	25.9	153.6	0.88	13.8 < -3		ъ	855.8	2.7	$1.8 { imes} 10^{-15}$
1026	175128.62 - 293746.2	367.86928	-29.62951	0.1	2.4	28.8	6.7	9.2	30.2	0.90	4.0 < -1	5 8	:	854.7	4.3	$9.7 imes 10^{-16}$
1027	175128.66 - 293205.2	367.86944	-29.53479	0.1	3.3	13.6	4.5	2.4	8.0	0.46	2.7 < -1		ъ	871.1	3.0	$5.9 imes 10^{-16}$
1028	175128.69 - 293639.8	367.86955	-29.61107	0.1	1.3	8.4	4.3	5.6	11.1	0.90	1.7 - 2.0	6	:	889.2	3.8	$2.3\! imes\!10^{-16}$
1029	175128.74 - 293552.1	367.86979	-29.59782	0.1	0.6	17.4	5.1	3.6	4.8	0.90	3.1 < -8	5 8	:	727.0	1.5	$2.3 imes 10^{-16}$
1030	175128.75 - 292943.5	367.86980	-29.49543	0.3	5.7	25.0	9.6	55.0	20.5	0.90	2.5 - 3.0	с	q	826.9	3.8	7.4×10^{-16}
1031	175128.75 - 293545.5	367.86982	-29.59599	0.1	0.5	7.7	3.9	3.3	1.0	0.90	1.7 - 3.0) g	:	607.1	1.2	$2.7 { imes} 10^{-16}$
1032	175128.75 - 293206.05	367.86983	-29.53501	0.1	3.3	16.2	4.9	2.8	13.8	0.50	3.0 < -8		в.	871.4	3.3	$2.6\! imes\!10^{-16}$
1033	175128.82 - 293236.2	367.87009	-29.54340	0.1	2.8	30.9	6.9	9.1	14.7	0.89	4.2 < -1		q	877.6	2.0	$4.6\! imes\!10^{-16}$
1034	175128.82 - 293501.7	367.87010	-29.58382	0.1	0.6	15.6	5.1	5.4	3.1	0.90	2.7 < -1		ъ	854.6	1.4	$1.6\! imes\!10^{-16}$
1035	175128.85 - 293058.7	367.87025	-29.51632	0.1	4.4	77.4	10.3	17.6	13.2	0.82	7.2 < -1		ъ	855.2	1.4	$9.0\! imes\!10^{-16}$
1036	175128.87-293131.2 2	367.87030	-29.52536	0.2	3.9	28.9	7.5	19.1	25.8	0.90	3.6 < -1		а.	861.8	4.1	$8.8 imes 10^{-16}$
1037	175128.90 - 294349.2	367.87044	-29.73035	0.3	8.4	56.1	15.0	149.9	24.6	0.90	3.6 < -1	ر ش	:	474.6	2.0	1.7×10^{-15}
1038	175128.94 - 293412.3	367.87060	-29.57010	0.0	1.3	123.1	11.8	4.9	87.5	0.90	10.0 < -8	5 8	:	837.6	2.8	$2.6\! imes\!10^{-15}$
1039	175128.95 - 293444.1	367.87064	-29.57893	0.1	0.8	22.9	5.8	5.1	13.7	0.89	3.6 < -1		с	852.6	2.8	4.9×10^{-16}
1040	175128.96 - 293603.8	367.87070	-29.60106	0.1	0.7	8.9	4.3	5.1	2.3	0.89	1.8 - 3.0	C	в	883.6	1.7	1.1×10^{-16}
1041	175128.97 - 293500.6	367.87073	-29.58350	0.1	0.6	19.9	5.5	5.1	5.3	0.89	3.3 < -5		р	859.1	1.5	$2.2\! imes\!10^{-16}$
1042	175129.03 - 293315.2	367.87098	-29.55424	0.1	2.2	10.5	4.7	6.5	1.8	0.90	2.0 - 3.5	2	ъ	855.9	1.1	$8.6e{-17}$
1043	175129.04 - 293236.85	367.87103	-29.54358	0.1	2.8	15.7	5.5	9.3	0.0	0.90	2.6 - 4.7	7	р.	861.3	1.2	1.4×10^{-16}
1044	175129.14 - 293012.7	367.87145	-29.50355	0.1	5.2	277.6	18.5	43.4	87.7	0.90	14.6 < -3		с	836.4	1.6	3.4×10^{-15}
1045	175129.16 - 292924.3	367.87154	-29.49010	0.1	6.0	293.4	19.5	64.6	241.0	0.89	14.7 < -8		ъ	811.6	3.5	8.4×10^{-15}
1046	175129.18 - 293256.65	367.87161	-29.54906	0.1	2.5	13.8	5.2	8.2	7.2	0.89	2.4 - 4.5	2	ъ	853.2	2.0	$2.1\! imes\!10^{-16}$
1047	175129.20 - 293117.5	367.87169	-29.52153	0.1	4.1	66.1	9.9	21.9	7.7	0.90	6.3 < -1		р	858.4	1.1	$5.5\! imes\!10^{-16}$
1048	175129.22 - 293541.0	367.87179	-29.59473	0.0	0.5	79.9	9.6	3.1	59.8	0.90	3-> 6.7	ر ۳	:	592.7	2.6	2.4×10^{-15}
1049	175129.23 - 292936.2	367.87182	-29.49339	0.1	5.8	818.9	30.1	58.1	393.4	0.90	26.7 < -1		с	817.4	2.0	1.3×10^{-14}
1050	175129.23 - 293605.2	367.87183	-29.60147	0.1	0.8	8.1	4.1	4.9	0.0	0.89	1.7 - 2.7	2	в	882.3	1.2	$7.2\mathrm{e}{-17}$
1051	175129.25 - 293849.7	367.87191	-29.64717	0.2	3.4	27.9	7.2	16.1	14.0	0.89	3.6 < -5		ъ	845.7	2.1	4.5×10^{-16}
1052	175129.30 - 293756.0	367.87210	-29.63223	0.1	2.5	14.2	5.6	11.8	9.7	0.89	2.3 -3.6		ъ	873.3	2.4	$2.6\! imes\!10^{-16}$
1053	175129.33 - 293746.3	367.87221	-29.62953	0.2	2.4	11.8	5.1	9.2	5.9	0.90	2.1 - 3.5	1	ъ	876.6	2.0	$1.7 { imes} 10^{-16}$
1054	175129.34-293126.4 2	367.87227	-29.52401	0.2	4.0	12.7	6.4	21.3	5.7	0.90	1.8 - 2.7	1	a	860.7	2.1	$2.0\! imes\!10^{-16}$
(cont.)																

	ian Photo $F_{\rm x}$	') (ergs $s^{-1} \text{ cm}^{-2}$)	(18)	4.1×10^{-16}	1.6×10^{-16}	1.9×10^{-16}	$2.0 imes 10^{-16}$	7.1×10^{-15}	1.4×10^{-15}	6.4×10^{-16}	4.7×10^{-16}	1.4×10^{-16}	$9.1e{-}17$	4.8×10^{-16}	8.3×10^{-16}	$6.6 imes 10^{-16}$	4.7×10^{-16}	2.1×10^{-16}	$7.5e{-}17$	2.4×10^{-15}	4.1×10^{-16}	1.8×10^{-16}	1.1×10^{-16}	6.1×10^{-16}	$9.6 imes 10^{-16}$	1.7×10^{-14}	$3.6 imes 10^{-16}$	$3.5 imes 10^{-16}$	6.3×10^{-16}	$7.5 imes 10^{-16}$	$3.7 imes 10^{-16}$	1.4×10^{-14}	$2.6 imes 10^{-16}$	$2.7 imes 10^{-16}$	9.8×10^{-16}	8.1×10^{-16}	5.7×10^{-16}	
eristics	$E_{\rm medi}$	(keV)	(17)	1.7	1.1	1.5	1.6	2.6	1.3	1.7	1.8	1.0	1.2	1.8	1.1	1.8	1.8	1.8	1.2	3.6	3.8	2.1	1.3	3.4	1.9	1.3	2.3	2.4	1.4	3.5	1.2	2.9	1.0	1.4	2.2	1.4	3.7	
Characte	EffExt	(ks)	(16)	824.5	849.1	842.1	851.4	869.4	820.1	793.6	839.8	857.4	690.5	846.5	720.8	862.5	884.9	851.1	843.3	838.8	839.7	865.2	875.9	849.9	837.4	495.1	808.9	833.7	833.9	811.3	889.3	863.5	716.1	865.9	801.8	654.9	875.0	
	Var		(15)	q	а	ರ	g	q	q	ł	÷	g	÷	а	:	÷	а	а	g	÷	÷	i	в	с	÷	i	а	а	÷	q	g	ł	ł	а	а	÷	ы	
	Anom		(14)	:	i	:	:	:	:	50 50	: :00	÷	: 50	÷	: :00	: 50	÷	÷	÷	: 50	: 50	: :00	÷	:	: 60	: 50	÷	:	: 60	÷	:	50 50	50 50	:	i	: 60	:	
	$P_{\rm B}$		(13)	-4.9	-3.7	-3.5	-4.6	~ -5	~ -5	$\stackrel{>}{\sim}$	~ -5	-3.5	-3.0	~ -5	\sim -5	~ -5	~ -5	-2.9	-2.5	~ -5	-4.6	$^{-5}$	-2.2	~ -5	$\stackrel{\circ}{\sim}$	\sim -5	-2.1	~ -5	\sim - 5	-3.5	~ -5	$\stackrel{>}{\sim}$	-3.3	~ -5	~ -5	~ -5	 1.5 1.5 	
	\mathbf{PS}	Frac	(12)	3.1	2.3	2.6	2.6	18.1	9.0	4.7	4.8	2.5	1.8	4.6	6.8	5.7	4.7	2.2	1.7	8.2	2.5	3.0	1.5	3.0	6.8	26.0	2.0	2.8	6.3	2.7	5.3	24.3	2.7	3.9	4.1	3.9	3.3	
	$^{\rm I}$ PSF		(11)	0.82	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.89	0.89	0.87	0.90	0.89	0.90	0.90	0.90	0.90	0.91	0.89	0.89	0.90	0.90	0.90	0.90	0.90	0.89	0.90	0.89	0.89	0.90	0.90	0.90	0.90	0.90	
ounts	$\sigma_{\rm net,harc}$		(10)	11.8	0.0	9.8	5.7	246.3	20.9	14.5	14.9	0.4	1.6	15.8	3.2	20.8	10.5	5.1	2.0	82.4	10.7	9.3	0.7	16.9	29.6	143.2	11.5	11.9	13.0	18.0	1.1	470.2	0.0	5.3	29.5	2.1	14.4	
acted Co	$C'_{\rm bkg}$ (I	(6)	33.7	8.9	34.5	11.8	5.5	52.7	21.0	6.4	20.1	3.9	6.0	35.6	5.1	7.6	19.6	5.8	7.4	7.0	5.4	5.0	19.8	7.3	117.1	52.7	12.3	7.6	49.1	6.1	5.8	54.0	5.8	93.3	110.1	7.3	
Extra	$\Delta C_{\rm net}$		(8)	8.5	5.2	8.1	5.9	19.9	14.1	8.5	7.1	6.7	4.0	6.9	11.4	7.8	7.2	6.5	4.3	10.3	5.1	5.3	4.0	7.1	9.1	31.3	9.1	6.1	8.6	9.3	7.5	26.0	9.6	6.2	12.8	13.5	5.8	
	$C_{\rm net}$		(2)	28.3	13.1	22.5	17.2	370.5	131.3	43.0	36.6	17.9	8.1	34.0	81.4	47.9	36.4	15.4	8.2	88.6	14.0	17.6	7.0	23.2	65.7	824.9	19.3	18.7	57.4	26.9	42.9	643.2	27.0	26.2	54.7	54.9	20.7	
	θ	C	(9)	5.6	2.9	4.9	3.3	0.8	5.6	4.0	1.8	3.3	0.5	2.0	4.9	0.7	1.9	3.8	1.4	2.0	1.9	0.9	1.0	3.7	2.2	7.6	5.6	3.4	2.5	5.5	0.8	0.9	5.4	1.7	6.8	6.9	1.9	
	Err		(5)	0.2	0.2	0.2	0.2	0.0	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.3	0.2	0.1	0.2	0.1	0.0	0.2	0.1	0.3	0.3	0.1	
Position	Decl.	(deg)	(4)	-29.49748	-29.54268	-29.50929	-29.53634	-29.57959	-29.49621	-29.65566	-29.56131	-29.64408	-29.58897	-29.55864	-29.67142	-29.60078	-29.62031	-29.52698	-29.56849	-29.55868	-29.55950	-29.60453	-29.57680	-29.65156	-29.55596	-29.71888	-29.49717	-29.53522	-29.55011	-29.49901	-29.58246	-29.60373	-29.67945	-29.56386	-29.47733	-29.70458	-29.61992	
	R. A.	(deg)	(3)	267.87243	267.87243	267.87244	267.87245	267.87258	267.87259	267.87274	267.87275	267.87279	267.87280	267.87287	267.87313	267.87318	267.87324	267.87328	267.87332	267.87344	267.87349	267.87355	267.87356	267.87416	267.87431	267.87441	267.87454	267.87474	267.87489	267.87496	267.87507	267.87529	267.87532	267.87537	267.87539	267.87550	267.87554	
Source	CXOU J		(2)	175129.38 - 292950.9	175129.38 - 293233.6	175129.38 - 293033.4	175129.38 - 293210.8	175129.41 - 293446.5	175129.42 - 292946.3	175129.45 - 293920.3	175129.45 - 293340.7	175129.46 - 293838.6	175129.47 - 293520.2	175129.48 - 293331.1	175129.55 - 294017.1	175129.56 - 293602.7	175129.57 - 293713.1	175129.58 - 293137.1	175129.59 - 293406.5	175129.62 - 293331.2	175129.63 - 293334.2	175129.65 - 293616.3	175129.65 - 293436.4	175129.79 - 293905.6	175129.83 - 293321.4	175129.85 - 294307.9	175129.88 - 292949.8	175129.93 - 293206.7	175129.97 - 293300.3	175129.99 - 292956.4	175130.01 - 293456.8	175130.06 - 293613.4	175130.07 - 294046.0	175130.08 - 293349.8	175130.09 - 292838.3	175130.11 - 294216.4	175130.12-293711.7	
	Seq	#	(1)	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	(contr.)

list
source
Chandra
A.1:
Table

	Source		Position				Extra	cted Co	unts				0	haracteri	istics	
Seq	CXOU J	R. A.	Decl.	Err	θ	Cnet Z	$\Delta C_{\rm net}$	$C'_{ m bkg}$ C	net,hard	PSF	PS $P_{\rm B}$	Anom	Var	EffExp	$E_{ m median}$	Photo $F_{\rm x}$
#		(deg)	(deg)	Ũ	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)	(16)	(17)	(18)
1089	175130.14 - 293144.0 26	7.87559 -	-29.52891	0.1	3.8	40.8	8.2	17.2	18.3	0.90	4.7 < -5	:	а	828.9	1.9	$6.0\! imes\!10^{-16}$
1090	175130.15 - 293633.3 26	.7.87566	-29.60926	0.1	1.3	15.5	5.1	5.5	0.3	0.90	2.7 < -5	: 60	÷	856.1	1.2	$1.5\! imes\!10^{-16}$
1091	175130.19 - 293636.7 26	7.87582	-29.61021	0.1	1.3	7.7	4.1	5.3	5.3	0.90	1.6 - 2.4	: 60	÷	854.4	3.1	$1.9 { imes} 10^{-16}$
1092	$175130.23 - 293133.1 \ 26$	- 00978.7	-29.52587	0.1	3.9	50.3	8.9	19.7	23.4	0.90	5.3 < -5	:	в	823.6	1.8	$7.0\! imes\!10^{-16}$
1093	175130.39 - 293220.4 26	- 99928.7	-29.53902	0.1	3.2	21.6	6.1	9.4	2.4	0.90	3.2 < -5	: 60	÷	824.7	1.3	$2.2 imes 10^{-16}$
1094	175130.44 - 293500.2 26	7.87684	-29.58342	0.1	0.8	16.4	5.3	6.6	2.0	0.90	2.8 < -5	:	ъ	884.3	1.0	$1.2 { imes} 10^{-16}$
1095	175130.49 - 293712.4 26	- 20778.7	-29.62012	0.1	1.9	24.3	6.1	6.7	11.9	0.90	3.7 < -5	50 60	÷	850.6	1.9	$3.6\! imes\!10^{-16}$
1096	175130.51 - 292724.0 26	7.87716	-29.45669	0.3	8.0	31.7	14.9	170.3	25.5	0.90	2.1 - 2.0	:	q	763.9	4.6	$1.2 { imes} 10^{-15}$
1097	175130.51 - 293200.0 26	7.87716	-29.53334	0.1	3.5	32.3	7.4	14.7	14.1	0.90	4.1 < -5	:	ъ	820.1	1.9	$4.8 { imes} 10^{-16}$
1098	175130.60 - 293306.2 26	7.87752	-29.55174	0.1	2.4	11.7	5.0	8.3	2.3	0.89	2.1 - 3.3	:	ъ	864.5	1.1	$9.6e{-}17$
1099	$175130.62 - 293227.7 \ 26$	- 657759 -	-29.54104	0.0	3.1	290.2	17.8	9.8	4.2	0.90	15.8 < -5	:	ъ	838.1	0.9	$2.0\! imes\!10^{-15}$
1100	$175130.62 - 293504.8 \ 26$	- 65778.7	-29.58469	0.1	0.8	13.1	4.9	5.9	0.0	0.89	2.4 - 4.6	:	ъ	847.6	0.8	$7.9e{-}17$
1101	175130.63 - 293600.3 26	7.87764	-29.60008	0.1	0.9	11.3	4.5	4.7	3.6	0.89	2.2 - 4.3	: Ю	÷	816.3	1.3	$1.3 { imes} 10^{-16}$
1102	175130.67 - 293429.2 26	- 087780 -	-29.57480	0.1	1.2	21.0	5.7	6.0	4.0	0.89	3.3 < -5	:	ъ	862.3	1.3	$2.0\! imes\!10^{-16}$
1103	175130.67 - 293441.5 26	- 087780 -	-29.57822	0.1	1.0	10.8	4.5	5.2	2.2	0.89	2.1 - 3.8	:	÷	884.6	1.4	1.1×10^{-16}
1104	$175130.67 - 293632.1 \ 26$	- 187781	-29.60893	0.1	1.3	31.6	6.6	5.4	17.1	0.89	4.4 < -5	: 20	÷	825.6	2.3	$6.2\! imes\!10^{-16}$
1105	175130.71 - 293120.3 26	- 00878.7	-29.52231	0.2	4.2	15.9	6.6	20.1	4.4	0.90	2.2 - 3.0	:	ъ	817.0	1.4	$1.8 { imes} 10^{-16}$
1106	175130.72 - 293323.0 26	7.87803 -	-29.55640	0.1	2.2	19.0	5.7	8.0	1.3	0.90	3.0 < -5	÷	q	873.7	1.3	$1.8 { imes} 10^{-16}$
1107	175130.73 - 293232.5 26	- 80878.7	-29.54238	0.0	3.0	453.0	22.0	10.0	325.1	0.90	20.1 < -5	:	ъ	845.9	3.0	$1.0 imes 10^{-14}$
1108	175130.74 - 294111.7 26	7.87811 -	-29.68659	0.2	5.8	33.8	10.8	70.2	21.2	0.90	3.0 - 3.9	50 60	÷	733.1	2.1	6.3×10^{-16}
1109	175130.77 - 293742.4 26	7.87823	-29.62846	0.1	2.4	10.9	4.9	8.1	3.0	0.90	2.0 - 3.0	: 60	÷	843.8	1.8	$1.6\! imes\!10^{-16}$
1110	175130.79 - 293908.8 26	7.87830	-29.65247	0.2	3.8	31.0	7.7	20.0	7.4	0.90	3.8 < -5	:	ъ	857.4	1.4	3.3×10^{-16}
1111	175130.80 - 293736.5 26	7.87837	-29.62682	0.0	2.3	722.1	27.5	7.9	387.1	0.90	25.8 < -5	: 60	÷	834.9	2.1	1.2×10^{-14}
1112	$175130.85 - 293204.1 \ 26$	7.87855	-29.53448	0.2	3.5	12.5	5.5	12.5	5.0	0.90	2.0 - 2.8	:	ъ	819.2	1.8	1.8×10^{-16}
1113	175130.87 - 293620.5 26	7.87863	-29.60571	0.1	1.2	13.5	4.8	4.5	1.6	0.89	2.5 < -5	: 60	÷	821.2	1.2	1.4×10^{-16}
1114	$175130.87 - 293627.1 \ 26$	7.87865	-29.60754	0.1	1.2	13.1	4.8	4.9	6.3	0.89	2.5 < -5	: 20	÷	792.5	1.8	$2.2 imes 10^{-16}$
1115	$175130.89 - 293915.9 \ 26$	7.87874	-29.65443	0.2	3.9	12.5	6.4	21.5	4.7	0.90	1.8 - 2.1	÷	ъ	855.9	1.5	1.4×10^{-16}
1116	175130.93 - 293508.1 26	- 06878.7	-29.58560	0.1	0.8	24.2	6.0	5.8	9.3	0.89	3.7 < -5	: 60	÷	803.8	1.6	3.1×10^{-16}
1117	175130.97 - 294000.5 26	- 90678.7	-29.66681	0.2	4.7	27.6	8.6	36.4	7.9	0.90	3.0 - 4.5	÷	ပ	836.6	1.3	$2.8 { imes} 10^{-16}$
1118	175130.98 - 293921.7 26	7.87912	-29.65604	0.1	4.0	106.6	11.9	22.4	0.0	0.90	8.6 < -5	:	в	854.3	1.0	8.1×10^{-16}
1119	$175131.00 - 293932.4 \ 26$	7.87917	-29.65902	0.2	4.2	39.7	8.6	25.3	9.0	0.90	4.3 < -5	:	q	850.6	1.7	$5.1\! imes\!10^{-16}$
1120	$175131.01 - 293335.7 \ 26$	7.87923 -	-29.55994	0.1	2.0	18.7	5.7	8.3	5.4	0.91	3.0 < -5	:	q	885.7	1.7	2.3×10^{-16}
1121	175131.02 - 293430.5 26	7.87927	-29.57516	0.1	1.2	12.2	4.8	5.8	5.2	0.89	2.3 - 4.3	:	в	865.5	1.9	$1.7 { imes} 10^{-16}$
1122	175131.04 - 293718.5 26	7.87937 -	-29.62181	0.1	2.0	13.9	5.0	6.1	1.2	0.90	2.5 < -5	: 60	÷	839.0	0.9	$1.0\! imes\!10^{-16}$
(cont.)																

	ian Photo $F_{\rm x}$	') (ergs $s^{-1} cm^{-2}$)	(18)	1.6×10^{-15}	3.3×10^{-16}	$2.2 imes 10^{-16}$	1.9×10^{-16}	1.2×10^{-16}	6.3×10^{-16}	$9.1e{-}17$	1.0×10^{-15}	$5.0 imes 10^{-16}$	$2.9 imes 10^{-16}$	$3.5 imes 10^{-15}$	5.4×10^{-16}	$6.6 imes 10^{-16}$	4.6×10^{-16}	7.9×10^{-16}	1.1×10^{-16}	$9.2\mathrm{e}{-17}$	$2.7 imes 10^{-16}$	1.3×10^{-16}	$9.3\mathrm{e}{-17}$	$7.7 imes 10^{-16}$	1.9×10^{-16}	$2.6 imes 10^{-16}$	$1.5 imes 10^{-15}$	4.0×10^{-16}	$3.0 imes 10^{-16}$	7.9×10^{-14}	6.4×10^{-16}	4.0×10^{-16}	1.6×10^{-16}	$2.5 imes 10^{-16}$	$2.5 imes 10^{-16}$	2.3×10^{-16}	3.1×10^{-16}	
ristics	$E_{\rm medi}$	(keV)	(17)	1.6	1.6	2.2	1.5	1.3	2.6	1.2	1.7	2.7	1.6	3.0	1.5	1.4	2.3	1.6	1.3	1.0	1.5	1.3	1.4	2.7	2.7	1.3	3.0	1.7	2.3	3.3	2.0	1.9	1.1	1.2	1.9	1.9	4.0	
tharacte	EffExp	(ks)	(16)	840.9	877.9	874.1	762.1	850.2	883.5	864.0	778.9	649.7	791.1	793.7	880.5	880.8	826.1	620.7	630.0	878.3	798.4	820.7	829.9	786.1	831.2	832.6	789.8	826.0	882.3	793.8	851.6	881.8	876.3	794.7	811.8	805.2	845.7	
0	Var		(15)	а	а	q	÷	а	а	а	а	ł	i	а	ပ	а	а	÷	i	а	÷	ł	÷	q	i	ł	ł	q	а	q	а	q	а	÷	i	ł	в	
	Anom		(14)	:	÷	i	: 60	i	i	÷	÷	: 60	: 60	:	i	÷	:	: 60	: 60	i	: 60	: 60	: 60	÷	: 60	: 60	: 60	:	i	÷	÷	:	÷	: 60	: 60	: 60	:	
	$P_{\rm B}$.		(13)	~ -5	$\stackrel{<}{\sim}$	-4.2	~ -5	-2.0	~ -5	-3.4	~ -5	$\stackrel{<}{\sim}$	~ -5	~ -5	~ -5	~ -5	-3.0	-3.8	-3.4	-3.7	~ -5	-4.3	-2.5	-3.4	~ -5	-4.0	~ -5	~ -5	~ -5	$\stackrel{>}{\sim}$	~ -5	$\stackrel{<}{\sim}$	~ -5	~ -5	-3.1	-4.3	-3.4	
	\mathbf{PS}	Frac	(12)	9.9	4.0	2.4	2.6	1.8	4.5	2.0	4.5	3.2	3.3	8.8	5.7	6.8	2.5	2.8	1.8	2.2	3.3	2.2	1.7	2.8	2.9	2.2	5.7	3.9	3.0	52.5	5.1	4.1	3.2	3.5	2.3	2.4	2.0	
	\mathbf{PSF}		(11)	0.89	0.90	0.89	0.90	0.89	0.89	0.90	0.64	0.89	0.90	0.90	0.89	0.89	0.90	0.50	0.90	0.91	0.89	0.89	0.89	0.90	0.90	0.90	0.90	0.90	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.90	0.90	
ounts	$\sigma_{\rm net,hard}$		(10)	40.2	10.4	6.7	5.6	2.8	23.1	0.0	17.5	10.7	8.2	99.1	13.5	14.3	14.0	8.9	0.0	2.5	4.6	0.5	1.5	25.0	11.3	0.0	48.1	10.1	11.3	2276.9	22.2	12.9	3.2	2.8	8.0	5.9	9.0	
acted Co	$C'_{\rm bkg}$ ()	(6)	10.3	7.7	7.5	5.5	20.0	6.0	5.7	52.3	3.7	5.1	76.2	7.9	5.8	53.9	34.8	3.0	8.2	4.0	4.7	5.2	87.7	5.9	5.6	33.4	12.6	5.4	51.7	9.9	6.7	5.7	6.2	19.0	8.1	5.7	
Extre	ΔC_{net}		(8)	12.2	6.5	5.1	5.0	6.2	6.8	4.5	10.7	5.2	5.5	15.3	8.1	8.9	9.5	8.3	3.9	5.1	5.4	4.5	4.1	11.7	5.3	4.7	10.3	7.0	5.3	54.9	7.7	6.5	5.5	5.9	6.5	5.2	4.5	
	$C_{\rm net}$		(2)	126.7	28.3	13.5	14.5	12.0	33.0	10.3	50.7	18.3	19.9	139.8	49.1	64.2	25.1	24.2	8.0	12.8	20.0	11.3	7.8	34.3	17.1	11.4	61.6	29.4	17.6	2908.3	42.1	29.3	19.3	22.8	16.0	13.9	10.3	
	θ	S	(9)	3.2	2.2	2.4	0.8	3.2	1.1	1.5	7.7	0.8	1.8	6.4	2.5	1.1	5.2	8.1	0.9	2.0	1.0	1.2	1.3	6.6	1.6	1.4	4.9	3.4	1.1	5.6	3.1	1.8	1.0	2.2	3.9	2.7	1.4	
	Err	<i>"</i>	(2)	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.3	0.1	0.1	0.2	0.1	0.0	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.1	0.2	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.1	
Position	Decl.	(deg)	(4)	-29.53805	-29.55512	-29.55312	-29.58614	-29.64264	-29.57874	-29.56914	-29.46212	-29.58942	-29.61776	-29.48555	-29.55103	-29.57961	-29.67591	-29.72644	-29.59339	-29.56100	-29.59995	-29.60377	-29.60657	-29.48208	-29.61325	-29.60896	-29.51068	-29.53477	-29.58057	-29.49918	-29.54005	-29.56402	-29.58333	-29.62315	-29.65256	-29.63258	-29.57247	
	R. A.	(deg)	(3)	267.87951	267.87961	267.87966	267.87968	267.87989	267.88014	267.88031	267.88051	267.88060	267.88064	267.88068	267.88075	267.88093	267.88098	267.88109	267.88125	267.88141	267.88141	267.88141	267.88149	267.88157	267.88163	267.88164	267.88170	267.88182	267.88194	267.88201	267.88205	267.88235	267.88240	267.88244	267.88252	267.88262	267.88267	
Source	CXOU J		(2)	175131.08 - 293216.9	175131.10 - 293318.4	175131.11 - 293311.2	175131.12 - 293510.1	175131.17 - 293833.5	175131.23 - 293443.4	175131.27 - 293408.9	175131.32 - 292743.6	175131.34 - 293521.9	175131.35 - 293703.9	175131.36 - 292907.9	175131.37 - 293303.7	175131.42 - 293446.5	175131.43 - 294033.2	175131.46 - 294335.1	175131.50 - 293536.1	175131.53 - 293339.5	175131.53 - 293559.8	175131.53 - 293613.5	175131.55 - 293623.6	175131.57 - 292855.4	175131.59 - 293647.6	175131.59 - 293632.2	175131.60 - 293038.4	175131.63 - 293205.1	175131.66 - 293450.0	175131.68 - 292957.0	175131.69 - 293224.1	175131.76 - 293350.4	175131.77 - 293459.9	175131.78 - 293723.3	175131.80 - 293909.2	175131.82 - 293757.3	175131.84 - 293420.8	
	Seq	#	(1)	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	(cont.)

list
source
Chandra
A.1:
Table

(7) (8) (9) (10) (11) $$ 9.4 4.1 3.6 0.7 0.86 $$ 9.4 4.1 3.6 0.7 0.86 $$ 10.1 9.2 34.9 24.7 0.51 $$ 10.7 7.6 0.90 0.90 $$ 11.2 7.6 10.7 7.6 0.90 $$ 11.2 7.6 11.2 7.6 0.90 $$ 11.2 7.6 13.7 3.2 0.90 $$ 11.10 73.9 3.4 0.90 0.90 $$ 11.10 73.9 3.7 3.5 0.90 0.90 $$ 3.7 3.5 3.7 3.5 0.90 0.90 $$ 11.0 7.7 8.7 3.7 0.90 0.90 $$ $11.0.7$ 7.5 8.7 <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9.4 4.1 3.6 0.7 0.88 $$ 10.1 9.2 34.9 24.7 0.51 $$ 10.64 11.2 7.6 70.2 0.88 $$ 23.3 6.4 10.7 7.6 0.90 $$ 15.2 6.7 22.8 6.4 0.86 $$ 11.2 5.6 13.7 3.2 0.90 $$ 11.2 5.6 13.7 3.5 0.90 $$ 11.2 7.6 12.3 3.6 0.90 $$ 6.5 3.7 3.5 3.6 0.90 $$ 6.5 11.0 73.9 3.4 0.90 $$ 6.5 11.0 73.9 3.4 0.90 $$ 6.5 11.0 73.9 3.4 0.90 $$ 6.5 $11.0.7$ 79.5 0.90 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 40.1 9.2 34.9 24.7 0.51 16 106.4 11.2 7.6 70.2 0.86 1.3 23.3 6.4 10.7 7.6 0.90 1.4 15.2 6.7 22.8 6.4 0.86 1.6 1.1 6.1 11.7 7.6 0.90 1.8 61.9 10.7 7.6 0.90 1.8 61.9 10.0 28.1 2.1 0.90 1.8 61.9 10.0 28.1 27.6 0.90 1.8 84.1 11.0 73.9 3.4 0.90 1.8 82.5 12.8 82.5 49.5 0.97 1.8 85.5 10.7 79.5 0.97 0.90 1.8 82.5 49.5 0.26 0.97 0.96 1.7 79.5 82.7 0.90 0.90 0.90 1.4 9.0 71.7 82.7 0.90 0.90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9 12.3 5.0 7.7 8.7 0.91 8 34.1 11.0 73.9 3.4 0.90 5 12.5 12.8 82.5 49.5 0.76 5 18.6 5.5 6.4 0.0 0.90 5 18.6 5.5 6.4 0.0 0.90 5 18.6 5.5 6.4 0.0 0.90 5 18.3 5.5 6.4 0.0 0.90 7 147.7 15.3 69.3 10.7 0.86 7 147.7 15.3 69.3 0.90 0.90 7 22.3 7.8 29.7 0.86 0.96 7 22.3 7.8 29.7 0.86 0.96 7 22.3 7.8 29.7 0.86 0.96 7 22.3 7.2 20.5 6.2 0.96 7 22.3 13.2 12.30 0.86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 2 5 8 5 5 8 7 7 8 7 7 8 7 7 8 7 7 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0 1.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 1.7 2.7 2.7 1.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0.0.1.4 1.0.0.1 1.0.0.1.4 1.0.1 1.0.0.0.1 1.0.0.0.1 1.0.0.0.1 1.0.0.0.1 1.0.0.0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.7 1.4 1.4 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4 7.5 7.5 7.5 7.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
$ \begin{bmatrix} 7 & 22.3 & 7.8 & 29.7 & 6.4 & 0.87 \\ 25 & 13.0 & 5.1 & 8.6 & 45.3 & 6.9 & 0.66 \\ 25 & 13.0 & 5.1 & 8.0 & 4.2 & 0.86 \\ 10 & 23.5 & 7.2 & 20.5 & 6.2 & 0.96 \\ 23.5 & 13.5 & 112.4 & 32.7 & 0.86 \\ 33 & 68.1 & 13.2 & 90.9 & 3.0 & 0.90 \\ 28 & 33.0 & 7.0 & 9.0 & 16.8 & 0.86 \\ 72 & 88.0 & 16.0 & 147.0 & 63.9 & 0.90 \\ 25 & 15.0 & 5.2 & 7.0 & 3.5 & 0.90 \\ 25 & 15.0 & 5.2 & 7.0 & 3.5 & 0.90 \\ 22 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 24 & 7.1 & 4.7 & 0.90 \\ 25 & 15.0 & 5.2 & 7.0 & 3.5 & 0.86 \\ 25 & 15.0 & 5.2 & 7.0 & 3.5 & 0.86 \\ 28 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 28 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 28 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 28 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 4.8 & 7.1 & 4.7 & 0.90 \\ 20 & 10.9 & 10.9 & 10.8 & 0.80 \\ 20 & 10.9 & 10.9 & 10.9 & 10.9 \\ 20$	4.7 7.5 2.5 4.0 1.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.9 2.5 4.0 1.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 4.C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.7
2.2 10.9 4.8 7.1 4.7 0.90	2.5
	2.2
1.8 8.8 4.5 7.2 2.9 0.90	1.5
5.8 28.5 9.8 56.5 8.5 0.8 ^c	2 5.8
2.7 40.2 7.5 8.8 25.1 0.86	0.1 2.7
1.3 31.6 8.0 23.4 24.9 0.89 0.86 0.	.2 4.5

	an Photo $F_{\mathbf{x}}$) (ergs $s^{-1} cm^{-2}$)	(18)	1.5×10^{-16}	3.4×10^{-15}	3.2×10^{-16}	$5.6 imes 10^{-16}$	5.1×10^{-15}	1.9×10^{-16}	$2.0 imes 10^{-16}$	$9.7e{-}17$	4.1×10^{-16}	8.7×10^{-16}	3.9×10^{-16}	1.1×10^{-15}	3.8×10^{-15}	1.7×10^{-16}	1.2×10^{-16}	3.1×10^{-16}	7.6×10^{-15}	7.4×10^{-16}	1.6×10^{-16}	9.3×10^{-16}	4.6×10^{-16}	1.2×10^{-15}	1.7×10^{-15}	1.5×10^{-16}	5.8×10^{-15}	$3.0 imes 10^{-16}$	1.1×10^{-16}	2.9×10^{-16}	2.4×10^{-16}	2.2×10^{-16}	$5.6 imes 10^{-15}$	1.6×10^{-15}	$9.6 imes 10^{-16}$	2.8×10^{-15}	
eristics	$E_{\rm medi}$	(keV)	(17)	1.6	1.7	2.0	1.7	2.6	1.5	1.4	1.2	3.9	2.0	1.4	3.8	1.5	1.4	1.4	1.2	2.8	1.1	2.2	2.4	1.6	3.5	1.2	1.5	1.8	1.1	1.3	1.9	1.7	1.3	3.6	2.6	1.1	2.2	
Characte	· EffExt	(ks)	(16)	844.2	864.5	869.5	774.1	856.5	841.3	803.6	843.3	707.4	785.8	805.9	736.9	223.4	819.5	865.0	767.5	759.5	857.9	652.3	801.2	648.4	781.3	821.2	841.9	853.8	840.4	852.0	725.6	853.1	822.2	833.8	790.8	854.3	767.3	
	Var		(15)	в	÷	в	÷	q	а	i	ъ	÷	i	÷	а	i	i	g	а	c	q	i	g	÷	ъ	÷	ъ	÷	ł	5	÷	÷	g	ъ	÷	÷	:	
	Anom		(14)	:	50 60	÷	: 60	÷	÷	: 50	:	50 60	50 60	50 60	÷	50 60	50 60	:	÷	÷	:	: :00	÷	: 60	÷	50 60	÷	: 60	: 60	÷	50 60	50 60	÷	:	50 60	50 60	ы 190	
	$P_{\rm B}$		(13)	-4.1	~ -5	~ -5	-3.8	~ -5	-4.4	-3.2	-3.0	-4.5	~ -5	-2.1	~ -5	~ -5	-3.2	-4.1	-2.7	~ -5	~ -5	-2.5	~ -5	~ -5	$\stackrel{<}{\sim}$	~ -5	\sim -5	~ -5	\sim -5	-3.5	~ -5	~ -5	-2.1	~ -5	~ -5	~ -5	$\stackrel{<}{\sim}$	
	\mathbf{PS}	$\mathbf{F}\mathbf{rac}$	(12)	2.2	14.9	3.8	2.7	16.9	2.6	2.3	2.0	2.2	4.8	1.8	5.3	5.0	2.2	2.2	2.5	24.7	4.3	1.6	4.2	4.2	6.1	6.6	2.8	19.1	3.9	2.2	3.2	3.5	1.9	13.0	6.5	9.2	10.9	
	PSF		(11)	0.90	0.90	0.91	0.90	0.90	0.90	0.89	0.89	0.90	0.90	0.90	0.83	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.74	0.90	0.90	0.90	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
ounts	$\sigma_{\rm net,hard}$		(10)	4.0	94.8	13.0	8.8	208.8	4.0	4.9	2.0	8.6	25.5	0.0	83.5	14.3	3.0	3.1	0.2	536.7	2.3	3.8	31.8	9.0	57.8	5.9	2.0	169.3	1.7	3.8	8.3	8.2	2.1	179.1	46.8	13.1	95.9	
cted C	$C'_{\rm bkg}$)	(6)	6.0	6.6	7.3	31.8	20.0	12.2	18.7	7.5	4.0	32.4	18.2	124.8	61.4	13.9	5.4	90.2	165.4	14.8	3.9	56.5	3.5	55.8	5.8	5.0	7.3	6.1	9.2	5.8	7.9	29.5	5.3	24.8	6.8	54.2	
Extra	ΔC_{net}		(8)	4.8	16.7	6.3	8.0	19.4	5.9	6.5	4.8	4.4	9.6	6.0	15.1	11.7	5.8	4.7	11.6	31.5	7.6	3.9	10.8	6.2	12.1	8.7	5.1	20.9	6.3	5.2	5.5	6.1	7.2	14.9	10.3	11.2	15.8	
	$C_{\rm net}$ 2		(2)	12.0	256.4	25.7	23.2	338.0	16.8	16.3	10.5	11.0	48.6	11.8	83.2	61.6	14.1	11.6	29.8	790.6	35.2	7.1	47.5	28.5	76.2	61.2	16.0	408.7	26.9	12.8	19.2	23.1	14.5	200.7	70.2	108.2	176.8	
	θ	S	(9)	1.5	1.6	1.9	4.7	4.0	3.5	3.4	2.4	1.2	4.6	3.6	8.0	8.6	3.2	1.4	6.6	7.5	3.7	1.2	5.7	1.3	6.7	1.6	1.3	2.2	1.6	3.0	1.2	2.3	4.8	1.5	4.2	1.5	5.4	
	Err	<i>(</i>)	(5)	0.1	0.0	0.1	0.2	0.1	0.2	0.2	0.1	0.1	0.2	0.2	0.3	0.4	0.2	0.1	0.3	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.0	0.1	0.2	0.1	0.1	0.2	0.0	0.1	0.0	0.1	
Position	Decl.	(deg)	(4)	-29.57266	-29.61008	-29.56376	-29.66690	-29.52531	-29.53543	-29.64283	-29.55416	-29.59617	-29.66496	-29.64735	-29.45948	-29.44423	-29.63918	-29.57691	-29.48193	-29.71323	-29.53169	-29.59110	-29.49718	-29.59327	-29.69960	-29.57399	-29.58284	-29.62180	-29.60850	-29.54529	-29.58576	-29.62304	-29.51295	-29.57524	-29.65694	-29.60568	-29.67800	
	R.A.	(deg)	(3)	267.88545	267.88554	267.88584	267.88585	267.88586	267.88628	267.88645	267.88675	267.88683	267.88732	267.88735	267.88736	267.88739	267.88740	267.88746	267.88754	267.88772	267.88774	267.88782	267.88800	267.88809	267.88842	267.88843	267.88844	267.88853	267.88857	267.88858	267.88871	267.88871	267.88872	267.88881	267.88912	267.88922	267.88943	
Source	CXOU J		(2)	175132.50 - 293421.5	175132.52 - 293636.2	175132.60 - 293349.5	$175132.60\!-\!294000.8$	175132.60 - 293131.1	175132.70 - 293207.5	175132.74 - 293834.2	175132.82 - 293314.9	175132.83 - 293546.2	175132.95 - 293953.8	175132.96 - 293850.4	175132.96 - 292734.1	175132.97 - 292639.2	175132.97 - 293821.0	175132.99 - 293436.8	175133.00 - 292854.9	175133.05 - 294247.6	175133.05 - 293154.0	175133.07 - 293527.9	175133.11 - 292949.8	175133.14 - 293535.7	175133.22 - 294158.5	175133.22 - 293426.3	175133.22 - 293458.2	175133.24 - 293718.4	175133.25 - 293630.6	175133.25 - 293243.0	175133.29 - 293508.7	175133.29 - 293722.9	175133.29 - 293046.6	$175133.31\!-\!293430.8$	175133.38 - 293924.9	175133.41 - 293620.4	175133.46 - 294040.7	
	Seq	#	(1)	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	(cont.)

list
source
Chandra
A.1:
Table

1	Source		Position			1	Extra	cted Co	unts		1 7			haracteri	istics	1																						
Seq	CXOUJ	R. A.	Decl.	Err	θ	C _{net} A	$C_{\rm net}$	$C'_{\rm bkg}$ C	net,hard	PSF	PS $P_{\rm B}$	Anon	l Var	EHEXP	$E_{ m median}$	Photo $F_{\mathbf{x}}$																						
#		(deg)	(deg)	£	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$																						
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)	(16)	(17)	(18)																						
1225	$175133.46 - 293400.8 \ 26$	7.88944	-29.56689	0.0	1.9	151.5	13.1	7.5	63.5	0.91	11.1 < -5	:	c	850.0	1.7	$2.5 imes 10^{-15}$																						
1226	$175133.52 - 294150.9 \ 26$	7.88970	-29.69748	0.2	6.6	102.6	13.3	58.4	79.3	0.77	7.4 <-5	 	:	768.1	3.1	3.3×10^{-15}																						
1227	$175133.53 - 293515.5 \ 26$	7.88974	-29.58765	0.1	1.3	54.7	8.2	4.3	2.5	0.89	6.3 < -5	ы. Э	:	645.8	1.1	$6.0\! imes\!10^{-16}$																						
1228	$175133.58 - 293825.9 \ 26$	7.88992	-29.64054	0.1	3.3	53.4	8.8	14.6	41.3	0.90	5.7 < -5	 	:	816.4	3.8	$1.8 { imes} 10^{-15}$																						
1229	$175133.60 - 293134.5 \ 26$	7.89003	-29.52627	0.0	4.0	379.5	20.6	23.5	262.5	0.90	18.0 < -5	:	q	836.5	3.0	$8.7 { imes} 10^{-15}$																						
1230	$175133.65 - 293516.5 \ 26$	7.89021	-29.58792	0.1	1.3	6.6	3.9	4.4	1.6	0.89	1.5 - 2.5	ы ш	:	648.6	1.0	$1.8 { imes} 10^{-16}$																						
1231	$175133.65 - 293313.1 \ 26$	7.89023	-29.55365	0.0	2.6	318.8	18.6	8.2	195.6	0.89	16.7 < -5	:	а.	864.4	2.8	2.4×10^{-15}																						
1232	175133.66 - 293708.0 26	7.89029	-29.61889	0.1	2.2	7.8	4.4	7.2	3.3	0.90	1.6 - 2.1	50 -	:	838.5	1.9	$1.2 { imes} 10^{-16}$																						
1233	175133.68 - 293955.2 26	7.89035	-29.66534	0.2	4.7	19.5	7.8	32.5	10.9	0.90	2.3 - 2.6	 	:	771.0	2.0	$3.7 imes 10^{-16}$																						
1234	175133.68 - 294022.0 26	7.89035	-29.67279	0.2	5.1	35.2	9.5	44.8	1.4	0.90	3.5 < -5	 	:	782.6	1.2	$3.8 imes 10^{-16}$																						
1235	175133.69 - 293804.7 26	7.89038	-29.63464	0.1	3.0	44.0	7.9	11.0	21.1	0.89	5.2 < -5	 00	:	839.4	2.0	$7.2 imes 10^{-16}$																						
1236	175133.72 - 293744.9 26	7.89052	-29.62917	0.1	2.7	17.6	5.6	8.4	8.9	0.89	2.8 < -5	: :: ::	:	851.5	2.0	$2.8 imes 10^{-16}$																						
1237	$175133.74 - 293308.9 \ 26$	7.89062	-29.55249	0.1	2.6	68.7	9.3	8.3	42.4	0.90	7.0 < -5	:	a	844.8	2.3	$1.2 { imes} 10^{-15}$																						
1238	175133.76 - 293442.5 26	7.89070	-29.57849	0.1	1.5	29.6	6.5	6.4	12.9	0.90	4.2 < -5	:	c	869.8	1.9	$4.1\! imes\!10^{-16}$																						
1239	175133.78 - 293652.4 26	77068.7	-29.61456	0.1	2.0	26.3	6.3	6.7	5.9	0.90	3.9 < -5	 00	:	854.6	1.4	$2.9 imes 10^{-16}$																						
1240	175133.81 - 293109.5 26	7.89089	-29.51933	0.2	4.4	17.1	7.1	25.9	3.2	0.90	2.2 - 2.8	:	a	829.9	1.2	$1.6\! imes\!10^{-16}$																						
1241	175133.82 - 293423.0 26	7.89094	-29.57306	0.1	1.7	14.7	5.0	5.3	8.2	0.90	2.6 < -5		:	810.5	2.0	$2.3 { imes} 10^{-16}$																						
1242	$175133.82 - 293431.6\ 26$	7.89095	-29.57547	0.1	1.6	66.2	9.0	5.8	44.0	0.90	5-> 6.9	 	:	822.2	2.5	$1.3 { imes} 10^{-15}$																						
1243	175133.84 - 293201.5 26	7.89104	-29.53376	0.1	3.6	29.3	7.1	13.7	8.7	0.90	3.8 < -5	:	с	839.7	1.4	$3.2 imes 10^{-16}$																						
1244	175133.96 - 292754.3 26	7.89154	-29.46511	0.1	7.6	406.3	24.4	158.7	297.0	0.90	16.3 < -5	:	q	772.6	3.2	1.1×10^{-14}																						
1245	$175133.98 - 293550.2 \ 26$	7.89161	-29.59730	0.1	1.5	21.4	5.6	4.6	9.3	0.90	3.5 < -5	 	:	784.9	1.9	$3.5\! imes\!10^{-16}$																						
1246	$175134.00 - 293338.6 \ 26$	7.89167	-29.56073	0.1	2.2	13.7	5.1	7.3	1.7	0.90	2.4 - 4.4	:	в.	852.7	1.5	$1.6\! imes\!10^{-16}$																						
1247	175134.00 - 293634.7 26	7.89168	-29.60965	0.1	1.8	8.9	4.4	6.1	4.1	0.90	1.8 - 2.7	ب ۳	:	858.9	2.0	1.4×10^{-16}																						
1248	175134.01 - 293900.1 26	7.89171	-29.65003	0.1	3.8	87.2	10.9	20.8	60.4	0.90	7.6 < -5	 	:	810.9	2.7	2.1×10^{-15}																						
1249	175134.03 - 293826.3 26	7.89181	-29.64064	0.1	3.3	84.3	10.5	15.7	52.0	0.90	7.6 < -5	 	:	838.3	2.7	$1.8 { imes} 10^{-15}$																						
1250	175134.04 - 292834.4 26	7.89184	-29.47623	0.2	7.0	67.1	13.9	109.9	44.0	0.90	4.6 < -5	:	с	794.3	2.7	1.5×10^{-15}																						
1251	175134.05 - 292928.6 26	7.89191	-29.49130	0.3	6.1	24.3	10.2	66.7	16.8	0.89	2.3 - 2.5	:	ъ	795.6	2.2	$4.5 imes 10^{-16}$																						
1252	$175134.06 - 293103.9 \ 26$	7.89194	-29.51776	0.0	4.6 1	390.3	38.2	26.7	840.8	0.90	36.0 < -5	:	с	823.2	2.5	$2.8{ imes}10^{-14}$																						
1253	175134.09 - 293752.7 26	7.89206	-29.63132	0.2	2.8	16.8	5.6	9.2	2.7	0.89	2.7 < -5	 	1	834.5	1.5	$2.1\! imes\!10^{-16}$																						
1254	$175134.09 - 294200.8 \ 26$	7.89206	-29.70023	0.2	6.8	97.8	14.7	101.2	58.4	0.88	6.4 < -5	ы. Э	:	743.7	2.6	$2.5 imes 10^{-15}$																						
1255	$175134.10 - 293416.9 \ 26$	7.89209	-29.57138	0.1	1.8	18.3	5.4	5.7	9.0	0.90	3.1 < -5	:	а.	839.4	1.7	2.4×10^{-16}																						
1256	$175134.15 - 292713.8 \ 26$	7.89233	-29.45384	0.3	8.3	52.5	16.1	185.5	34.0	0.90	3.2 - 4.0	 8	:	690.5	2.4	$1.2 { imes} 10^{-15}$																						
1257	175134.17 - 293909.0 26	7.89241	-29.65251	0.1	4.0	95.0	11.5	25.0	24.9	0.90	3-> 6.7		1	809.0	1.4	$1.2 { imes} 10^{-15}$																						
1258	$175134.19 - 293018.5 \ 26$	7.89246	-29.50516	0.2	5.3	30.2	9.3	44.8	19.4	0.90	3.1 - 4.5	:	а	805.8	2.5	6.2×10^{-16}																						
$\overline{(cont.)}$																																						
	$_{\rm n}$ Photo $F_{\rm x}$	$(ergs s^{-1} cm^{-2})$	(18)	$3.8 imes 10^{-16}$	4.6×10^{-16}	1.2×10^{-16}	4.8×10^{-16}	$3.0\! imes\!10^{-16}$	$8.2 imes 10^{-16}$	$3.5 imes 10^{-16}$	4.3×10^{-16}	$2.7 imes 10^{-16}$	$1.5 imes 10^{-16}$	1.7×10^{-15}	$9.8 imes 10^{-16}$	$4.2 imes 10^{-16}$	2.3×10^{-16}	$2.0\! imes\!10^{-16}$	$2.0\! imes\!10^{-16}$	$4.2 imes 10^{-16}$	$6.7 imes 10^{-16}$	$1.0 imes 10^{-15}$	2.8×10^{-16}	1.3×10^{-15}	$3.0\! imes\!10^{-16}$	$3.7 imes 10^{-15}$	1.1×10^{-16}	$2.0 imes 10^{-15}$	$3.5 imes 10^{-16}$	1.2×10^{-15}	4.9×10^{-16}	1.4×10^{-16}	$9.1e{-17}$	1.9×10^{-15}	6.5×10^{-15}	1.4×10^{-16}	2.1×10^{-16}	
----------	------------------------------	---------------------------------------	------	----------------------	-----------------------	-----------------------	-----------------------	------------------------	----------------------	----------------------	-----------------------	----------------------	----------------------	-----------------------	----------------------	----------------------	-----------------------	------------------------	------------------------	----------------------	----------------------	----------------------	-----------------------	-----------------------	------------------------	----------------------	-----------------------	----------------------	----------------------	-----------------------	-----------------------	-----------------------	----------------------	-----------------------	-----------------------	-----------------------	-----------------------	---------
ristics	$E_{\rm media}$	(keV)	(17)	1.8	3.1	1.8	1.6	1.4	1.5	1.7	1.1	1.6	2.3	2.8	1.9	2.3	2.6	1.2	1.7	1.9	1.7	3.5	1.5	3.7	1.6	1.4	1.2	1.0	2.8	3.0	1.8	1.4	1.2	2.2	3.2	1.6	3.2	
Characte	· EffExp	(ks)	(16)	850.6	830.1	862.9	807.0	870.7	827.8	810.4	852.0	836.7	849.4	849.6	792.9	868.4	824.6	862.3	793.2	844.2	850.2	855.9	832.4	758.4	859.6	834.1	839.7	826.9	824.5	749.2	861.3	848.8	850.4	837.3	832.8	656.9	857.7	
	Var		(15)	÷	÷	5	÷	ъ	q	i	ъ	U	i	g	÷	в	÷	в	i	в	÷	а	i	÷	5	U	i	÷	ъ	ł	ъ	ъ	5	ъ	÷	÷	в	
	Anom		(14)	: :00	: 60	÷	50 60	:	:	ы 60	:	:	: 60	:	50 50	:	50 60	:	: :00	:	50 60	:	ы 60	: 60	÷	:	ы 60	: 60	:	: 60	:	÷	÷	:	: 60	: 60	:	
	$P_{\rm B}$		(13)	~ -5	~ -5	-3.3	~ -5	~ -5	~ -5	-4.4	~ -5	~ -5	-2.0	~ -5	~ -5	~ -5	-2.1	~ -5	~ -5	~ -5	~ -5	~ -5	-4.9	-4.1	~ -5	~ -5	-3.6	~ -5	-2.0	-4.2	~ -5	-3.5	-2.1	~ -5	~ -5	-2.9	-2.2	
	\mathbf{PS}	Frac	(12)	3.8	2.8	1.9	4.5	3.8	6.3	2.9	4.6	4.0	1.6	7.6	5.0	3.7	1.7	3.5	2.6	3.8	5.7	4.9	3.0	3.1	4.0	15.7	2.1	13.8	1.9	3.1	4.7	2.2	1.7	8.7	14.3	1.8	1.6	
	PSF		(11)	0.90	0.89	0.90	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.89	0.90	0.90	0.89	0.91	0.90	0.90	0.89	0.90	0.88	0.90	0.87	0.89	0.90	0.89	0.90	0.90	0.87	0.89	0.90	0.89	0.89	0.90	0.89	
ounts	$C_{\rm net,hard}$		(10)	11.0	12.8	2.5	12.0	6.8	17.7	6.2	4.2	11.5	4.4	54.4	26.1	12.5	8.5	1.5	4.9	14.2	16.7	23.2	4.6	30.2	9.0	58.6	2.1	6.0	11.4	37.4	12.5	0.0	0.3	56.2	200.0	3.7	5.5	
teted C	$C'_{ m bkg}$)	(6)	6.9	8.0	4.7	19.5	7.4	27.7	28.0	9.4	16.1	8.1	11.4	55.8	7.3	13.6	7.2	6.3	14.7	8.1	5.6	20.4	92.5	6.6	22.1	6.7	14.7	37.1	128.3	7.2	10.6	13.0	21.9	11.5	5.2	8.4	
Extra	ΔC_{net}		(8)	6.3	5.5	4.3	8.2	6.3	10.4	7.8	7.2	7.5	4.5	10.2	11.3	6.2	5.5	6.0	5.1	7.2	8.1	7.1	7.1	12.1	6.4	18.4	4.8	16.2	7.9	13.8	7.1	5.4	5.3	11.9	16.5	4.3	4.7	
	$C_{\rm net}$ 2		(2)	26.1	17.0	9.3	39.5	25.6	69.3	24.0	35.6	31.9	7.9	81.6	59.2	24.7	10.4	22.8	14.7	29.3	48.9	37.4	22.6	39.5	27.4	296.9	11.3	230.3	15.9	44.7	35.8	13.4	10.0	108.1	243.5	8.8	8.6	
	θ	S	(9)	1.9	2.6	1.6	3.9	2.3	4.7	4.4	2.6	3.8	2.4	3.1	5.5	2.2	3.3	2.0	1.6	3.7	2.6	1.7	3.9	6.5	2.3	4.4	1.9	3.4	5.1	7.0	2.3	3.1	3.6	4.2	3.2	1.6	2.5	
	Err	$\tilde{\boldsymbol{\boldsymbol{y}}}$	(2)	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.1	0.1	0.1	0.1	0.3	0.3	0.1	0.2	0.2	0.1	0.0	0.1	0.2	
Position	Decl.	(deg)	(4)	-29.61087	-29.62744	-29.58024	-29.64958	-29.56088	-29.51607	-29.66016	-29.55360	-29.53177	-29.62115	-29.54418	-29.67845	-29.56433	-29.63904	-29.56873	-29.58286	-29.53415	-29.62605	-29.60263	-29.64963	-29.69566	-29.56055	-29.52193	-29.60938	-29.64065	-29.50993	-29.70393	-29.56101	-29.54529	-29.53665	-29.52423	-29.63604	-29.59474	-29.55772	
	R.A.	(deg)	(3)	267.89259	267.89280	267.89289	267.89325	267.89328	267.89332	267.89341	267.89346	267.89348	267.89356	267.89364	267.89380	267.89387	267.89387	267.89392	267.89398	267.89422	267.89431	267.89436	267.89436	267.89440	267.89457	267.89458	267.89462	267.89475	267.89490	267.89502	267.89506	267.89511	267.89515	267.89520	267.89523	267.89526	267.89533	
Source	CXOU J		(2)	175134.22 - 293639.1	175134.27 - 293738.7	175134.29 - 293448.8	175134.38 - 293858.5	175134.38 - 293339.1	175134.39 - 293057.8	175134.41 - 293936.5	175134.43 - 293312.9	175134.43 - 293154.3	175134.45 - 293716.1	175134.47 - 293239.0	175134.51 - 294042.4	175134.52 - 293351.5	175134.52 - 293820.5	175134.54 - 293407.4	175134.55 - 293458.3	175134.61 - 293202.9	175134.63 - 293733.7	175134.64 - 293609.4	175134.64 - 293858.6	175134.65 - 294144.3	175134.69 - 293337.9	175134.69 - 293118.9	175134.70 - 293633.7	175134.73 - 293826.3	175134.77 - 293035.7	175134.80 - 294214.1	175134.81 - 293339.6	175134.82 - 293243.0	175134.83 - 293211.9	175134.84 - 293127.2	175134.85 - 293809.7	175134.86 - 293541.0	175134.87-293327.8	
	Seq	#	(1)	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	(cont.)

list
source
Chandra
A.1:
Table

i	Source		Position				Extra	cted Co	unts				σ	haracteri	stics	
Seq	CXOU J	R.A.	Decl.	Err	θ	$C_{\text{net}} \ge$	$\Delta C_{\rm net}$	$C_{ m bkg}^{\prime}$ C	net,hard	PSF	PS $P_{\rm B}$	Anom	Var	EffExp .	$E_{ m median}$	Photo $F_{\rm x}$
#		(deg)	(deg)	<u>()</u>	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)	(16)	(17)	(18)
1293	175134.89 - 293848.2 2	67.89538	-29.64674	0.1	3.7	47.5	8.8	20.5	32.0	0.90	5.1 < -5	50 60	÷	821.8	2.5	$1.2 { imes} 10^{-15}$
1294	175134.89 - 293721.4 2	67.89541	-29.62263	0.1	2.5	66.9	9.2	9.1	48.1	0.89	6.8 < -5	: 60	÷	840.7	2.9	1.4×10^{-15}
1295	175134.90 - 293414.7 2	67.89543	-29.57075	0.2	2.0	7.4	4.3	6.6	0.5	0.91	1.5 - 2.1	:	в	842.9	1.2	$6.7e{-}17$
1296	175134.91 - 293616.0 2	67.89547	-29.60446	0.1	1.8	9.8	4.5	6.2	2.0	0.90	1.9 - 3.0	:	в	855.9	1.4	$1.1 \! imes \! 10^{-16}$
1297	175134.92 - 293430.2 2	67.89553	-29.57508	0.1	1.8	33.1	6.9	6.9	22.6	0.90	4.5 < -5	: 60	ł	805.1	2.9	$7.6\! imes\!10^{-16}$
1298	175134.93 - 293735.3 2	67.89556	-29.62649	0.2	2.7	12.6	5.2	9.4	5.2	0.89	2.2 - 3.4	: 50	ł	842.4	1.9	$2.0\! imes\!10^{-16}$
1299	175134.94 - 293451.9 2	67.89560	-29.58109	0.1	1.7	16.0	5.2	6.0	5.3	0.90	2.8 < -5	:	c	864.1	1.6	$2.1\! imes\!10^{-16}$
1300	175134.94 - 293228.9 2	67.89562	-29.54136	0.1	3.3	27.7	6.8	11.3	8.7	0.89	3.8 < -5	:	q	856.2	1.8	$3.3 { imes} 10^{-16}$
1301	175134.97 - 293233.0 2	67.89572	-29.54252	0.1	3.3	38.5	7.5	10.5	18.1	0.89	4.8 < -5	:	а	857.0	1.9	$5.5 imes 10^{-16}$
1302	175135.00 - 293652.3 2	67.89586	-29.61455	0.1	2.1	11.7	4.9	7.3	3.7	0.90	2.1 - 3.6	: 20	ł	843.7	1.2	$1.1 \! imes \! 10^{-16}$
1303	175135.00 - 293937.9 2	67.89587	-29.66054	0.2	4.5	23.6	7.9	29.4	5.6	0.90	2.8 - 4.1	:: 20	i	799.4	1.3	$2.7 imes 10^{-16}$
1304	175135.11 - 293806.1 2	67.89631	-29.63504	0.1	3.1	30.2	7.0	11.8	27.9	0.90	4.0 < -5	: :00	ł	841.1	3.4	$8.3 { imes} 10^{-16}$
1305	175135.14 - 293231.7 2	67.89644	-29.54215	0.2	3.3	18.9	6.0	11.1	11.7	0.89	2.9 < -5	:	а	852.7	2.1	$3.0 imes 10^{-16}$
1306	175135.20 - 293429.8 2	67.89670	-29.57495	0.1	1.9	69.3	9.2	6.7	37.7	0.90	7.1 < -5	: 20	i	822.6	2.1	1.1×10^{-15}
1307	175135.23 - 293054.4 2	67.89681	-29.51511	0.2	4.8	29.4	8.3	29.6	10.0	0.91	3.3 < -5	:	а	814.1	1.4	$3.3{ imes}10^{-16}$
1308	175135.27 - 293452.9 2	67.89696	-29.58138	0.1	1.7	20.1	5.7	6.9	5.9	0.90	3.2 < -5	-	q	830.1	1.6	$2.5\! imes\!10^{-16}$
1309	175135.34 - 293508.6 2	67.89728	-29.58573	0.1	1.7	15.0	5.0	5.0	3.5	0.90	2.7 < -5	50 60	ł	626.9	1.2	$1.8 { imes} 10^{-16}$
1310	175135.39 - 293358.2 2	67.89749	-29.56619	0.1	2.2	32.6	6.9	7.4	6.6	0.90	4.4 < -5	:	а	860.8	1.6	$3.9 imes 10^{-16}$
1311	175135.41 - 293846.0 2	67.89757	-29.64612	0.2	3.8	22.6	7.1	20.4	8.9	0.90	2.9 - 4.9	: 20	ł	827.3	1.7	$3.2 imes 10^{-16}$
1312	175135.42 - 293355.3 2	62789759	-29.56537	0.1	2.3	29.3	6.5	6.7	11.0	0.90	4.1 < -5	:	а	866.0	1.6	$3.5\! imes\!10^{-16}$
1313	175135.42 - 293749.2 2	67.89759	-29.63034	0.2	2.9	16.5	5.6	9.5	8.8	0.89	2.7 - 5.0	50 60	÷	832.0	2.3	3.1×10^{-16}
1314	$175135.45 - 293415.1 \ 2$	67.89772	-29.57087	0.1	2.1	10.8	4.8	7.2	0.0	0.91	2.0 - 3.2	i	ы	840.6	1.2	$9.8e{-}17$
1315	175135.49 - 293559.8 2	67.89791	-29.59996	0.0	1.8	98.9	10.8	7.1	58.8	0.90	8.7 <-5	:	q	840.5	2.4	1.8×10^{-15}
1316	175135.54 - 293931.4 2	67.89811	-29.65874	0.2	4.4	35.0	8.6	30.0	21.5	0.90	3.8 < -5	: 50	ł	807.3	2.5	7.5×10^{-16}
1317	175135.57 - 294206.6 2	67.89822	-29.70185	0.1	6.9	463.2	24.8	121.8	327.0	0.90	18.3 < -5	: 50	÷	761.5	2.8	$1.2 imes 10^{-14}$
1318	175135.58 - 293823.7 2	67.89826	-29.63994	0.1	3.4	22.9	6.7	15.1	10.0	0.90	3.2 < -5	: :00	ł	835.7	1.7	6.3×10^{-16}
1319	175135.58 - 293538.5 2	67.89829	-29.59403	0.1	1.8	34.5	6.9	6.5	24.1	0.90	4.6 < -5	: 50	ł	678.8	3.4	$5.5 imes 10^{-16}$
1320	$175135.60 - 293754.8 \ 2$	67.89834	-29.63189	0.0	3.0	509.6	23.3	10.4	310.5	0.89	21.4 < -5	50 60	÷	831.6	2.4	9.9×10^{-15}
1321	175135.61 - 293620.9 2	67.89839	-29.60582	0.1	1.9	17.4	5.5	7.6	3.3	0.90	2.9 < -5	:	q	846.8	1.5	$2.0\! imes\!10^{-16}$
1322	175135.65 - 293542.7 2	67.89857	-29.59521	0.1	1.8	13.0	5.0	7.0	4.8	0.90	2.3 - 4.2	50 60	ł	704.7	1.5	1.8×10^{-16}
1323	175135.71 - 293359.1 2	67.89881	-29.56642	0.1	2.3	12.7	5.0	7.3	9.9	0.89	2.3 - 4.0	:	÷	865.1	3.5	3.3×10^{-16}
1324	175135.75 - 293329.8 2	62.89898	-29.55828	0.1	2.6	14.7	5.3	8.3	4.9	0.89	2.5 - 4.5	:	а	864.3	1.7	1.8×10^{-16}
1325	175135.77-293200.2 2	67.89907	-29.53340	0.1	3.8	50.7	8.7	16.3	10.9	0.90	5.5 < -5	:	ы	845.6	1.3	$5.0 imes 10^{-16}$
1326	175135.81 - 293808.0 2	67.89924	-29.63557	0.2	3.2	13.5	5.4	10.5	6.1	0.88	2.3 - 3.5	ы 100	:	823.8	1.8	$2.0\! imes\!10^{-16}$
(cont.)																

	In Photo $F_{\rm x}$	$(ergs s^{-1} cm^{-2})$	(18)	$8.0 imes 10^{-16}$	$7.2 imes 10^{-16}$	$6.6 imes 10^{-16}$	1.1×10^{-16}	$1.7 { imes} 10^{-16}$	3.9×10^{-16}	$7.3\mathrm{e}{-17}$	1.9×10^{-16}	8.3×10^{-16}	6.9×10^{-15}	2.2×10^{-15}	1.4×10^{-16}	8.7×10^{-16}	1.9×10^{-16}	$3.5 imes 10^{-16}$	$1.5 imes 10^{-15}$	$5.0 imes 10^{-16}$	1.3×10^{-15}	$4.2 imes 10^{-15}$	1.9×10^{-16}	3.1×10^{-16}	2.4×10^{-16}	2.7×10^{-15}	$3.6 imes 10^{-16}$	2.1×10^{-16}	$4.2 imes 10^{-15}$	1.6×10^{-15}	1.4×10^{-16}	$3.7 imes 10^{-16}$	$5.1 imes 10^{-16}$	$4.0 imes 10^{-16}$	$3.7 imes 10^{-16}$	$5.6 imes 10^{-16}$	1.2×10^{-15}
ristics	$E_{ m media}$	(keV)	(17)	2.1	1.3	1.3	1.2	1.8	1.8	1.1	1.1	1.8	2.9	2.3	1.1	1.9	2.1	1.6	2.8	2.1	3.2	2.6	1.5	0.9	1.8	2.0	1.9	1.5	2.8	0.9	1.3	1.7	1.7	1.5	3.8	1.2	1.2
haracte	EffExp	(ks)	(16)	789.9	795.7	808.7	843.2	824.0	798.3	834.9	842.8	815.9	803.4	811.7	823.9	847.2	850.7	811.8	869.3	830.3	783.8	783.0	868.3	852.0	870.1	820.5	815.7	856.9	819.3	830.1	839.2	858.6	871.2	797.2	782.9	821.8	515.8
	Var		(15)	в	q	÷	g	а	÷	а	ပ	q	а	÷	а	ပ	q	g	ರ	ъ	а	÷	ъ	q	а	q	ł	ы	ł	q	ъ	5	ರ	÷	ł	ъ	1
	Anom		(14)	:	:	: 60	÷	i	: 20	i	i	i	i	: :00	i	i	÷	÷	÷	i	i	: 20	i	i	i	i	: 60	:	: 60	i	:	:	÷	: 60	: 60	i	50 60
	$P_{\rm B}$		(13)	-4.3	- - 2	$\stackrel{-}{\sim}$	-3.1	-4.2	$\stackrel{-}{\sim}$	-2.3	\sim -5	$\stackrel{-}{\sim}$	$\stackrel{>}{\sim}$	$^{-2}$	-2.3	\sim -5	-3.5	-2.9	$\stackrel{>}{\sim}$	\sim -5	-4.6	\sim -5	-5	-5 -5	- - 5	- 5	\sim -5	- - 5	\sim -5	<pre></pre>	-4.2	$^{-5}$	$^{-5}$	~ -5-5	-4.3	-2.6	~ -5
	$_{\rm PS}$	Frac	(12)	3.3	4.7	6.3	2.1	2.3	3.9	1.7	3.2	5. 8	14.1	9.0	2.0	6.2	2.2	2.5	7.2	4.0	3.3	10.8	3.9	3.7	2.0	11.5	3.2	3.0	12.2	12.9	2.4	4.1	5.0	3.6	3.0	2.2	4.2
	$^{\rm I}$ PSF		(11)	0.89	0.90	0.89	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.90	0.88	0.89	0.89	0.89	0.88	0.90	0.90	0.88	0.90	0.89	0.90	0.89	0.90	0.81	0.91	0.40
ounts	7 net,hard		(10)	23.7	12.3	4.4	0.0	5.5	11.6	1.5	0.1	23.9	211.5	61.8	2.5	28.4	6.2	7.3	43.7	15.9	37.5	123.9	10.4	0.0	7.1	78.5	11.2	6.2	113.4	4.2	1.4	11.4	10.1	11.3	21.9	0.4	4.3
ucted Co	$C'_{\rm bkg}$ (I	(6)	113.9	106.0	12.8	10.0	6.5	7.8	7.4	11.0	20.3	92.8	23.1	30.3	13.5	8.0	68.0	7.3	11.5	147.4	62.0	9.0	12.1	7.8	10.3	14.5	7.6	10.6	41.9	8.8	7.6	8.6	28.5	47.9	35.3	13.5
Extra	ΔC_{net}		(8)	13.3	13.8	9.1	5.2	4.9	6.4	4.5	6.3	9.3	20.2	12.3	7.4	9.1	5.0	10.4	9.4	7.0	14.7	16.1	6.6	6.8	5.6	13.7	6.7	5.6	14.4	16.8	5.3	6.6	7.5	8.3	9.4	7.9	7.4
	$C_{\rm net}$,		(2)	45.1	67.0	61.2	12.0	12.5	27.2	8.6	22.0	56.7	292.2	114.9	15.7	59.5	12.0	27.0	71.7	30.5	50.6	179.0	28.0	26.9	18.2	164.7	23.5	18.4	181.4	223.1	14.2	29.4	40.4	31.5	30.1	18.7	33.5
	θ	C	(9)	7.1	6.9	3.4	2.6	2.1	1.9	2.3	3.3	4.2	6.6	4.4	4.8	3.6	2.3	6.2	2.0	3.2	7.4	5.8	2.8	3.2	2.3	3.0	3.8	2.0	3.0	5.2	2.6	2.2	2.4	4.1	5.9	4.9	8.3
	Err	$\tilde{\boldsymbol{\boldsymbol{x}}}$	(5)	0.3	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.3	0.1	0.1	0.3	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.0	0.1	0.2	0.1	0.1	0.2	0.2	0.2	0.3
Position	Decl.	(deg)	(4)	-29.47615	-29.47915	-29.63866	-29.62159	-29.57307	-29.59721	-29.61330	-29.54474	-29.52659	-29.48431	-29.52358	-29.51676	-29.53799	-29.61304	-29.49233	-29.57933	-29.63353	-29.47039	-29.68157	-29.55665	-29.54747	-29.56769	-29.62984	-29.53581	-29.60067	-29.62904	-29.50932	-29.61968	-29.60938	-29.56691	-29.65119	-29.68251	-29.51511	-29.72797
	R. A.	(deg)	(3)	267.89931 -	267.89967 -	267.89984 -	267.89990 -	267.90002 -	267.90012 -	267.90014 -	267.90022 -	267.90062 -	267.90070 -	267.90071 -	267.90077 -	267.90091 -	267.90102 -	267.90128 -	267.90133 -	267.90136 -	267.90140 -	267.90142 -	267.90165 -	267.90166 -	267.90166 -	267.90169 -	267.90187 -	267.90197 -	267.90199 -	267.90203 -	267.90244 -	267.90246 -	267.90250 -	267.90251 -	267.90255 -	267.90258 -	267.90275 -
Source	CXOU J		(2)	175135.83 - 292834.1	175135.92 - 292844.9	175135.96 - 293819.1	175135.97 - 293717.7	175136.00 - 293423.0	175136.02 - 293549.9	175136.03 - 293647.8	175136.05 - 293241.0	175136.14 - 293135.7	175136.16 - 292903.5	175136.17 - 293124.8	175136.18 - 293100.3	175136.21 - 293216.7	175136.24 - 293646.9	175136.30 - 292932.3	175136.31 - 293445.5	175136.32 - 293800.6	175136.33 - 292813.4	175136.34 - 294053.6	175136.39 - 293323.9	175136.39 - 293250.9	175136.39 - 293403.6	175136.40 - 293747.4	175136.44 - 293208.9	175136.47 - 293602.3	175136.47 - 293744.5	175136.48 - 293033.5	175136.58 - 293710.8	175136.59 - 293633.7	175136.59 - 293400.8	175136.60 - 293904.2	175136.61 - 294057.0	175136.61 - 293054.4	175136.66-294340.6
	Seq	#	(1)	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360

list
source
Chandra
A.1:
Table

0	Source		Position		<	1	Extra	cted Co	unts		t 1		;	tharacter	istics	1	
Seq	CAUUJ	К.А.	Dect.	Err	θ	Cnet Δ	Cnet	C _{bkg} C	net,hard	Т N T	$F_{\rm B}$	Anom	ı Var	EITEXP	$E_{ m median}$	Photo $F_{\mathbf{x}}$	
#		(deg)	(deg)	Ũ	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$	
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)	(16)	(17)	(18)	
1361	175136.70 - 294241.1	267.90295	-29.71142	0.2	7.5	202.1	19.6	157.9	153.6	0.90	10.0 < -5	50 50	:	742.0	3.1	$6.1\! imes\!10^{-15}$	
1362	175136.80 - 293238.3	367.90337	-29.54399	0.1	3.4	28.3	6.9	11.7	22.0	0.90	3.8 < -5	:	q	830.5	3.3	7.5×10^{-16}	
1363	175136.81 - 294336.4	267.90341	-29.72680	0.3	8.2	28.3	6.9	11.7	10.9	0.40	3.8 < -5	60	ł	439.0	1.6	$1.7 { imes} 10^{-15}$	
1364	175136.91 - 293352.9	267.90381	-29.56472	0.1	2.5	16.7	5.5	8.3	7.2	0.89	2.7 < -5	:	в	865.2	1.8	2.3×10^{-16}	
1365	175136.93 - 292926.1	267.90390	-29.49061	0.2	6.3	34.3	8.2	23.7	7.8	0.58	3.9 < -5	:	в	811.5	1.5	6.4×10^{-16}	
1366	175136.98 - 292902.2	267.90409	-29.48395	0.3	6.7	29.4	11.8	95.6	0.6	0.90	2.4 - 2.6	:	q	802.6	0.9	$2.1\! imes\!10^{-16}$	
1367	175136.98 - 293712.5	267.90411	-29.62016	0.1	2.7	20.6	6.1	10.4	8.6	0.89	3.1 < -5	:	в	849.6	1.5	$2.4 { imes} 10^{-16}$	
1368	175137.03 - 293131.05	267.90431	-29.52530	0.2	4.4	16.6	6.9	23.4	1.3	0.89	2.2 - 2.6	:	в	817.1	1.1	$1.5\! imes\!10^{-16}$	
1369	175137.07 - 293458.2	267.90446	-29.58284	0.1	2.1	25.8	6.2	6.2	8.7	0.90	3.8 < -5	80	1	745.7	1.4	$3.1\! imes\!10^{-16}$	
1370	175137.08 - 293706.1	267.90451	-29.61838	0.1	2.6	13.2	5.3	9.8	5.8	0.89	2.2 - 3.6	:	в	845.2	1.7	$1.7 { imes} 10^{-16}$	
1371	175137.13 - 294104.05	267.90473	-29.68447	0.2	6.0	139.8	15.4	80.2	107.5	0.90	8.8 <-5		:	782.4	3.5	4.3×10^{-15}	
1372	175137.15 - 293918.85	267.90481	-29.65524	0.2	4.4	16.8	7.5	31.2	6.8	0.90	2.1 - 2.4	: :00	1	804.4	1.4	$1.9 { imes} 10^{-16}$	
1373	175137.18 - 293122.9	267.90492	-29.52304	0.1	4.5	102.0	11.9	26.0	56.7	0.89	8.2 < -5	:	с	843.8	2.4	1.9×10^{-15}	
1374	175137.19 - 293639.1	267.90499	-29.61088	0.1	2.4	17.8	5.6	8.2	9.1	0.90	2.9 < -5	:	ъ.	865.3	2.2	$2.9 { imes} 10^{-16}$	
1375	175137.28 - 293702.3	267.90534	-29.61733	0.0	2.6	146.4	13.0	9.6	99.9	0.89	10.8 < -5	:	q	845.6	2.9	$3.2 imes 10^{-15}$	
1376	175137.30 - 294113.7	267.90544	-29.68715	0.2	6.2	106.9	14.3	80.1	53.2	0.90	7.2 < -5	:	в	778.6	2.0	$1.9 { imes} 10^{-15}$	
1377	175137.31 - 293409.6	267.90548	-29.56936	0.1	2.4	72.8	9.5	8.2	23.1	0.89	7.2 < -5	:	в	849.3	1.7	$9.6\! imes\!10^{-16}$	
1378	175137.32 - 292930.4	267.90550	-29.49179	0.2	6.3	83.0	11.7	41.0	8.5	0.74	6.8 < -5	:	в	811.9	1.2	$9.6\! imes\!10^{-16}$	
1379	175137.32 - 293511.05	267.90550	-29.58640	0.1	2.1	32.1	6.7	5.9	10.8	0.91	4.4 < -5	50	1	642.5	1.3	4.1×10^{-16}	
1380	175137.32 - 293927.7	267.90554	-29.65771	0.2	4.6	34.4	8.8	32.6	5.4	0.90	3.7 < -5	:	р	804.6	1.5	$4.2 imes 10^{-16}$	
1381	175137.33 - 292940.3	267.90556	-29.49455	0.2	6.1	66.9	12.2	67.1	4.4	0.89	5.3 < -5	:	в	813.1	1.0	$5.4 imes 10^{-16}$	
1382	175137.39 - 293620.7	267.90581	-29.60575	0.1	2.3	11.9	5.0	8.1	5.1	0.90	2.1 - 3.4	:	в	866.1	1.3	1.1×10^{-16}	
1383	175137.41 - 293558.2	267.90591	-29.59951	0.1	2.2	13.2	5.2	8.8	6.2	0.90	2.3 - 3.7	:	в	865.0	1.6	1.6×10^{-16}	
1384	175137.42 - 294150.95	267.90595	-29.69750	0.2	6.8	200.2	18.1	106.8	154.3	0.90	10.7 < -5	60	÷	765.2	3.3	$6.1\! imes\!10^{-15}$	
1385	175137.44 - 293450.6	267.90601	-29.58075	0.1	2.2	11.6	4.9	7.4	1.4	0.90	2.1 - 3.5	:	в	821.1	1.7	$1.5\! imes\!10^{-16}$	
1386	175137.44 - 293641.0	267.90602	-29.61140	0.2	2.5	10.6	4.9	8.4	0.8	0.89	1.9 - 2.8	:	в	865.2	1.4	$1.1 \! imes \! 10^{-16}$	
1387	175137.45 - 293034.2	20906.792	-29.50951	0.2	5.3	31.7	7.3	14.3	4.2	0.63	4.0 < -5	:	в	815.2	1.1	4.1×10^{-16}	
1388	175137.46 - 293251.2	60906.792	-29.54756	0.1	3.3	22.2	6.4	11.8	3.1	0.89	3.2 < -5	:	в	832.3	1.0	$1.8 { imes} 10^{-16}$	
1389	175137.47 - 293749.5	267.90615	-29.63044	0.1	3.2	65.7	9.4	13.3	26.3	0.89	6.6 < -5	:	в	833.3	1.8	$9.2 imes 10^{-16}$	
1390	175137.47 - 294049.6	267.90615	-29.68045	0.2	5.8	83.5	13.3	77.5	55.3	0.90	6.0 < -5	:	в	785.7	3.3	2.3×10^{-15}	
1391	175137.48 - 293125.9	267.90620	-29.52389	0.2	4.5	17.8	6.2	14.2	6.3	0.79	2.6 - 4.5	:	в	843.6	1.7	$2.6\! imes\!10^{-16}$	
1392	175137.49 - 293218.7	267.90621	-29.53854	0.1	3.8	28.3	7.1	14.7	13.7	0.90	3.7 < -5	:	в	828.5	1.9	4.3×10^{-16}	
1393	175137.49 - 293515.3	267.90622	-29.58761	0.0	2.1	239.8	16.2	7.2	230.8	0.90	14.3 < -5	50	1	699.7	4.4	$9.6\! imes\!10^{-15}$	
1394	175137.53 - 293602.6	267.90641	-29.60073	0.0	2.2	230.7	16.0	8.3	15.5	0.90	14.0 < -5	:	в	865.4	1.1	$1.9 { imes} 10^{-15}$	
(cont.)				1	1							1					

	¹ Photo F _x	$(ergs s^{-1} cm^{-2})$	(18)	1.4×10^{-16}	$9.9e{-}17$	1.7×10^{-15}	$2.9 imes 10^{-16}$	$4.1 imes 10^{-16}$	1.8×10^{-15}	$1.7 imes 10^{-16}$	$3.0 imes 10^{-16}$	1.5×10^{-16}	1.3×10^{-16}	$7.0 imes 10^{-16}$	1.8×10^{-15}	$2.2 imes 10^{-15}$	$2.1\! imes\!10^{-16}$	$9.2 imes 10^{-16}$	1.5×10^{-16}	$2.1\! imes\!10^{-16}$	1.1×10^{-16}	$5.1\! imes\!10^{-15}$	$2.7 imes 10^{-16}$	$2.7 imes 10^{-15}$	$2.7 imes 10^{-16}$	2.4×10^{-16}	$1.5 imes 10^{-16}$	$8.6 imes 10^{-16}$	2.8×10^{-16}	$5.9{ imes}10^{-16}$	1.3×10^{-16}	$2.8 imes 10^{-16}$	$2.0 imes 10^{-16}$	1.0×10^{-14}	$6.5 imes 10^{-16}$	$5.5 imes 10^{-16}$	1.5×10^{-15}
ristics	$E_{\rm mediar}$	(keV)	(17)	1.6	0.9	1.5	1.8	1.1	2.8	1.5	2.0	1.2	1.3	1.3	2.9	3.3	1.4	1.9	0.9	1.1	1.4	3.6	1.5	1.2	1.7	2.1	1.1	1.3	1.8	2.8	1.5	1.7	1.6	1.8	0.9	3.4	1.2
haracter	EffExp	(ks)	(16)	832.9	847.7	743.9	798.7	831.6	865.9	841.9	793.0	645.6	841.2	818.2	823.5	805.1	804.6	816.0	699.2	821.1	842.9	800.4	861.4	773.3	847.0	786.8	840.6	861.9	807.8	809.9	833.3	712.3	855.2	747.9	795.3	836.0	843.1
	Var		(15)	в	а	÷	ъ	а	q	ъ	÷	÷	ы	q	ъ	q	q	ъ	÷	ы	ъ	ъ	с	ъ	ъ	÷	5	а	÷	ъ	а	÷	ы	÷	5	ದ	q
	Anom		(14)	:	:	50 60	:	:	:	:	: 60	: 60	÷	:	:	:	:	:	: 60	÷	:	÷	:	:	÷	: 60	:	:	: 60	i	:	: 60	÷	: 60	:	:	:
	$P_{\rm B}$	0	(13)	8 -2.1) -2.5	< -5	3 -2.7	-5 - 5	5	3 -3.8	-2.3	1 -4.7	2 -3.6	-5	~ -5	~ -5	-2.5	< -5	-5	3 -4.1	7 -2.0	×−5 5	-5	-5 - 5	0-2	5 -4.7	×5	~ -5	2 -3.9	$^{-2}_{-5}$) -2.8	0-2	6.0-3.9	$^{-2}_{-2}$	2.4	S−> 5	5
	\mathbf{PS}	Frae	(12)	1.8	2.(9.9	5	5.4	8.	5	2.]	5.	2	ы. 1	6.6	0.5	2.]	5.0	з. С	5		10.8	3.4	13.6	3.(2	5.8	%	2	4.5	5.0	2	2	21.2	2.2	2	11.4
	¹ PSF		(11)	0.89	0.90	0.85	0.90	0.89	0.89	0.89	0.90	0.91	0.89	0.68	0.90	0.90	0.79	0.90	0.90	0.90	0.89	0.90	0.89	0.90	0.90	0.89	0.89	0.89	0.89	0.91	0.89	0.89	0.89	0.89	0.90	0.90	0.89
ounts	$\sigma_{\rm net,har}$		(10)	4.1	2.3	35.8	4.2	5.2	62.6	5.7	9.4	1.3	4.1	2.8	50.2	63.8	4.3	28.8	0.2	0.6	1.6	148.0	6.2	25.2	8.7	7.5	4.3	14.1	6.0	28.2	4.0	4.5	4.9	273.1	0.0	61.5	15.9
acted C	$C'_{\rm bkg}$	I	(6)	16.8	21.5	133.9	35.7	10.8	7.9	10.7	38.3	5.4	8.4	16.4	34.8	47.6	26.3	29.2	6.8	32.4	15.4	48.5	12.2	84.5	12.6	7.0	7.8	10.6	6.9	32.2	9.8	7.1	13.6	160.8	63.8	9.9	10.9
Extra	ΔC_{net}		(8)	5.9	6.6	16.3	8.0	8.1	10.3	5.5	8.1	4.8	5.1	8.8	11.1	11.9	7.1	10.0	5.5	8.1	5.7	15.4	6.5	19.2	6.3	5.1	5.5	10.5	4.9	9.1	5.1	5.5	6.0	28.4	9.9	9.9	13.7
	C_{net}		(2)	11.2	14.5	112.1	19.3	47.2	88.1	14.3	17.7	12.6	12.6	51.6	77.2	80.4	15.7	60.8	18.2	24.6	10.6	172.5	23.8	263.5	20.4	14.0	17.2	88.4	12.1	39.8	11.2	17.9	16.4	614.2	23.2	78.1	162.1
	θ	C	(9)	3.7	4.2	7.5	4.8	3.2	2.2	3.0	4.9	2.2	2.8	5.3	4.9	5.4	5.3	4.2	2.2	4.3	3.6	5.5	2.9	6.1	3.3	2.3	2.5	2.8	2.4	4.9	3.1	2.3	3.2	7.6	5.5	3.0	3.2
	Err	<i>"</i>	(5)	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.1	0.2	0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.1	0.2	0.1	0.1
Position	Decl.	(deg)	(4)	-29.64026	-29.52932	-29.71022	-29.66158	-29.55149	-29.60035	-29.62417	-29.66439	-29.58423	-29.56041	-29.51011	-29.51729	-29.50742	-29.50954	-29.64922	-29.58751	-29.65117	-29.63798	-29.50604	-29.62130	-29.68482	-29.63051	-29.58107	-29.57191	-29.61635	-29.57604	-29.51865	-29.55556	-29.58228	-29.62812	-29.71121	-29.67403	-29.55837	-29.55253
	R. A.	(deg)	(3)	267.90642 -	267.90648 -	267.90658 -	267.90677 -	267.90684 -	267.90688 -	267.90691 -	267.90694 -	267.90699 -	267.90705 -	267.90714 -	267.90756 -	267.90779 -	267.90794 -	267.90795 -	267.90797 -	267.90798 -	267.90834 -	267.90866 -	267.90871 -	267.90876 -	267.90882 -	267.90887 -	267.90900 -	267.90906 -	267.90939 -	267.90941 -	267.90954 -	267.90955 -	267.90969 -	267.90975 -	267.90982 -	267.90983 -	267.90986
Source	CXOU J		(2)	175137.54 - 293824.9	175137.55 - 293145.5	175137.57 - 294236.7	175137.62 - 293941.7	175137.64 - 293305.3	175137.65 - 293601.2	175137.65 - 293726.9	175137.66 - 293951.8	175137.67 - 293503.2	175137.69 - 293337.4	175137.71 - 293036.4	175137.81 - 293102.2	175137.86 - 293026.6	175137.90 - 293034.3	175137.90 - 293857.1	175137.91 - 293515.0	175137.91 - 293904.2	175138.00 - 293816.7	175138.07 - 293021.7	175138.09 - 293716.6	175138.10 - 294105.3	175138.11 - 293749.8	175138.12 - 293451.8	175138.15 - 293418.8	175138.17 - 293658.8	175138.25 - 293433.7	175138.25 - 293107.1	175138.28 - 293320.0	175138.29 - 293456.1	175138.32 - 293741.2	175138.33 - 294240.3	175138.35 - 294026.5	175138.35 - 293330.1	175138.36-293309.1 :
	Seq	#	(1)	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428

(cont.)

source list
Chandra
A.1:
Table

0	Source	-	Position			5	Extra	cted Co	unts		۲ د	-		Characte	ristics	, , ,
Seq	CXOU J R	.А.	Decl.	LT1	θ	Unet A	Cnet	C ^{bkg} C	net,hard	л М Т	х Ч	Ano	З З	r EttExp	$E_{\rm median}$	Photo $F_{\rm x}$
#	p)	leg)	(deg) ($\widehat{}$	C						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2) ((3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14	(1)	5) (16)	(17)	(18)
1429	175138.39 - 294013.2 267.	- 96606	-29.67036	0.2	5.3	35.7	10.1	55.3	21.7	0.90	3.3 - 5.	. 0	a	792.9	2.2	$6.5\! imes\!10^{-16}$
1430	175138.40 - 293158.1 267.	91003 -	-29.53282	0.2	4.1	20.3	7.0	21.7	4.9	0.90	2.7 - 4.	. 0	а :	833.2	1.3	2.1×10^{-16}
1431	175138.40 - 293458.2 267.	91004 -	-29.58285	0.1	2.3	34.6	6.9	6.4	20.7	0.89	4.6 < -	ല് പ്ര	:	. 682.7	2.2	7.4×10^{-16}
1432	$175138.44 - 293042.1 \ 267.$	91018 -	-29.51170	0.2	5.2	23.0	8.7	43.0	13.9	0.90	2.5 - 3.	-	а 	804.9	2.5	4.7×10^{-16}
1433	$175138.44 - 293543.9 \ 267.5$	91019 -	-29.59555	0.1	2.4	16.2	5.5	8.8	4.3	0.89	2.7 < -	പ്പാം	:	. 789.8	1.7	$2.2 imes 10^{-16}$
1434	$175138.49 - 293605.2 \ 267.5$	91040 -	-29.60146	0.1	2.4	26.6	6.6	10.4	1.7	0.89	3.7 < -	5	:	862.2	1.2	2.4×10^{-16}
1435	175138.53 - 293146.9 267.	91057 -	-29.52971	0.2	4.3	13.6	6.2	18.4	4.2	0.86	2.0 - 2.	യ് ഹ	:	. 813.0	1.3	$1.5\! imes\!10^{-16}$
1436	175138.57-293722.8 267.	91071 -	-29.62303	0.1	3.1	59.0	9.1	14.0	30.6	0.89	6.1 < -	ى ت	а :	858.2	2.4	1.1×10^{-15}
1437	175138.58-293738.7 267.	91077 -	-29.62742	0.1	3.2	23.2	6.6	13.8	19.7	0.89	3.2 < -	2 2	:	854.1	4.2	7.4×10^{-16}
1438	175138.58 - 293901.5 267	91077 -	-29.65044	0.2	4.3	23.2	7.6	26.8	3.4	0.87	2.8 - 4.	ന	а :	831.8	1.5	$2.8{ imes}10^{-16}$
1439	175138.59 - 293214.4 267.	91080 -	-29.53734	0.2	3.9	13.5	6.3	19.5	0.4	0.90	2.0 - 2.	4	а :	828.5	1.2	1.3×10^{-16}
1440	175138.59-293517.4 267.	91081 -	-29.58818	0.0	2.4	167.7	13.7	7.3	108.8	0.90	11.8 <	ര്ഗ്	:	. 711.5	2.5	$3.8 imes 10^{-15}$
1441	$175138.66 - 293711.1 \ 267.$	91110 -	-29.61977	0.1	3.0	40.6	7.8	12.4	13.7	0.89	4.9 < -	5	:	859.5	1.6	$4.9 imes 10^{-16}$
1442	175138.73 - 292940.7 267.	91141 -	-29.49466	0.1	6.2	462.6	23.6	70.4	441.1	0.90	19.2 < -	2 2	:	792.4	4.0	1.6×10^{-14}
1443	$175138.76 - 293150.6 \ 267.$	91154 -	-29.53075	0.2	4.3	14.5	6.2	17.5	0.0	0.85	2.1 - 2.	6	а :	821.3	1.1	1.3×10^{-16}
1444	$175138.77 - 293116.0 \ 267.$	91156 -	-29.52114).2	4.8	15.5	7.4	31.5	4.7	0.90	1.9 - 2.	5	а 	810.0	1.7	$2.1\! imes\!10^{-16}$
1445	175138.77 - 293519.5 267.	91156 -	-29.58875	0.1	2.4	34.3	7.0	7.7	11.8	0.89	4.5 < -	5 G	:	. 735.9	1.6	$4.8 imes 10^{-16}$
1446	$175138.80 - 293500.8 \ 267.5$	91170 -	-29.58357	0.2	2.4	8.0	4.3	6.0	1.7	0.89	1.6 - 2.	33 23	:	. 631.6	1.5	1.2×10^{-16}
1447	175138.81 - 292912.4 267.	91175 -	-29.48678	0.2	6.6	34.5	9.3	41.5	7.8	0.74	3.5 < -	5	а :	779.0	1.4	$5.0 imes 10^{-16}$
1448	175138.82-293005.3 267.	91177 -	-29.50148	0.2	5.8	78.0	12.0	53.0	73.3	0.89	6.2 < -	5 :	а :	792.0	4.2	2.8×10^{-15}
1449	175138.84 - 293903.6 $267.$	91184 -	-29.65101	0.1	4.4	79.6	10.9	28.4	35.6	0.88	6.9 < -	5 :	а 	830.7	1.8	1.1×10^{-15}
1450	$175138.84 - 293853.0 \ 267.$	91187 -	-29.64808	0.2	4.2	24.2	7.9	28.8	10.9	0.90	2.9 - 4.	ന	а ::	830.6	1.8	3.4×10^{-16}
1451	$175138.85 - 293301.1 \ 267.$	91189 -	-29.55032	0.2	3.4	12.5	5.6	13.5	1.3	0.90	2.0 - 2.	-	а :	844.0	0.9	$8.7e{-}17$
1452	175138.88-293409.3 267.	91204 -	-29.56927	0.1	2.7	52.1	8.3	8.9	28.9	0.89	5.9 < -	5 C	:	. 813.8	2.3	9.8×10^{-16}
1453	175138.90 - 293319.9 267.	91212 -	-29.55555	0.2	3.2	13.9	5.5	11.1	3.0	0.89	2.3 - 3.	2 2	а :	845.6	1.6	1.7×10^{-16}
1454	175138.92-293326.8 267.	91220 -	-29.55746).2	3.1	15.1	5.5	9.9	0.0	0.89	2.5 - 4.	ന		836.5	0.9	1.1×10^{-16}
1455	175138.93-293230.7 267.	91224 -	-29.54187	0.1	3.8	56.0	0.0	16.0	4.5	0.90	5.9 < -	ى ت	а :	823.9	1.2	5.4×10^{-16}
1456	$175138.94 - 293547.9 \ 267.$	91227 -	-29.59665	0.1	2.5	19.9	6.0	10.1	1.9	0.89	3.0 < -	5	:	839.0	1.1	1.7×10^{-16}
1457	175138.99 - 293722.5 267.	91249 -	-29.62293	0.2	3.1	17.6	6.2	14.4	12.8	0.89	2.6 - 4.	2	а :	856.3	2.5	3.3×10^{-16}
1458	175139.02 - 293139.1 267	91260 -	-29.52754).1	4.5	149.2	13.8	25.8	10.4	0.89	10.4 < -	5	а ::	814.1	1.1	1.3×10^{-15}
1459	$175139.08 - 293438.1 \ 267.$	91284 -	-29.57725	0.2	2.6	8.1	4.5	7.9	1.6	0.89	1.6 - 2.	1	:	. 788.3	1.6	1.1×10^{-16}
1460	$175139.11 - 293351.5 \ 267.$	91298 -	-29.56432	0.1	2.9	26.4	6.6	10.6	11.4	0.89	3.7 < -	ങ് മ	:	. 826.8	1.9	$4.0 imes 10^{-16}$
1461	$175139.19 - 293640.1 \ 267.$	91331 -	-29.61116	0.2	2.8	10.2	5.0	9.8	2.8	0.89	1.8 - 2.	ы.	а :	860.8	1.4	1.1×10^{-16}
1462	175139.19-293803.7 267.	91333 -	-29.63438	0.1	3.6	25.9	7.1	17.1	12.1	0.89	3.4 <	2		849.0	1.8	3.6×10^{-16}
$\overline{(cont.)}$																

	an Photo $F_{\rm x}$) (ergs $s^{-1} \text{ cm}^{-2}$)	(18)	$8.0 imes 10^{-16}$	1.0×10^{-15}	1.6×10^{-16}	2.1×10^{-16}	$5.3 imes 10^{-16}$	9.6e - 17	5.4×10^{-16}	$9.7 imes 10^{-16}$	$2.1 imes 10^{-15}$	$5.2 imes 10^{-16}$	3.4×10^{-16}	9.4×10^{-16}	$3.2 imes 10^{-16}$	1.4×10^{-16}	$8.2 imes 10^{-16}$	$5.0\! imes\!10^{-16}$	$3.0 imes 10^{-16}$	4.1×10^{-16}	$2.0\! imes\!10^{-16}$	$2.9 imes 10^{-16}$	$2.6\! imes\!10^{-16}$	1.3×10^{-16}	3.4×10^{-16}	1.1×10^{-15}	2.1×10^{-15}	$3.2 imes 10^{-16}$	1.8×10^{-16}	4.6×10^{-15}	5.4×10^{-16}	3.3×10^{-15}	3.3×10^{-16}	$9.0 imes 10^{-16}$	$6.0\! imes\!10^{-16}$	3.5×10^{-15}	
ristics	$E_{ m medis}$	(keV)	(17)	2.3	3.1	1.1	1.4	2.7	1.2	3.3	1.9	2.3	2.0	1.5	1.1	2.5	1.3	0.9	1.2	1.4	1.5	1.7	1.5	1.8	1.7	1.6	1.2	2.6	1.1	1.4	4.4	4.3	2.5	1.7	1.1	1.1	3.3	
haracte	EffExp	(ks)	(16)	759.2	775.2	821.1	632.6	838.1	859.2	856.1	802.0	799.0	822.0	826.8	670.2	814.8	854.2	770.8	754.4	846.3	813.2	830.0	817.0	832.7	829.7	775.3	763.7	397.3	611.5	823.9	752.1	858.6	845.9	822.4	836.1	855.2	849.1	
0	Var		(15)	q	÷	i	÷	q	ъ	ъ	c	ų	i	q	÷	c	ъ	q	ų	ъ	÷	ъ	i	q	q	q	÷	÷	÷	в	в	ъ	q	q	ъ	ъ	q	
	Anom		(14)	:	: :00	: 60	: :00	÷	:	ł	÷	:	: 60	:	: :00	:	:	:	:	:	: 60	:	: 60	÷	:	i	: 60	: 60	: 60	÷	:	:	:	÷	:	:	:	
	$P_{\rm B}$ /		(13)	-3.3	$^{-5}_{-5}$	~ -5	~ -5	-4.5	-2.4	~ -5	-5 - 5	~ -5	~ -5	~ -5	~ -5	~ -5	-3.3	~ -5	-3.7	~ -5	$^{-5}_{-5}$	-2.6	~ -5	-5 - 5	-2.2	-2.7	<-5 -5	-4.5	<-5 -5	-2.9	$^{-5}_{-5}$	-4.4	~ -5	-5 - 5	$^{-5}_{-5}$	~ -5	<-5	
	\mathbf{PS}	Frac	(12)	2.8	4.8	2.4	2.6	3.0	1.8	3.2	4.6	9.2	3.8	3.8	4.9	3.7	2.2	7.1	2.9	3.5	3.7	2.1	3.2	2.8	1.7	2.5	5.2	3.3	3.9	2.2	5.9	2.6	11.5	3.4	8.9	6.9	10.2	
	PSF	-	(11)	0.86	0.90	0.59	0.89	0.90	0.89	0.89	0.90	0.90	0.69	0.89	0.89	0.90	0.89	0.85	0.84	0.90	0.90	0.90	0.90	0.89	0.89	0.90	0.89	0.90	0.89	0.89	0.90	0.89	0.89	0.89	0.89	0.90	0.90	
unts	net,hard		(10)	20.8	30.8	0.0	1.1	20.7	1.0	14.2	24.6	79.1	12.1	8.6	0.7	25.4	6.8	1.3	3.4	3.0	11.1	2.1	5.3	7.3	2.1	11.7	11.7	36.0	1.8	2.1	112.9	10.8	105.5	9.8	2.0	6.4	108.0	
acted Co	$C'_{\rm bkg}$ C)	(6)	111.3	10.0	3.2	6.4	29.8	11.4	11.5	46.6	49.1	5.2	11.0	6.5	42.4	13.6	69.4	143.4	19.6	29.7	21.2	15.3	10.7	10.4	111.4	116.1	132.5	7.2	22.7	220.9	11.5	18.7	12.7	9.2	14.5	17.4	
Extra	ΔC_{net}		(8)	12.9	7.5	4.4	5.1	8.0	5.2	6.3	10.4	14.1	6.0	6.8	7.2	9.5	5.8	13.6	14.4	7.5	8.5	6.6	6.8	5.9	5.0	12.7	14.6	14.1	6.4	6.8	19.0	5.8	14.2	6.6	11.2	9.8	12.9	
	$C_{\rm net}$,		(-)	37.7	39.0	11.8	14.6	25.2	10.6	21.5	50.4	133.9	24.8	28.0	37.5	36.6	14.4	100.6	43.6	28.4	33.3	14.8	23.7	18.3	9.6	32.6	78.9	47.5	26.8	16.3	115.1	16.5	169.3	24.3	104.8	71.5	136.6	
	θ	S	(9)	7.4	2.5	2.9	2.5	4.2	2.9	3.0	5.4	5.6	2.9	3.1	2.5	5.2	3.1	6.6	8.0	3.8	4.7	4.0	3.6	3.1	2.9	6.7	7.2	9.0	2.6	4.2	8.5	2.7	3.8	3.4	2.6	3.1	3.6	
	Err	<i>"</i>	(2)	0.3	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.1	0.1	0.2	0.3	0.2	0.4	0.1	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.1	
osition	Decl.	(deg)	(4)	-29.47378	-29.59496	-29.56523	-29.58521	-29.64757	-29.61443	-29.61826	-29.50951	-29.50756	-29.56565	-29.55918	-29.58190	-29.51394	-29.62043	-29.48785	-29.46403	-29.63804	-29.52523	-29.53994	-29.54783	-29.56242	-29.56659	-29.69312	-29.47836	-29.44349	-29.58431	-29.53414	-29.45549	-29.60596	-29.63655	-29.55467	-29.59639	-29.61958	-29.63059	
I	R. A.	(deg)	(3)	267.91338 -	267.91343 -	267.91346 -	267.91350 -	267.91354 -	267.91364 -	267.91370 -	267.91373 -	267.91375 -	267.91375 -	267.91384 -	267.91393 -	267.91394 -	267.91414 -	267.91427 -	267.91436 -	267.91436 -	267.91445 -	267.91457 -	267.91469 -	267.91470 -	267.91475 -	267.91485 -	267.91487 -	267.91493 -	267.91496 -	267.91520 -	267.91528 -	267.91529 -	267.91543 -	267.91563 -	267.91573 -	267.91578 -	267.91619 -	
Source	CXOU J		(2)	175139.21 - 292825.6	175139.22 - 293541.8	175139.23 - 293354.8	175139.23 - 293506.7	175139.24 - 293851.2	175139.27 - 293651.9	175139.28 - 293705.7	175139.29 - 293034.2	175139.29 - 293027.2	175139.29 - 293356.3	175139.32 - 293333.0	175139.34 - 293454.8	175139.34 - 293050.1	175139.39 - 293713.5	175139.42 - 292916.2	175139.44 - 292750.5	175139.44 - 293816.9	175139.46 - 293130.8	175139.49 - 29323.7	175139.52 - 293252.1	175139.52 - 293344.6	175139.54 - 293359.7	175139.56 - 294135.2	175139.56 - 292842.0	175139.58 - 292636.5	175139.59 - 293503.5	175139.64 - 293202.9	175139.66 - 292719.7	175139.66 - 293621.4	175139.70 - 293811.5	175139.75 - 293316.8	175139.77 - 293547.0	175139.78 - 293710.5	175139.88 - 293750.1	
	Seq	#	(1)	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	(cont.)

list
source
Chandra
A.1:
Table

i	Source		Position			1	Extra	cted Co	unts					Characte	ristics	
Seq	CXOU J	R.A.	Decl.	Err	θ	$C_{\rm net} \ge$	$^{\Delta C_{ m net}}$	$C'_{\rm bkg}$ (net,hard	PSF	PS $P_{\rm B}$	Anor	n Va	: EffExp	$E_{ m median}$	Photo $F_{\mathbf{x}}$
#		(deg)	(deg)	()	S						Frac			(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	(14)	(15)) (16)	(17)	(18)
1497	175139.89 - 292817.1	267.91624	-29.47142	0.3	7.6	33.3	14.3	152.7	20.1	0.90	2.2 - 2.3	3 8.	:	763.9	2.4	7.2×10^{-16}
1498	175139.90 - 294008.0	267.91628	-29.66891	0.2	5.4	75.7	12.4	63.3	58.1	0.90	5.9 < -	:	ч	811.3	3.7	$2.2 imes 10^{-15}$
1499	175139.96 - 293357.9	267.91651	-29.56609	0.1	3.0	30.7	6.9	10.3	9.3	0.89	4.1 < -	ы ю	:	823.2	1.6	4.0×10^{-16}
1500	175139.99 - 292831.85	267.91663	-29.47550	0.3	7.4	44.2	12.9	106.8	19.8	0.85	3.3 -4.	:	с :	766.8	1.9	$7.7 imes 10^{-16}$
1501	175140.02 - 293442.4	9167.91678	-29.57845	0.1	2.7	14.6	5.3	8.4	1.1	0.89	2.5 - 4.	ы ю	:	763.7	1.5	1.9×10^{-16}
1502	175140.05 - 293814.7	267.91690	-29.63743	0.1	3.9	46.0	8.7	21.0	29.5	0.90	5.0 < -	:	р	846.0	2.6	$9.2 imes 10^{-16}$
1503	175140.08 - 293000.7	267.91702	-29.50022	0.2	6.0	31.7	10.1	59.3	8.8	0.89	3.0 - 4.	:	Р	783.7	1.4	3.8×10^{-16}
1504	175140.12 - 293854.3	267.91717	-29.64844	0.2	4.4	38.8	9.1	33.2	13.8	0.90	4.0 <	:	ч	838.0	1.7	$5.1\! imes\!10^{-16}$
1505	175140.14 - 293515.5	267.91728	-29.58766	0.2	2.7	10.7	4.9	8.3	4.3	0.89	2.0 - 2.1	9 .8	:	714.9	1.4	1.4×10^{-16}
1506	175140.17 - 293915.05	267.91740	-29.65418	0.2	4.7	19.7	8.3	40.3	3.2	0.90	2.2 - 2.1	;	а	833.1	1.6	$2.5 imes 10^{-16}$
1507	175140.20 - 293108.8	267.91753	-29.51913	0.2	5.0	29.0	8.7	37.0	4.5	0.90	3.1 - 4.	:	ч	812.0	1.3	$3.1\! imes\!10^{-16}$
1508	175140.21 - 293641.5	267.91757	-29.61155	0.1	3.0	21.6	6.3	11.4	1.3	0.89	3.2 <	:	р :	856.4	1.3	$2.1\! imes\!10^{-16}$
1509	175140.22 - 293033.3	267.91760	-29.50926	0.2	5.6	22.6	9.1	50.4	0.0	0.90	2.3 - 2.3	7	Р	786.2	0.8	1.5×10^{-16}
1510	175140.23 - 293459.85	267.91765	-29.58330	0.2	2.7	12.6	5.0	7.4	7.7	0.90	2.3 - 3.		:	583.3	2.2	$3.2 imes 10^{-16}$
1511	175140.23 - 293619.8	267.91766	-29.60552	0.1	2.9	14.9	5.6	11.1	11.8	0.89	2.4 - 3.	:	ч	856.7	3.5	$4.0\! imes\!10^{-16}$
1512	175140.25 - 293233.7	267.91772	-29.54271	0.2	3.9	21.2	7.0	19.8	5.0	0.91	2.8 - 4.1	;	р	835.9	1.4	1.8×10^{-16}
1513	175140.25 - 293223.05	267.91773	-29.53973	0.2	4.1	16.2	6.7	21.8	0.8	0.90	2.2 - 2.3	:	ч	838.2	1.1	1.8×10^{-16}
1514	175140.27 - 293319.3	267.91783	-29.55538	0.1	3.4	36.8	7.6	13.2	13.7	0.89	4.5 < -	:	р	825.6	1.7	$5.0 imes 10^{-16}$
1515	175140.28 - 293605.1	987.91786	-29.60144	0.1	2.8	41.3	7.8	11.7	24.2	0.89	4.9 <	:	р :	855.7	2.4	$7.6 imes 10^{-16}$
1516	175140.31 - 292751.55	967.91796	-29.46431	0.3	8.0	70.2	14.6	124.8	40.2	0.81	4.6 <	:	р :	762.3	2.3	1.6×10^{-15}
1517	175140.34 - 293253.2	90816.791	-29.54814	0.2	3.7	12.6	5.8	15.4	0.0	0.89	2.0 - 2.0	:	р	841.7	1.4	1.4×10^{-16}
1518	175140.35 - 294002.7	267.91813	-29.66743	0.2	5.4	49.8	11.0	59.2	22.5	0.90	4.3 < -	:	Э	818.6	1.9	8.8×10^{-16}
1519	175140.35 - 293323.85	267.91814	-29.55662	0.2	3.4	18.6	6.2	13.4	8.4	0.90	2.7 - 4.5	:	р :	830.4	2.2	2.8×10^{-16}
1520	175140.37 - 293733.6	267.91823	-29.62603	0.2	3.5	16.8	6.3	16.2	0.7	0.89	2.4 - 3.	2	ч	851.2	1.5	1.9×10^{-16}
1521	175140.42 - 293432.0	267.91842	-29.57558	0.2	2.9	12.1	5.2	9.9	9.9	0.89	2.1 - 3.	ю -	:	806.5	2.4	2.4×10^{-16}
1522	175140.48 - 293304.3	91870	-29.55120	0.1	3.6	32.5	7.4	14.5	10.2	0.90	4.1 < -	:	ч	845.0	1.7	4.2×10^{-16}
1523	175140.52 - 293054.0	267.91886	-29.51502	0.2	5.3	22.0	8.5	41.0	17.2	0.90	2.4 - 3.1	 	:	786.2	2.4	$4.5 imes 10^{-16}$
1524	175140.55 - 294134.1	267.91896	-29.69281	0.2	6.7	70.9	14.2	113.1	13.2	0.89	4.8 <	:	ч	779.0	1.1	$9.7 imes 10^{-16}$
1525	175140.55 - 293340.55	967.91899	-29.56127	0.1	3.3	35.2	7.4	11.8	6.0	0.89	4.4 < -	:	с :	844.3	1.6	$3.0 imes 10^{-16}$
1526	175140.56 - 293603.3	10616.793	-29.60093	0.1	2.9	35.3	7.4	11.7	3.2	0.89	4.5 < -	:	р :	856.7	1.1	$3.0 imes 10^{-16}$
1527	175140.58 - 294234.85	267.91912	-29.70967	0.2	7.7	339.9	23.6	187.1	248.5	0.90	14.1 < -	:	Э	757.1	3.0	9.1×10^{-15}
1528	175140.61 - 293132.9	267.91923	-29.52583	0.2	4.8	16.7	7.7	33.3	6.6	0.90	2.0 - 2.3	:	ч	815.4	1.9	$2.6 imes 10^{-16}$
1529	175140.61 - 293910.1	267.91925	-29.65283	0.2	4.7	40.6	9.6	41.4	22.6	0.90	4.0 <	:	Э	832.0	2.9	$9.2 imes 10^{-16}$
1530	175140.63-292953.3 2	267.91930	-29.49817	0.2	6.2	82.3	12.8	65.7	61.6	0.90	6.2 < -	ю.	:	780.3	3.1	2.2×10^{-15}
(cont.)																

	n Photo F_x	$(ergs s^{-1} cm^{-2})$	(18)	3.3×10^{-16}	$2.1 imes 10^{-16}$	3.8×10^{-16}	$9.7 imes 10^{-16}$	1.5×10^{-16}	$4.0 imes 10^{-15}$	$3.6 imes 10^{-15}$	4.8×10^{-15}	1.4×10^{-15}	1.8×10^{-16}	$5.0 imes 10^{-16}$	$3.9 imes 10^{-16}$	1.4×10^{-15}	3.4×10^{-16}	1.3×10^{-16}	$2.7 imes 10^{-16}$	1.7×10^{-16}	$2.0 imes 10^{-16}$	1.9×10^{-16}	2.3×10^{-16}	6.3×10^{-16}	1.6×10^{-16}	$7.2 { imes} 10^{-16}$	8.8×10^{-16}	$2.0{ imes}10^{-15}$	1.5×10^{-15}	2.3×10^{-16}	1.5×10^{-16}	$8.0 imes 10^{-16}$	$5.7 imes 10^{-16}$	1.7×10^{-16}	1.5×10^{-16}	9.2×10^{-16}	4.6×10^{-16}	
ristics	$E_{ m medias}$	(keV)	(17)	2.5	1.3	2.0	1.9	1.5	3.0	2.8	3.1	1.4	1.4	1.3	1.9	2.6	2.2	1.2	1.4	1.2	1.1	1.1	1.5	2.6	1.2	2.9	2.0	3.3	1.3	1.1	1.0	2.5	1.6	2.2	1.6	2.6	1.8	
haracte	EffExp	(ks)	(16)	855.1	670.3	851.2	765.4	770.2	840.7	849.7	777.5	753.5	820.8	849.0	711.9	783.4	846.5	845.0	752.7	844.7	829.8	837.9	851.0	839.1	821.5	811.7	792.9	738.4	794.5	711.3	614.0	815.4	821.4	818.3	848.7	849.5	843.5	
	Var		(15)	q	ł	q	q	i	ų	ъ	в	ပ	5	q	i	5	g	ъ	i	q	q	5	q	5	5	8	ł	q	÷	÷	÷	q	c	а	ъ	5	ы	
	Anom		(14)	:	50 50	÷	:	: 60	i	i	:	÷	÷	÷	: :00	÷	÷	:	: :00	÷	:	÷	÷	÷	÷	÷	: 60	÷	: :00	50 60	: 60	÷	÷	:	÷	÷	:	
	$P_{\rm B}$		(13)	-5.0	-2.8	~ -5	~ -5	-3.2	$\stackrel{>}{\sim}$	$\stackrel{>}{\sim}$	~ -5	~ -5	-4.2	~ -5	$\stackrel{>}{\sim}$	$^{-5}$	-4.2	-2.8	$\stackrel{>}{\sim}$	-4.3	-3.2	-4.0	-2.5	$^{-2}$	-2.9	-3.4	$\stackrel{>}{\sim}$	$^{-2}$	\sim -5	~ -5	-3.6	~ -5	-4.8	-3.3	-2.4	$\stackrel{<}{-5}$	$\stackrel{<}{\sim}$	
	\mathbf{PS}	Frac	(12)	2.7	1.9	4.6	3.7	2.1	11.5	11.6	9.7	5.7	2.5	5.6	3.2	4.6	2.7	2.1	3.2	2.7	2.5	2.7	1.9	5.6	2.3	2.8	5.9	8.0	4.9	3.3	2.3	3.6	3.2	2.2	1.9	5.3	4.1	
	PSF		(11)	0.89	0.89	0.89	0.81	0.89	0.90	0.89	0.90	0.90	0.89	0.90	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.90	0.89	0.89	0.90	0.90	0.89	0.90	0.90	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.89	
ounts	$\sigma_{\rm net,hard}$		(10)	10.9	2.9	19.3	21.6	1.7	123.4	122.3	133.6	26.2	3.5	3.6	8.8	41.6	12.9	0.0	4.7	6.2	6.7	3.5	4.4	35.8	0.0	19.1	25.7	134.9	4.7	5.8	5.3	28.6	6.9	8.4	2.9	27.1	10.2	
acted C	$C'_{\rm bkg}$	I	(6)	10.7	8.6	12.1	115.9	9.2	27.7	17.3	129.0	209.6	11.9	12.6	9.4	107.9	20.6	16.2	11.0	16.3	39.2	26.9	13.4	16.1	23.2	66.6	10.3	227.7	38.7	10.0	10.3	55.8	47.4	11.5	16.5	14.3	14.4	
Extra	ΔC_{net}		(8)	5.8	4.9	7.6	13.7	5.1	14.8	14.2	18.2	18.5	5.8	8.5	6.1	13.8	7.0	6.0	6.3	6.5	8.5	7.6	5.6	8.8	6.9	10.5	8.5	20.6	10.1	6.2	5.4	10.3	9.5	5.5	5.9	8.3	7.4	
	$C_{\rm net}$		(2)	17.3	10.4	37.9	53.1	11.8	175.3	170.7	181.0	108.4	16.1	50.4	21.6	65.1	20.4	13.8	22.0	18.7	22.8	22.1	11.6	52.9	16.8	30.4	52.7	169.3	52.3	22.0	13.7	39.2	32.6	13.5	12.5	46.7	32.6	
	θ	S	(9)	3.0	2.9	3.3	7.9	2.9	4.2	3.6	6.9	8.3	3.0	3.3	2.9	6.5	3.8	3.6	2.9	3.6	4.6	4.2	3.3	3.7	4.2	5.5	3.0	8.2	5.1	3.0	3.0	5.3	5.0	3.1	3.6	3.5	3.4	
	Err	$\tilde{\boldsymbol{\boldsymbol{\omega}}}$	(5)	0.1	0.2	0.1	0.3	0.2	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.1	
Position	Decl.	(deg)	(4)	-29.60679	-29.59049	-29.56278	-29.46716	-29.59453	-29.64198	-29.62688	-29.69556	-29.46076	-29.57502	-29.56483	-29.58683	-29.68780	-29.63131	-29.55525	-29.57942	-29.55402	-29.65037	-29.64147	-29.56686	-29.55290	-29.53906	-29.66857	-29.59513	-29.71812	-29.52008	-29.58567	-29.58249	-29.66393	-29.65784	-29.57560	-29.6228	-29.61948	-29.56412	
	R.A.	(deg)	(3)	267.91949	267.91953	267.91954	267.91968	267.91988	267.91999	267.92012	267.92036	267.92051	267.92058	267.92096	267.92106	267.92106	267.92114	267.92131	267.92131	267.92137	267.92186	267.92191	267.92192	267.92195	267.92198	267.92214	267.92240	267.92252	267.92254	267.92267	267.92272	267.92286	267.92307	267.92308	267.92335	267.92351	267.92370	
Source	CXOU J		(2)	175140.67 - 293624.4	175140.68 - 293525.7	175140.68 - 293346.0	175140.72 - 292801.7	175140.77 - 293540.3	175140.79 - 293831.1	175140.82 - 293736.7	175140.88 - 294144.0	175140.92 - 292738.7	175140.93 - 293430.0	175141.03 - 293353.3	175141.05 - 293512.5	175141.05 - 294116.0	175141.07 - 293752.7	$175141.11\!-\!293318.8$	175141.11 - 293445.9	175141.12 - 293314.4	175141.24 - 293901.3	175141.25 - 293829.2	175141.26 - 293400.7	175141.26 - 293310.4	175141.27 - 293220.6	175141.31 - 294006.8	175141.37 - 293542.4	175141.40 - 294305.2	175141.40 - 293112.2	175141.44 - 293508.4	175141.45 - 293456.9	175141.48 - 293950.1	175141.53 - 293928.2	175141.53 - 293432.1	175141.60 - 293720.2	175141.64 - 293710.1	175141.68 - 293350.8	
	Seq	#	(1)	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	(cont.)

source list
Chandra
A.1:
Table

	Source		Position				Extrac	sted Co	unts					Char	acterist	cics	
Seq	CXOU J	R.A.	Decl. I	- Err	θ	$C_{\text{net}} \Delta$	$C_{\rm net}$	$C'_{ m bkg}$ C	net,hard	PSF	PS P	B And	N N	ar Eff	fExp E	median	Photo $F_{\mathbf{x}}$
#		(deg)	(deg) ($\hat{\ldots}$	S						Frac			0	ks) ((keV)	$(ergs s^{-1} cm^{-2})$
(1)	(2)	(3)	(4) ((5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (1	3) (1-	1) (1	5) (5	16)	(17)	(18)
1565	175141.71-293333.7 2	367.92381	-29.55936	0.1	3.6	29.3	7.3	15.7	10.6	0.90	3.8 <-	-5	:	a 85	33.2	1.6	$3.7 imes 10^{-16}$
1566	175141.71 - 293550.9	367.92381	-29.59749	0.1	3.1	17.4	5.9	11.6	5.8	0.89	2.7 - 4	1.7	:	a 84	41.3	1.8	$2.5 imes 10^{-16}$
1567	175141.74 - 293401.3	367.92392	-29.56705	0.2	3.3	13.7	5.7	13.3	4.1	0.90	2.2 - 5	3.1	:	a 84	15.2	1.2	$1.3 { imes} 10^{-16}$
1568	175141.82 - 293030.05	367.92429	-29.50835	0.2	5.8	26.2	9.7	55.8	4.1	0.89	2.6 - 5	3.1			87.4	1.5	$3.4 imes 10^{-16}$
1569	175141.84 - 293110.05	367.92435	-29.51947	0.1	5.2	207.4	16.3	39.6	57.6	0.90	12.4 < -	-5-	· · · ·		96.0	1.5	$2.7 imes 10^{-15}$
1570	175141.86 - 293728.9	367.92444	-29.62472	0.2	3.7	13.8	6.2	18.2	8.9	0.90	2.0 - 2	2.6	:	а 84	14.8	4.1	4.4×10^{-16}
1571	175141.89 - 293211.85	367.92455	-29.53662	0.2	4.4	31.4	8.0	23.6	16.5	0.89	3.7 <-	-5	:	د 80)3.9	2.0	$5.2\! imes\!10^{-16}$
1572	175141.93 - 292926.15	367.92474	-29.49059	0.1	6.7	216.3	18.1	88.7	125.6	0.90	11.7 <-	-5	:	a 71	75.3	2.4	$4.5 imes 10^{-15}$
1573	175141.94 - 293528.85	367.92477	-29.59135	0.1	3.2	53.5	8.5	9.5	29.8	0.89	5.9 < -	-5-		64	13.4	2.4	1.3×10^{-15}
1574	175142.01 - 294002.9	367.92505	-29.66747	0.2	5.6	100.5	13.6	67.5	12.2	0.91	7.1 < -	-5	:	b 81	11.4	1.2	$9.6 imes 10^{-16}$
1575	175142.03 - 293232.3	367.92516	-29.54232	0.1	4.2	73.6	10.3	22.4	32.4	0.90	6.8 < -	-5	· · · ·		(2.9)	1.8	$1.1\! imes\!10^{-15}$
1576	175142.05 - 293402.1	367.92521	-29.56727	0.1	3.4	121.4	12.1	13.6	96.0	0.90	9.6 < -	-5	:	а 80	38.8	3.5	$3.3 imes 10^{-15}$
1577	175142.06 - 293610.7	367.92525	-29.60297	0.1	3.2	18.6	6.3	14.4	9.9	0.89	2.7 - 4	1.6	:	b 84	10.2	2.1	$1.8 { imes} 10^{-16}$
1578	175142.06 - 293536.4	367.92529	-29.59346	0.2	3.2	16.0	5.6	10.0	1.8	0.89	2.6 - 4	1.6 £	· · · ·	7	15.5	1.2	$3.2 imes 10^{-16}$
1579	175142.11 - 293308.2	367.92547	-29.55229	0.2	3.9	21.7	6.9	18.3	2.3	0.91	2.9 - 4	1.9	:	а 87	20.4	1.0	$1.7 { imes} 10^{-16}$
1580	175142.12 - 293330.3	367.92553	-29.55844	0.1	3.7	74.2	10.1	16.8	22.2	0.90	7.0 <-	-5	:	с 87	24.1	1.3	$7.8 { imes} 10^{-16}$
1581	175142.17 - 293058.2	367.92575	-29.51619	0.2	5.4	64.6	11.0	43.4	34.0	0.90	5.6 < -	-5-			97.2	2.4	1.3×10^{-15}
1582	175142.22 - 292800.1	367.92594	-29.46671	0.3	8.0	55.7	16.4	191.3	0.0	0.90	3.3 - 4	l.3	:	а 74	14.6	1.2	$6.0\! imes\!10^{-16}$
1583	175142.24 - 294015.5	367.92601	-29.67098	0.1	5.8	145.8	15.5	75.2	84.3	0.90	9.1 < -	-5	:	a 8()8.3	2.2	$1.7 { imes} 10^{-15}$
1584	175142.24 - 293630.2	367.92602	-29.60840	0.2	3.3	11.1	5.6	13.9	1.1	0.90	1.8 - 2	2.3	:	0 80	39.3	1.4	1.9×10^{-16}
1585	175142.26 - 294214.5	367.92611	-29.70404	0.3	7.5	23.1	8.9	45.9	3.1	0.56	2.5 - 5	3.0	:	a 71	75.1	1.1	$3.5 imes 10^{-16}$
1586	175142.32 - 293321.3	367.92636	-29.55594	0.2	3.8	12.4	6.0	17.6	3.2	0.90	1.9 - 2	2.3	:	a 82	20.0	1.8	$1.8 { imes} 10^{-16}$
1587	175142.37 - 294148.75	367.92655	-29.69687	0.2	7.1	61.8	15.1	147.2	37.2	0.90	4.0 <-	-5	:	а 22	33.2	2.4	1.2×10^{-15}
1588	175142.38 - 293622.6	367.92660	-29.60630	0.1	3.3	22.9	6.6	14.1	0.0	0.90	3.2 < -	-5			31.9	1.0	$1.9{ imes}10^{-16}$
1589	175142.41 - 294207.6	367.92674	-29.70214	0.3	7.4	30.2	9.0	39.8	11.2	0.57	3.2 - 4	1.9	:	P 7	76.9	1.6	6.4×10^{-16}
1590	175142.43 - 293335.75	367.92680	-29.55992	0.1	3.7	89.8	10.9	17.2	44.4	0.90	-> 6.7	-5	:	а 87	22.0	1.9	$8.6 imes 10^{-16}$
1591	175142.43 - 293012.8	367.92682	-29.50356	0.3	6.1	22.2	10.0	65.8	7.5	0.90	2.1 - 2	2.2			34.3	1.7	$3.6 imes 10^{-16}$
1592	175142.43 - 293259.65	367.92682	-29.54990	0.2	4.0	14.9	6.4	19.1	4.8	0.90	2.1 - 2	8.3	:	6 8(04.9	1.2	$2.1\! imes\!10^{-16}$
1593	175142.44 - 293440.2	367.92686	-29.57783	0.1	3.2	71.0	9.7	13.0	10.7	0.89	-> 6.9	-5-		75	51.9	1.3	8.1×10^{-16}
1594	175142.47 - 293232.3	367.92696	-29.54231	0.2	4.3	24.0	7.4	23.0	6.1	0.90	3.0 - 4	1.9 £)5.2	1.2	$2.5 imes 10^{-16}$
1595	175142.47 - 293717.85	367.92697	-29.62163	0.2	3.7	20.0	6.6	16.0	5.8	0.90	2.8 - 4	1.8	:	в 89	30.5	1.4	2.3×10^{-16}
1596	175142.48 - 293901.95	367.92704	-29.65054	0.2	4.8	47.8	10.1	42.2	16.8	0.89	4.5 < -	-5	:	b 82	23.6	1.6	$6.2 imes 10^{-16}$
1597	175142.51 - 293251.15	367.92713	-29.54754	0.2	4.1	20.9	7.0	21.1	3.7	0.90	2.8 - 4	1.3 £.1			96.8	0.9	$1.6\! imes\!10^{-16}$
1598	175142.55 - 293646.2	367.92732	-29.61286	0.2	3.5	14.0	5.9	15.0	3.3	0.89	2.2 - 5	3.0	:	с 85	34.6	1.4	1.6×10^{-16}
(cont.)																	

	$_{\rm nn}$ Photo $F_{\rm x}$	$(ergs s^{-1} cm^{-2})$	(18)	1.3×10^{-15}	$6.6 imes 10^{-16}$	2.4×10^{-16}	$3.8 imes 10^{-16}$	4.1×10^{-16}	$4.0 imes 10^{-16}$	$5.0 imes 10^{-16}$	$2.7 imes 10^{-15}$	7.4×10^{-16}	$1.6 imes 10^{-15}$	$5.2 imes 10^{-16}$	$3.6 imes 10^{-16}$	1.3×10^{-15}	$8.7 { imes} 10^{-16}$	1.8×10^{-16}	1.9×10^{-16}	2.4×10^{-15}	$6.6\! imes\!10^{-16}$	$4.0 imes 10^{-16}$	$2.0 imes 10^{-15}$	6.4×10^{-16}	$5.1 imes 10^{-15}$	$2.7 imes 10^{-16}$	$4.5\! imes\!10^{-16}$	8.0×10^{-15}	$2.2 imes 10^{-15}$	1.8×10^{-15}	$3.1 imes 10^{-15}$	$6.8 imes 10^{-16}$	$2.5 imes 10^{-16}$	$2.7 imes 10^{-16}$	$2.5 imes 10^{-16}$	$4.5 imes 10^{-16}$	7.1×10^{-16}
ristics	$E_{ m media}$	(keV)	(17)	3.1	1.5	1.3	2.9	1.0	2.5	1.5	5.4	3.0	2.7	2.2	1.6	3.5	1.8	1.2	1.2	1.9	1.9	1.0	1.9	2.4	2.7	1.6	2.1	3.0	2.6	1.9	1.0	1.5	1.6	1.2	1.5	1.5	3.4
haracte	EffExp	(ks)	(16)	768.7	815.6	806.7	837.1	734.0	783.6	820.9	434.7	775.7	705.4	797.5	818.6	550.4	814.1	818.6	751.5	800.9	815.0	790.8	755.5	780.5	696.9	832.2	812.3	792.1	759.7	810.9	795.0	787.9	796.0	817.2	802.8	795.0	828.0
	Var		(15)	÷	q	а	q	q	i	а	а	а	i	а	а	i	а	а	ł	i	q	ł	ł	а	ł	а	а	÷	q	g	÷	ł	ł	а	ł	а	в
	Anom		(14)	: :00	:	:	:	:	50 60	:	:	:	50 60	:	:	50 60	:	:	50 60	50 60	:	: :00	50 60	:	50 60	:	÷	: 60	i	:	: 60	50 60	50 60	÷	: :00	:	:
	$P_{\rm B}$		(13)	\sim -5	$^{-2}_{-2}$	-3.6	-3.7	-2.5	-4.6	~ -5	-2.1	-2.1	~ -5	-3.3	-3.7	-4.5	~ -5	-2.2	-4.4	$^{-5}_{-5}$	~ -5	~ -5	$^{-2}$	-3.3	$^{-5}_{-5}$	~ -5	3.5	- 5 -	-5 -5	- - 5	~ -5	$^{-5}_{-5}$	-3.9	\sim -2	-3.8	-3.3	- 2 - 2
	\mathbf{PS}	Frac	(12)	5.6	5.7	2.6	2.5	2.4	2.7	4.4	2.1	2.1	7.3	2.6	2.8	3.3	3.0	2.1	2.7	10.7	4.1	4.4	9.4	2.7	12.7	2.0	2.7	16.0	5.4	8.1	17.3	5.3	2.6	3.1	2.6	2.8	3.3
	$^{\rm I}$ PSF		(11)	0.90	0.90	0.90	0.89	0.89	0.90	0.90	0.90	0.79	0.90	0.90	0.90	0.90	0.69	0.90	0.90	0.90	0.77	0.90	0.90	0.90	0.90	0.89	0.87	0.91	0.67	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90
ounts	$C_{\rm net,harc}$		(10)	41.0	15.8	7.5	13.9	0.0	10.4	10.1	27.4	22.5	51.1	13.2	8.7	53.2	9.4	0.6	4.5	71.4	17.9	2.2	57.5	16.3	127.2	4.2	14.5	221.8	45.0	50.3	27.3	8.3	1.9	2.6	9.1	7.7	18.8
teted C	$C'_{\rm bkg}$	I	(6)	12.9	17.1	30.2	15.4	246.1	15.0	24.5	174.8	102.2	12.7	40.7	52.5	185.1	21.3	46.1	14.8	15.2	29.3	41.5	13.6	77.3	12.9	16.0	45.1	34.9	80.9	56.4	26.4	20.2	17.7	28.2	21.6	102.6	17.4
Extra	ΔC_{net}		(8)	8.5	9.0	7.8	6.2	17.8	6.4	8.6	15.1	12.0	10.0	8.6	9.6	16.2	7.3	8.7	6.3	13.3	8.8	10.0	12.0	11.1	15.0	6.6	9.0	19.3	13.0	13.7	20.1	9.0	6.6	8.0	7.0	12.4	7.1
	$C_{\rm net}$,		(2)	50.1	53.9	21.8	16.6	43.9	19.0	40.5	33.2	25.8	77.3	23.3	28.5	55.9	23.7	18.9	18.2	148.8	37.7	46.5	117.4	31.7	196.1	21.0	25.9	318.1	73.1	115.6	356.6	50.8	18.3	26.8	19.4	36.4	25.6
	θ	C	(9)	3.2	3.7	4.7	3.3	8.8	3.4	4.2	9.3	7.5	3.3	5.1	5.2	8.6	5.5	4.9	3.4	3.6	5.5	5.3	3.4	6.3	3.4	3.4	5.1	5.0	8.0	5.4	4.6	4.0	3.8	4.4	4.2	6.4	3.5
	Err	$\tilde{\boldsymbol{x}}$	(5)	0.1	0.1	0.2	0.2	0.3	0.2	0.1	0.4	0.3	0.1	0.2	0.2	0.3	0.2	0.2	0.2	0.1	0.2	0.2	0.1	0.3	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.1
Position	Decl.	(deg)	(4)	-29.58665	-29.55880	-29.53356	-29.59888	-29.45454	-29.57643	-29.63398	-29.44349	-29.70193	-29.57879	-29.52421	-29.65686	-29.72455	-29.66329	-29.65065	-29.57669	-29.56741	-29.66208	-29.52256	-29.58746	-29.50096	-29.58445	-29.60042	-29.65443	-29.53019	-29.71046	-29.65919	-29.54017	-29.55707	-29.56535	-29.63620	-29.55017	-29.67929	-29.60298
	R.A.	(deg)	(3)	267.92748	267.92760	267.92780	267.92794	267.92831	267.92850	267.92851	267.92855	267.92871	267.92884	267.92886	267.92892	267.92934	267.92935	267.92945	267.92988	267.92994	267.92998	267.93017	267.93020	267.93070	267.93076	267.93078	267.93109	267.93155	267.93166	267.93174	267.93180	267.93187	267.93187	267.93195	267.93205	267.93218	267.93230
Source	CXOU J		(2)	175142.59 - 293511.9	175142.62 - 293331.6	175142.67 - 293200.8	175142.70 - 293555.9	175142.79 - 292716.3	175142.83 - 293435.1	175142.84 - 293802.3	175142.85 - 292636.5	175142.89 - 294206.9	175142.92 - 293443.6	175142.92 - 293127.1	175142.94 - 293924.6	175143.04 - 294328.3	175143.04 - 293947.8	175143.06 - 293902.3	175143.17 - 293436.0	175143.18 - 293402.6	175143.19 - 293943.4	175143.24 - 293121.2	175143.24 - 293514.8	175143.36 - 293003.4	175143.38 - 293504.0	175143.38 - 293601.4	175143.46 - 293915.9	175143.57 - 293148.6	175143.59 - 294237.6	175143.61 - 293933.0	175143.63 - 293224.6	175143.64 - 293325.4	175143.64 - 293355.2	175143.66 - 293810.3	175143.69 - 293300.6	175143.72 - 294045.4	175143.75 - 293610.7
	Seq	#	(1)	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632

list
source
Chandra
A.1:
Table

	Source		Position				Extrac	sted Co	unts					Char	acterist	ics		
Seq	CXOU J	R.A.	Decl.	Er	θ	$\mathcal{C}_{net} \Delta$	$C_{\rm net}$	$C_{\rm bkg}' O$	net,hard	PSF	$PS P_{I}$	³ And	Ш Л	ar Eff	Exp $E_{\rm r}$	nedian	Photo $F_{\mathbf{x}}$	
#		(deg)	(deg)	£	S						Frac			0	ss) (keV)	$(ergs s^{-1} cm^{-2})$	
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (13)	3) (14	t) (1	5) (5	(91	(17)	(18)	
1633	175143.77 - 293243.5 2	67.93239	-29.54542	0.1	4.4	83.2	6.01	23.8	40.9	0.89	7.3 <-	-5		79	3.4	1.9	3.4×10^{-15}	
1634	175143.77 - 293425.6 2	67.93240	-29.57378	0.2	3.6	13.6	6.1	17.4	9.9	0.90	2.0 - 2	9. 9.	:	79	8.4	4.6	1.5×10^{-16}	
1635	175143.77 - 293052.2 2	67.93241	-29.51451	0.2	5.7	37.6	10.0	51.4	10.2	0.89	3.6 <-	ŕ	:	o 75	2.1	1.3	$6.0\! imes\!10^{-16}$	
1636	175143.78 - 293659.9 2	67.93244	-29.61665	0.2	3.8	19.1	6.7	18.9	3.3	0.90	2.6 - 4	0.	:	a 82	8.7	1.5	$2.3 { imes} 10^{-16}$	
1637	175143.82 - 292709.5 2	67.93261	-29.45266	0.3	9.0	112.7 5	20.2	266.3	36.1	0.90	5.4 < -	-5	:	a 73	1.6	1.3	1.3×10^{-15}	
1638	175143.85 - 293534.5 2	67.93273	-29.59294	0.2	3.5	18.1	6.3	14.9	10.3	0.90	2.6 - 4	с. 	:		12.1	2.7	$4.6 imes 10^{-16}$	
1639	175143.86 - 293322.1 2	67.93276	-29.55616	0.1	4.1	60.4	9.7	22.6	54.1	0.90	5.9 < -	-ئ ش	:		7.4	3.1	$7.7 { imes} 10^{-16}$	
1640	175143.86 - 292933.5 2	67.93279	-29.49265	0.3	6.8	32.9	12.1	98.1	0.9	0.90	2.6 - 3	0.	:	a 77	6.6	1.5	$9.0 imes 10^{-16}$	
1641	175143.94 - 293317.7 2	67.93310	-29.55493	0.1	4.1	98.1	11.5	22.9	92.0	0.90	8.1 < -	-5 ~	:		8.4	4.1	$3.5 imes 10^{-15}$	
1642	175143.97 - 293213.8 2	67.93324	-29.53717	0.1	4.7	85.7	11.4	31.3	61.4	0.91	7.2 <-	-ئ ش	:		3.4	2.8	$2.0 imes 10^{-15}$	
1643	175143.99 - 293915.0 2	67.93332	-29.65418	0.2	5.2	46.5	10.5	51.5	19.6	0.90	4.2 < -	r- J	:	о 8С	17.2	1.8	$7.0 imes 10^{-16}$	
1644	175144.06 - 293351.0 2	67.93359	-29.56418	0.2	3.9	28.3	7.4	18.7	8.8	0.90	3.6 <-	-5 ~	:		12.1	1.6	$4.0 imes 10^{-16}$	
1645	175144.09 - 293135.7 2	67.93374	-29.52660	0.1	5.2	218.0	16.7	42.0	27.8	0.90	12.7 <-	5-	:	с 8С	0.3	1.2	$2.2{ imes}10^{-15}$	
1646	175144.15 - 293254.9 2	67.93397	-29.54860	0.2	4.4	13.3	6.6	22.7	0.0	0.89	1.9 - 2	.2	:	75	12.5	1.2	1.4×10^{-16}	
1647	175144.24 - 294005.0 2	67.93434	-29.66808	0.2	5.9	82.5	13.3	77.5	36.4	0.90	6.0 < -	-5 	:		39.8	1.9	1.4×10^{-15}	
1648	175144.25 - 294253.3 2	67.93441	-29.71482	0.2	8.3	224.8	22.5	251.2	162.7	0.90	9.8 <-	-5	:	c 75	3.6	3.1	$6.1\! imes\!10^{-15}$	
1649	175144.26 - 294235.3 2	67.93443	-29.70982	0.2	8.0	254.3	21.6	182.7	182.0	0.86	11.5 < -	-5	:	0 75	9.0	3.1	7.9×10^{-15}	
1650	175144.26 - 293321.4 2	67.93445	-29.55595	0.1	4.1	45.0	8.9	24.0	37.6	0.90	4.8 <-	r- m	:	79	12.6	3.4	$1.2 imes 10^{-15}$	
1651	175144.29 - 293617.8 2	67.93456	-29.60496	0.1	3.7	49.2	8.9	20.8	18.9	0.90	5.2 < -	-5	:	о 8С	9.9	1.8	7.3×10^{-16}	
1652	175144.35 - 293848.7 2	67.93481	-29.64689	0.2	5.0	28.7	9.0	42.3	21.5	0.90	3.0 - 4	e.	:	a 81	0.0	3.5	9.9×10^{-16}	
1653	175144.35 - 293531.2 2	67.93483	-29.59201	0.1	3.7	42.8	8.1	14.2	43.2	0.90	5.0 < -	-5 ~	:	64	3.9	4.1	1.7×10^{-15}	
1654	175144.40 - 293944.4 2	67.93500	-29.66236	0.2	5.6	47.2	11.5	70.8	42.0	0.90	3.9 <-	٠ ت	:	o 75	8.2	4.2	$1.7 { imes} 10^{-15}$	
1655	175144.44 - 293439.5 2	67.93520	-29.57765	0.2	3.7	19.4	6.3	13.6	0.0	0.90	2.8 <-	ن ش	:		5.9	1.1	$2.1 imes 10^{-16}$	
1656	175144.47 - 293301.6 2	67.93532	-29.55046	0.2	4.3	13.6	6.7	23.4	2.9	0.90	1.9 - 2	5.	:		6.8	1.6	1.9×10^{-16}	
1657	175144.51 - 293812.8 2	67.93547	-29.63689	0.2	4.6	18.3	7.8	33.7	5.3	0.90	2.2 - 2	.6	:	a 81	9.7	1.1	$1.6\! imes\!10^{-16}$	
1658	175144.54 - 293840.1 2	67.93562	-29.64449	0.1	4.9	87.4	11.8	39.6	62.0	0.90	7.1 <-	-5	:	a 81	4.9	2.8	$2.0{ imes}10^{-15}$	
1659	175144.60 - 292733.8 2	67.93585	-29.45940	0.2	8.7	252.8	23.1	249.2	173.9	0.89	10.7 <-	ن ت	:	a 75	3.0	3.0	6.6×10^{-15}	
1660	175144.62 - 294010.5 2	67.93593	-29.66961	0.2	6.0	74.0	12.8	74.0	10.1	0.87	5.6 < -	-5 -	:	c 78	5.8	1.4	1.4×10^{-15}	
1661	175144.62 - 293656.9 2	67.93595	-29.61583	0.2	4.0	24.0	7.3	22.0	11.1	0.90	3.1 < -	ن ت	:	a 81	0.6	2.2	$2.8{ imes}10^{-16}$	
1662	175144.76 - 293211.2 2	67.93651	-29.53647	0.1	4.9	72.7	6.01	34.3	38.3	0.90	6.4 < -	ٺت ش	:	80	0.3	2.1	1.3×10^{-15}	
1663	175144.77 - 292949.4 2	67.93656	-29.49706	0.2	6.7	68.2	l3.5	96.8	10.4	0.90	4.9 <-	ŕċ	:	o 78	\$7.2	1.4	$8.0 imes 10^{-16}$	
1664	175144.80 - 293142.4 2	67.93668	-29.52846	0.2	5.2	41.3	9.9	44.7	28.4	0.90	4.0 <-	ن ش	:	80	12.0	2.8	9.9×10^{-16}	
1665	175144.81 - 293408.1 2	67.93673	-29.56893	0.2	3.9	13.2	6.3	19.8	1.0	0.90	1.9 - 2	с. ш	:		87.3	1.7	$2.0{ imes}10^{-16}$	
1666	175144.82-293602.7 2	67.93675	-29.60076	0.1	3.8	111.8	12.0	20.2	31.0	0.90	8.9 <-	-5		75	1.2	1.6	1.6×10^{-15}	
(cont.)																		

	ⁿ Photo F_x	$(ergs \ s^{-1} \ cm^{-2})$	(18)	1.1×10^{-15}	$9.6 imes 10^{-16}$	1.9×10^{-15}	1.4×10^{-14}	$5.8 imes 10^{-15}$	$2.1 imes 10^{-15}$	1.4×10^{-15}	$3.2 imes 10^{-15}$	7.5×10^{-16}	4.7×10^{-16}	$7.5 imes 10^{-16}$	1.5×10^{-15}	4.3×10^{-16}	1.2×10^{-15}	3.1×10^{-16}	$5.8 imes 10^{-16}$	$6.1\! imes\!10^{-15}$	$3.7 imes 10^{-16}$	2.1×10^{-15}	$2.5 imes 10^{-15}$	8.8×10^{-16}	$3.0\! imes\!10^{-15}$	3.2×10^{-16}	4.6×10^{-16}	1.7×10^{-16}	2.5×10^{-16}	6.1×10^{-16}	1.2×10^{-15}	7.4×10^{-16}	$2.9 imes 10^{-16}$	1.6×10^{-15}	4.1×10^{-16}	3.4×10^{-16}	9.5×10^{-16}	
ristics	$E_{ m median}$	(keV)	(17)	1.7	1.4	2.5	2.7	2.6	2.4	3.5	1.9	0.9	1.0	1.6	3.2	1.5	2.0	2.4	2.2	2.9	1.2	1.0	2.8	1.3	2.9	1.0	2.9	1.4	1.6	4.1	4.2	1.3	1.2	1.3	1.9	1.1	3.2	
haracter	EffExp	(ks)	(16)	809.7	822.8	757.6	823.7	791.1	769.3	794.7	435.0	820.6	782.5	694.8	776.4	799.9	810.5	789.0	613.5	561.0	778.6	803.2	749.8	768.3	792.9	765.7	771.5	814.5	812.2	771.0	781.8	808.4	814.3	754.1	808.5	609.4	776.0	
0	Var		(15)	С	q	q	а	а	а	а	ъ	q	q	а	а	q	а	÷	ł	÷	÷	÷	а	а	q	÷	а	а	ы	÷	÷	а	q	а	÷	÷	q	
	Anom		(14)	:	÷	i	:	÷	÷	÷	÷	÷	÷	÷	÷	i	:	: 60	: 60	: 60	: 60	: 60	÷	÷	i	: 60	÷	:	i	: 60	: 60	:	÷	÷	: 60	: 60	:	
	$P_{ m B}$		(13)	~ -5	~ -5	~ -5	~ -5	~ -5	~ -5	~ -5	~ -5	~ -5	~ -5	-2.7	-4.9	-4.7	~ -5	-2.3	~ -5	~ -5	~ -5	~ -5	~ -5	~ -5	~ -5	-2.0	-4.3	-2.2	-3.3	-2.9	~ -5	~ -5	-4.9	~ -5	\sim	~ -5	-2.8	
	\mathbf{PS}	Frac	(12)	7.3	7.2	4.6	24.3	13.4	5.8	6.3	3.8	7.5	4.2	2.6	3.5	3.2	6.1	2.0	3.1	8.1	4.1	14.2	5.2	4.7	8.0	1.8	3.3	1.9	2.4	2.3	3.7	5.8	3.2	5.2	4.2	3.4	2.5	
	PSF		(11)	0.90	0.90	0.85	0.90	0.90	0.69	0.90	0.64	0.90	0.89	0.90	0.83	0.89	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.66	0.89	0.90	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.89	0.79	
ounts	$C_{\rm net,hard}$		(10)	35.2	25.6	45.0	436.8	169.5	51.5	75.0	19.6	0.3	0.8	23.7	49.2	5.0	35.3	7.7	12.0	108.0	6.6	13.0	69.8	0.0	97.0	3.8	34.5	1.1	5.5	18.8	34.2	8.4	6.5	18.5	17.7	1.9	29.2	
teted C	$C'_{\rm bkg}$)	(6)	22.3	31.1	191.5	33.4	80.2	76.6	83.2	65.4	36.7	123.1	274.8	117.0	55.5	47.7	26.8	13.4	203.0	21.1	23.2	224.1	70.7	85.9	18.4	181.0	28.1	24.3	23.2	26.9	50.6	40.4	189.7	25.5	14.1	93.8	
Extra	ΔC_{net}		(8)	10.8	11.3	17.2	27.0	19.1	13.1	13.8	11.1	12.0	14.3	18.8	13.6	10.1	11.6	7.1	6.5	19.8	8.0	17.0	18.7	12.0	15.2	6.0	16.0	7.1	7.1	6.9	8.3	11.5	9.0	17.5	8.5	6.8	11.8	
	$C_{\rm net}$		(2)	82.7	84.9	82.5	667.6	261.8	79.4	89.8	43.6	93.3	62.9	49.2	50.0	34.5	73.3	15.2	21.6	164.0	34.9	248.8	100.9	58.3	126.1	11.6	54.0	14.9	18.7	16.8	33.1	69.4	30.6	94.3	37.5	24.9	31.2	
	θ	C	(9)	4.1	4.4	$\frac{8.5}{5}$	4.6	5.9	7.9	6.4	9.5	4.8	7.2	9.2	7.6	5.8	5.2	4.4	3.9	8.7	4.0	4.1	8.1	8.0	6.1	3.9	7.8	4.6	4.3	4.2	4.4	5.4	5.0	7.8	4.1	4.0	7.6	
	Err	$\tilde{\mathbf{x}}$	(5)	0.1	0.1	0.3	0.0	0.1	0.2	0.2	0.4	0.1	0.2	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.3	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	
Position	Decl.	(deg)	(4)	-29.61971	-29.62862	-29.46309	-29.63389	-29.66748	-29.47355	-29.50382	-29.44310	-29.64049	-29.48776	-29.45042	-29.48069	-29.51725	-29.64949	-29.62753	-29.59124	-29.72310	-29.61046	-29.56806	-29.70972	-29.47393	-29.66907	-29.59805	-29.47681	-29.55000	-29.55925	-29.61386	-29.62395	-29.52777	-29.54018	-29.70161	-29.57353	-29.58272	-29.48197	
	R. A.	(deg)	(3)	267.93676 -	267.93691 -	267.93739 -	267.93739 -	267.93744 -	267.93762 -	267.93776 -	267.93778 -	267.93796 -	267.93799 -	267.93816 -	267.93825 -	267.93843 -	267.93880 -	267.93890 -	267.93904 -	267.93906 -	267.93929 -	267.93937 -	267.93937 -	267.94004 -	267.94004 -	267.94005 -	267.94006 -	267.94028 -	267.94052 -	267.94063 -	267.94096 -	267.94115 -	267.94125 -	267.94127 -	267.94128 -	267.94142 -	267.94146 -	
Source	CXOU J		(2)	175144.82 - 293710.9	175144.85 - 293743.0	175144.97 - 292747.1	175144.97 - 293802.0	175144.98 - 294002.9	175145.02 - 292824.7	$175145.06\!-\!293013.7$	175145.06 - 292635.1	$175145.11\!-\!293825.7$	175145.11 - 292915.9	175145.15 - 292701.5	175145.17 - 292850.4	175145.22 - 293102.1	$175145.31\!-\!293858.1$	175145.33 - 293739.1	175145.36 - 293528.4	175145.37 - 294323.1	175145.42 - 293637.6	175145.44 - 293405.0	175145.44 - 294234.9	175145.60 - 292826.1	175145.60 - 294008.6	175145.61 - 293552.9	175145.61 - 292836.5	175145.66 - 293300.0	175145.72 - 293333.3	175145.75 - 293649.8	175145.83 - 293726.2	175145.87 - 293139.9	175145.90 - 293224.6	175145.90 - 294205.7	175145.90 - 293424.7	175145.94 - 293457.7	175145.95 - 292855.0	
	Seq	#	(1)	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	(cont.)

list
source
Chandra
A.1:
Table

# (deg) $deg)$ deg dg <t< th=""><th>net Creet 7) (8) 7) (8) 12.8 5.7 139.5 13.4 57.4 12.6 27.4 12.6 27.4 12.6 10.0 17.5 91.0 17.5 91.0 17.5 91.0 17.5 91.0 17.5 91.0 17.5 91.0 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 13.6 92.3 13.6 94.0 13.6 91.8 7.6</th><th>^{bkg} Cnet,^h (9) (10) (4,2 2.3, 22.5 40.5 22.5 40.5 22.5 40.5 25.3 0.0 55.3 0.0 55.3 0.0 96.0 109.9 26.0 109.0 20.8 26.9</th><th>ard 1.01</th><th>$\begin{array}{ccc} \mathbf{F}_{\mathrm{B}} & \mathbf{F}_{\mathrm{B}} & \mathbf{J}_{\mathrm{B}} \\ \mathrm{Frac} & & \\ & & (12) & (13) \\ & & 2.0 & -2.7 \end{array}$</th><th>(14) (15)</th><th>(ks) (16)</th><th>(keV)</th><th>$(ergs s^{-1} cm^{-2})$</th></t<>	net Creet 7) (8) 7) (8) 12.8 5.7 139.5 13.4 57.4 12.6 27.4 12.6 27.4 12.6 10.0 17.5 91.0 17.5 91.0 17.5 91.0 17.5 91.0 17.5 91.0 17.5 91.0 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 17.5 91.1 13.6 92.3 13.6 94.0 13.6 91.8 7.6	^{bkg} Cnet, ^h (9) (10) (4,2 2.3, 22.5 40.5 22.5 40.5 22.5 40.5 25.3 0.0 55.3 0.0 55.3 0.0 96.0 109.9 26.0 109.0 20.8 26.9	ard 1.01	$\begin{array}{ccc} \mathbf{F}_{\mathrm{B}} & \mathbf{F}_{\mathrm{B}} & \mathbf{J}_{\mathrm{B}} \\ \mathrm{Frac} & & \\ & & (12) & (13) \\ & & 2.0 & -2.7 \end{array}$	(14) (15)	(ks) (16)	(keV)	$ (ergs s^{-1} cm^{-2}) $
# (deg) (deg) (deg) (f) () 1) (2) (3) (4) (5) (6) (7) 01 175145.95 - 293453.3 267.94147 -29.58150 0.2 4.0 12.8 02 175146.02 - 292640.8 267.94179 -29.64788 0.3 9.5 69.5 03 175146.02 - 294042.1 267.94194 -29.67888 0.1 4.0 12.8 05 175146.06 - 293340.8 267.94194 -29.6136 0.2 4.1 101.0 06 175146.06 - 293340.8 267.94194 -29.6136 0.2 4.1 101.0 07 175146.06 - 293340.8 267.94239 -29.6138 0.2 4.1 20.7 08 175146.17 - 293351.3 267.94239 -29.6138 0.2 4.1 20.2 11 175146.26 - 293321.3 267.94317 -29.61377 0.2 4.4 22.5 11 175146.36 - 293321.3 267.94387 -29.64386 0.1 4.1 <	7) (8) 72 (8) 73 5.7 70.7 14.1 70.7 14.1 70.7 14.1 70.7 14.1 70.7 14.1 70.7 14.1 70.7 14.1 70.7 14.1 70.7 12.6 11.0 17.5 11.0 17.5 11.1 17.5 11.2 9.1 22.9 7.6 22.9 7.6 22.9 7.6 22.9 7.6 22.4 7.3 24.0 13.6 24.0 13.6 24.0 13.6	(9) (10 14.2 2.3 92.5 40.9 11.3 10.9 11.3 10.4 11.3 10.4 25.5 40.5 35.5 0.0 36.0 1099 36.0 1099	(11)	Frac $(12) (13)$ 2.0 -2.7	(14) (15)	(ks) (16)	(keV)	$(ergs s^{-1} cm^{-2})$
1) (2) (3) (4) (5) (6) (7) 01175145.95-293453.3267.94147-29.581500.24.012.802175146.02-292640.8267.94147-29.581500.24.012.803175146.02-2934042.1267.94117-29.561360.24.012.704175146.02-293340.8267.94194-29.561360.24.716.705175146.02-293340.8267.94194-29.561360.24.716.706175146.17-293255.7267.94289-29.673820.14.0127.407175146.24-294022.1267.94287-29.61370.24.716.708175146.24-293751.9267.94317-29.631370.24.124.509175146.35-2933751.9267.94317-29.653950.26.441.210175146.36-2933212.2267.94317-29.653950.25.748.711175146.36-2933213.2267.94337-29.6539110.24.721.8175146.50-293219.2267.94337-29.6553950.26.747.521.8175146.50-293219.2267.94337-29.6553950.25.748.617175146.51-293619.8267.94337-29.6553050.24.721.817175146.51-293619.8267.94337-29.6553050.24.721.817175146.51-293619.8267.94437-29.6553410.24.721.817 </td <td>7) (8) 22.8 5.7 1 39.5 13.4 9 70.7 14.1 1 70.7 14.1 1 70.7 14.1 1 70.7 14.1 1 70.7 14.1 1 70.7 14.1 1 71.0 17.5 9 11.0 17.5 9 11.0 17.5 9 11.2 9.1 3 22.9 7.6 2 22.9 7.6 2 22.9 7.6 2 24.9 7.3 2 26.0 10.7 4 26.0 10.7 4 21.8 7.6 7.3 21.8 7.6 7.6</td> <td>(9) (10) 14.2 2.3 92.5 40.9 92.5 40.4 11.1.3 10.4 11.1.3 10.4 11.1.3 10.4 11.1.3 10.5 11.1.3 10.5 12.5 40.5 13.6 84.4 14.7 8.5 25.3 0.00 26.0 1099 26.0 1099</td> <td>(11)</td> <td>(12) <math>(13) 2.0</math> -2.7</td> <td>(14) (15)</td> <td>(16)</td> <td>(11)</td> <td>~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>	7) (8) 22.8 5.7 1 39.5 13.4 9 70.7 14.1 1 70.7 14.1 1 70.7 14.1 1 70.7 14.1 1 70.7 14.1 1 70.7 14.1 1 71.0 17.5 9 11.0 17.5 9 11.0 17.5 9 11.2 9.1 3 22.9 7.6 2 22.9 7.6 2 22.9 7.6 2 24.9 7.3 2 26.0 10.7 4 26.0 10.7 4 21.8 7.6 7.3 21.8 7.6 7.6	(9) (10) 14.2 2.3 92.5 40.9 92.5 40.4 11.1.3 10.4 11.1.3 10.4 11.1.3 10.4 11.1.3 10.5 11.1.3 10.5 12.5 40.5 13.6 84.4 14.7 8.5 25.3 0.00 26.0 1099 26.0 1099	(11)	(12) $(13)2.0$ -2.7	(14) (15)	(16)	(11)	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
01 175145.95-293453.3 267.94147 -29.58150 0.2 4.0 12.8 02 175146.02-292640.8 267.94175 -29.44468 0.3 9.5 6.6 70.7 03 175146.02-292640.8 267.94179 -29.67838 0.2 6.6 70.7 04 175146.05-2933552.3 267.94194 -29.56786 0.2 4.3 25.3 05 175146.05-293356.7 267.94289 -29.57836 0.2 4.7 16.7 06 175146.17-293255.7 267.94289 -29.65783 0.2 4.7 16.7 07 175146.24-293751.9 267.94317 -29.65784 0.2 6.4 4112 08 175146.24-293751.9 267.94317 -29.65784 0.2 4.4 29.5 11 175146.35-2933751.9 267.94317 -29.653131 0.2 4.7 21.8 11 175146.46-2933123.2 267.94387 -29.653111 0.2 4.6 4.7 21.8 11 175146.46-293312.9	[2.8] 5.7 1 39.5 13.4 5 70.7 14.1 1 70.7 14.1 1 70.7 14.1 1 27.4 12.6 1 27.4 12.6 1 25.3 7.6 2 26.1 17.5 9 11.0 17.5 9 11.2 9.1 3 22.9 7.6 2 22.9 7.6 2 22.9 7.6 2 24.9 7.3 2 24.0 13.6 7.3 24.0 13.6 7 24.0 13.6 7 24.0 13.6 7 24.0 13.6 7	[4,2] 2.3 22.5 40.4 22.5 40.4 11.3 10.4 11.3 10.5 24.7 8.5 35.3 0.0 35.3 0.0 36.0 109.	0	2.0 - 2.7			(11)	(18)
702175146.02 -292640.8 267.94175 -29.47468 0.39.569.5703175146.02 -294042.1 267.94179 -29.56738 0.26.670.7704175146.05 -293552.3 267.94194 -29.56136 0.24.325.3705175146.06 -293340.8 267.94194 -29.56136 0.24.716.7707175146.17 -293255.7 267.94239 -29.57383 0.24.7101.0707175146.24 -294022.1 267.94269 -29.672934 0.24.4191.0709175146.24 -293745.6 267.94287 -29.672934 0.24.422.5710175146.28 -293731.6 267.94331 -29.654948 0.24.124.5711175146.35 -293332.2 267.94337 -29.654948 0.25.256.6712175146.36 -293323.2 267.94337 -29.65394 0.25.256.6711175146.56 -293323.2 267.94337 -29.65394 0.25.256.6712175146.56 -293323.2 267.94337 -29.65394 0.25.245.7711175146.56 -293323.2 267.94337 -29.65394 0.25.245.7712175146.56 -293323.2 267.94337 -29.553368 0.15.1475.8713175146.56 -2933219.2 267.94337 -29.553368 0.15.1475.8714175146.56 -2933219.2 267.94337 -29.553368 0.15.1475.8715175	39.5 13.4 9 70.7 14.1 1 77.4 12.6 1 25.3 7.6 2 25.3 7.6 2 25.3 7.6 2 10.1 17.5 9 11.2 9.1 3 22.9 7.6 2 22.9 7.6 2 24.9 7.3 2 25.0 10.7 4 36.0 10.7 4 36.0 10.7 4 37.6 13.6 1	22.5 40.5 11.3 10.5 18.6 84.8 24.7 8.5 35.3 0.0 36.0 109. 20 8 26.7	0.90		 60	560.0	1.4	2.4×10^{-16}
703175146.02 -294042.1 267.94179-29.678380.26.670.7704175146.05 -293552.3 267.94194-29.561360.24.325.3705175146.06 -293340.8 267.94194-29.561360.24.716.7706175146.24 -294022.1 267.94239-29.672820.16.4191.6707175146.24 -294022.1 267.94239-29.672840.24.422.5708175146.24 -294022.1 267.94287-29.6729340.24.422.6710175146.28 -293716.9 267.94331-29.654940.24.124.5711175146.35 -293508.3 267.94337-29.654940.25.294.6711175146.36 -293393.2 267.94367-29.653950.25.294.6713175146.36 -293393.2 267.94367-29.553860.15.147721.8714175146.50 -293393.2 267.94387-29.553860.15.1475.8715175146.50 -2933123.2 267.94387-29.553860.15.1475.8715175146.50 -2933123.2 267.94387-29.553860.15.1475.8716175146.50 -2933123.2 267.94387-29.553860.15.1475.8717175146.50 -2933123.2 267.94387-29.553860.15.1475.8717175146.57 -293312.8 267.94437-29.553360.24.529.7718175146.56 -293314.2 <	70.7 14.1 1 27.4 12.6 1 25.3 7.6 2 10.7 7.8 8 11.0 17.5 9 11.2 9.1 8 22.9 7.6 2 24.9 7.3 2 24.0 13.6 7 24.0 13.6 7 25 10.7 4 26 10.7 4 26 10.7 4 26 10.7 4 27 10.7 4 27 10.7 4 27 10.7 4 27 10.7 4 20 10.7 4 2	11.3 10.4 18.6 84.8 24.7 8.5 35.3 0.0 96.0 109.20 26.2 26.2 26.2 26.2	9 0.72	5.0 < -5	е 	426.1	2.2	2.9×10^{-15}
704175146.05 -293552.3 267.94188 -29.56136 0.14.0127.4705175146.06 -293340.8 267.94194 -29.56136 0.24.325.3707175146.17 -293255.7 267.94269 -29.67282 0.16.4191.0708175146.24 -293716.9 267.94269 -29.67282 0.16.4191.0709175146.24 -293716.9 267.94287 -29.62334 0.24.124.5710175146.58 -293508.3 267.94313 -29.62317 0.24.124.5711175146.58 -293508.3 267.94317 -29.62317 0.24.124.5711175146.56 -293302.2 267.94317 -29.64311 0.24.124.5713175146.56 -293302.2 267.94377 -29.65311 0.24.124.5714175146.56 -293302.2 267.94377 -29.55306 0.24.124.5715175146.50 -293319.2 267.94377 -29.55306 0.24.546.5716175146.50 -293219.2 267.94378 -29.55306 0.24.546.5717175146.50 -293219.2 267.94378 -29.55306 0.24.546.5716175146.50 -293219.2 267.94367 -29.55368 0.15.1475.8717175146.50 -293219.2 267.94367 -29.55363 0.24.546.5718175146.50 -293329.6 267.94437 -29.55363 0.24.546.5718175146.65 -29	27.4 12.6 1 25.3 7.6 2 16.7 7.8 3 10.0 17.5 9 11.2 9.1 3 21.9 7.6 2 22.9 7.6 2 24.9 7.3 2 24.9 7.3 2 24.0 13.6 7 25.0 10.7 4 26.0 10.7 4 26.0 10.7 4 27.0 13.6 7	18.6 84.8 24.7 8.5 35.3 0.0 96.0 109. 26 26	06.00	4.8 < -5	р 	784.8	1.4	8.3×10^{-16}
705175146.06293340.8267.94194 -29.56136 0.2 4.7 16.7 707175146.24293255.7267.94269 -29.67282 0.1 6.4 191.0 708175146.24293745.6 267.94269 -29.67282 0.1 6.4 191.0 708175146.24293745.6 267.94270 -29.62334 0.2 4.6 411.2 710175146.28293716.9 267.94317 -29.62366 0.2 4.1 224.6 711175146.36 293322.2 267.94317 -29.65496 0.2 4.1 24.6 713175146.36 293322.2 267.94337 -29.65395 0.2 4.7 21.8 714175146.44 293751.9 267.94377 -29.653111 0.2 4.7 21.8 713175146.50 293322.2 267.94375 -29.55368 0.1 5.1 477 715175146.50 293219.2 267.94375 -29.553707 0.2 4.6 41.7 716175146.50 293219.2 267.94437 -29.553730 0.2 4.6 41.7 717175146.51 293219.2 267.94437 -29.53730 0.2 4.6 47.7 718175146.56 293329.5 267.94445 -29.53730 0.2 4.9 46.7 719175146.56 293329.5 267.94445 -29.53730 0.2 4.9 29.7 710175146.57 293329.6 267.94445 <td>25.3 7.6 2 16.7 7.8 3 10.0 17.5 3 11.2 9.1 3 22.9 7.6 2 24.9 7.3 2 24.9 7.3 2 24.9 7.3 2 24.9 7.3 2 24.9 7.3 2 24.0 13.6 7 25.0 10.7 4 26.0 10.7 4 26.0 13.6 7</td> <td>24.7 8.5 35.3 0.0 96.0 109. 30.8 26.2</td> <td>3 0.90</td> <td>9.7 < -5</td> <td> 60</td> <td>742.4</td> <td>3.0</td> <td>3.8×10^{-15}</td>	25.3 7.6 2 16.7 7.8 3 10.0 17.5 3 11.2 9.1 3 22.9 7.6 2 24.9 7.3 2 24.9 7.3 2 24.9 7.3 2 24.9 7.3 2 24.9 7.3 2 24.0 13.6 7 25.0 10.7 4 26.0 10.7 4 26.0 13.6 7	24.7 8.5 35.3 0.0 96.0 109. 30.8 26.2	3 0.90	9.7 < -5	 60	742.4	3.0	3.8×10^{-15}
706 $175146.17-293255.7$ 267.94239 -29.5483 0.2 4.7 16.7 707 $175146.24-294022.1$ 267.94269 -29.67282 0.1 6.4 191.0 708 $175146.24-294022.1$ 267.94269 -29.67282 0.1 6.4 191.0 709 $175146.24-293716.9$ 267.94269 -29.62137 0.2 4.6 41.2 710 $175146.35-293308.3$ 267.94313 -29.629366 0.2 4.1 24.6 711 $175146.36-293321.2$ 267.94317 -29.65895 0.2 5.2 94.6 712 $175146.36-293323.2$ 267.94320 -29.65895 0.2 5.7 48.6 713 $175146.46-293323.2$ 267.94376 -29.55368 0.1 5.1 475.6 714 $175146.56-293323.2$ 267.94376 -29.553730 0.2 5.7 48.6 715 $175146.50-2933219.2$ 267.94378 -29.55707 0.2 4.6 29.6 717 $175146.50-2933219.2$ 267.94457 -29.653404 0.2 4.6 29.7 718 $175146.51-293619.8$ 267.94457 -29.653404 0.2 4.7 29.7 718 $175146.51-2933219.2$ 267.94457 -29.653340 0.2 4.7 29.7 718 $175146.51-293310.8$ 267.94457 -29.5536340 0.2 4.2 29.7 721 17717 $175146.69-293510.8$ 267.94457 -29.5536340 0.2 4.2 29.7 722<	16.7 7.8 3 11.0 17.5 9 11.1 9.1 3 11.2 9.1 3 222.9 7.6 2 24.9 7.3 2 56.0 10.7 4 56.0 10.7 4 34.0 13.6 7 37.8 7.6 3	35.3 0.0 96.0 109. 30.8 26.2	0.89	3.1 < -5	е 	812.5	1.5	$3.2 imes 10^{-16}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01.0 17.5 9 11.2 9.1 9 2229 7.6 2 249 7.3 2 56.0 10.7 4 04.0 13.6 7 24 3.6 7 36.0 10.7 4 24 3.6 7 36 10.7 4 24 3.6 7 36 10.7 4 37 8 36 10.7 4 36 10.7 4 37 8 37 8 37 8 37 8 37 8 37 8 37 8 37 8	30.8 26 2	0.90	2.0 - 2.2	a	818.9	1.1	1.5×10^{-16}
708 $175146.24-293745.6$ 267.94270 -29.62934 0.2 4.6 41.2 710 $175146.28-293716.9$ 267.94287 -29.62137 0.2 4.4 22.9 711 $175146.35-293508.3$ 267.94313 -29.658566 0.2 4.1 22.9 711 $175146.36-293361.4$ 267.94317 -29.65486 0.2 5.2 94.6 712 $175146.36-2933841.4$ 267.94337 -29.65896 0.2 5.2 94.6 713 $175146.36-2933219.2$ 267.94375 -29.653111 0.2 5.7 48.6 714 $175146.50-2933219.2$ 267.94375 -29.533868 0.1 5.7 48.6 715 $175146.50-2933219.2$ 267.94375 -29.553730 0.2 4.7 21.8 717 $175146.51-293619.8$ 267.94378 -29.63514 0.2 4.7 21.6 718 $175146.51-293619.8$ 267.94441 -29.63531 0.2 4.2 29.7 718 $175146.51-293619.8$ 267.94441 -29.63730 0.2 4.2 29.7 719 $175146.51-293619.8$ 267.94445 -29.63730 0.2 4.2 29.7 720 $175146.54-293314.2$ 267.94445 -29.63730 0.2 4.2 29.7 721 $175146.57-293610.8$ 267.94445 -29.63730 0.2 4.2 29.7 722 $175146.67-293364.9$ 267.94455 -29.56340 0.2 4.1 15.7 723 $175146.77-293$	11.2 9.1 3 22.9 7.6 22.9 7.6 224.9 7.3 224.9 7.3 236.0 10.7 4 36.0 10.7 4 34.0 13.6 7 31	30 S 06	9 0.90	10.6 < -5		785.2	2.4	4.1×10^{-15}
709 $775146.28-293716.9$ 267.94287 -29.62137 0.2 4.4 22.9 710 $775146.35-293508.3$ 267.94317 -29.64486 0.2 5.2 54.0 711 $175146.36-293891.4$ 267.94317 -29.65895 0.2 5.2 54.0 712 $175146.36-293392.2$ 267.94330 -29.65895 0.2 5.7 48.0 713 $175146.36-293392.2$ 267.94336 -29.653111 0.2 5.7 48.0 714 $175146.46-293123.2$ 267.94362 -29.52312 0.2 5.7 48.0 715 $175146.50-293325.4$ 267.94375 -29.55707 0.2 4.7 21.8 716 $175146.50-293325.4$ 267.94384 -29.55707 0.2 4.5 46.3 717 $175146.51-293619.8$ 267.94430 -29.55707 0.2 4.5 46.3 718 $175146.51-293619.8$ 267.94441 -29.635414 0.2 4.2 29.7 718 $175146.54-293314.2$ 267.94441 -29.633404 0.2 4.2 29.7 720 $175146.54-293830.8$ 267.94445 -29.63404 0.2 4.1 15.5 721 $175146.67-293830.8$ 267.94456 -29.53634 0.2 4.1 15.7 722 $175146.67-293830.8$ 267.94456 -29.53634 0.2 4.1 15.7 723 $175146.77-293864.0$ 1267.94456 -29.59240 0.2 4.1 15.7 724 $175146.77-293856.$	222.9 7.6 224.9 7.3 224.9 7.3 256.0 10.7 4 24.0 13.6 10.7 4 20 13.6 10.7 4 20 13.6 10.7 4 20 13.6 10.7 4 20 13.6 100 13.6 100 13.6 100 13.6 100 13.6 100 13.6 100 13.6		1 0.90	4.3 < -5	ы. В	774.4	2.5	8.8×10^{-16}
710 $77146.35-293508.3$ 267.94313 -29.58566 0.2 5.2 56.0 711 $175146.36-293831.4$ 267.94317 -29.64486 0.2 5.2 56.0 712 $175146.36-2933932.2$ 267.94357 -29.65895 0.2 5.2 56.0 713 $175146.44-293751.9$ 267.94353 -29.653111 0.2 4.7 21.5 714 $175146.44-293751.9$ 267.94355 -29.653111 0.2 4.7 21.5 715 $175146.56-293325.2$ 267.94355 -29.55368 0.1 5.1 475.5 716 $175146.50-293325.4$ 267.94375 -29.55707 0.2 4.5 46.3 717 $175146.50-293325.4$ 267.94378 -29.65310 0.2 4.2 29.7 718 $175146.50-293325.4$ 267.94431 -29.633404 0.2 4.2 29.7 719 $175146.54-293214.2$ 267.94441 -29.635404 0.2 4.2 29.7 770 $175146.58-293802.5$ 267.94445 -29.63404 0.2 4.9 22.6 771 $175146.64-29333.8$ 267.94457 -29.63404 0.2 4.9 22.6 772 $175146.64-29333.8$ 267.94455 -29.55540 0.2 4.9 22.6 773 $175146.671-293368.6$ 267.94455 -29.55740 0.2 4.1 15.7 773 $175146.671-2933640.1$ 267.94455 -29.56344 0.2 4.1 15.7 773 $175146.71-29336$	24.9 7.3 24.9 7.3 26.0 10.7 4 24.0 13.6 7 24.0 13.6 7 25 21 24.0 13.6 7 25 21 25 21 25 25 25 25 25 25 25 25 25 25 25 25 25	26.1 11.7	7 0.90	2.8 - 4.2	8	768.5	2.0	4.1×10^{-16}
711 $175146.36-293841.4$ 267.94317 -29.64486 0.2 5.2 56.0 712 $175146.36-293932.2$ 267.94350 -29.65895 0.2 5.8 94.0 713 $175146.44-293751.9$ 267.94362 -29.653111 0.2 4.7 21.8 714 $175146.46-293123.2$ 267.94362 -29.52312 0.2 5.7 48.6 715 $175146.56-293219.2$ 267.94362 -29.55386 0.1 5.1 475.5 716 $175146.50-293219.2$ 267.94378 -29.55707 0.2 $45.$ 46.3 717 $175146.50-293325.4$ 267.94381 -29.65511 0.2 4.2 29.7 718 $175146.50-293329.4$ 267.94431 -29.635404 0.2 4.2 29.7 719 $175146.50-2933214.2$ 267.94431 -29.63404 0.2 4.2 29.7 770 $175146.54-293214.2$ 267.94444 -29.63404 0.2 4.9 22.6 770 $175146.64-29383.8$ 267.94445 -29.63404 0.2 4.1 15.5 772 $175146.67-293830.6$ 267.94457 -29.53730 0.2 4.1 15.7 772 $175146.77-293856.9$ 267.94455 -29.59360 0.2 4.1 15.7 772 $175146.77-293856.9$ 267.94465 -29.59360 0.2 4.1 15.7 772 $175146.77-293856.9$ 267.94465 -29.59360 0.2 4.1 15.7 773 $175146.77-293856.9$	56.0 10.7 4 94.0 13.6 7 21.8 7.6 5	20.1 4.4	0.90	3.2 < -5	 80	701.5	1.6	4.3×10^{-16}
712 $175146.36-29332.2$ 267.94325 -29.65895 0.2 5.8 94.0 713 $175146.44-293751.9$ 267.94362 -29.63111 0.2 4.7 21.8 714 $175146.46-293123.2$ 267.94362 -29.53312 0.2 5.7 48.0 715 $175146.50-2933123.2$ 267.94362 -29.55312 0.2 5.7 48.0 716 $175146.50-293319.2$ 267.94375 -29.55368 0.1 5.1 475.5 777 $175146.50-293319.8$ 267.94381 -29.60551 0.2 4.2 29.7 717 $175146.50-293319.8$ 267.94381 -29.635404 0.2 4.2 29.7 717 $175146.51-293619.8$ 267.94431 -29.635404 0.2 4.2 29.7 778 $175146.54-293214.2$ 267.94446 -29.633404 0.2 4.9 22.6 770 $175146.64-2938302.5$ 267.94445 -29.47608 0.3 8.0 40.5 772 $175146.69-293610.8$ 267.94457 -29.53730 0.2 4.1 15.6 772 $175146.71-29308.6$ 267.94465 -29.59240 0.3 6.7 34.1 724 $175146.71-2933656.9$ 267.94465 -29.59360 0.2 4.1 29.1 725 $175146.71-2933656.9$ 267.94465 -29.59360 0.2 4.1 29.1 726 $175146.71-2933556.9$ 267.94465 -29.59360 0.2 4.1 29.1 <	94.0 13.6 7 21 8 7 6 5	17.0 38.5	3 0.90	5.0 < -5	 8	769.7	3.1	1.5×10^{-15}
713 $175146.44-293751.9$ 267.94353 -29.63111 0.2 4.7 21.8 714 $175146.46-293123.2$ 267.94362 -29.52312 0.2 5.7 48.0 715 $175146.50-293219.2$ 267.94375 -29.55368 0.1 5.1 475.8 716 $175146.50-293219.2$ 267.94378 -29.55707 0.2 45.5 46.3 717 $175146.50-293325.4$ 267.94378 -29.55707 0.2 45.2 46.3 718 $175146.50-293319.8$ 267.94394 -29.605511 0.2 42.2 29.7 7718 $175146.54-293214.2$ 267.944304 -29.633730 0.2 4.9 29.67 7719 $175146.54-293314.2$ 267.944454 -29.633730 0.2 4.9 22.6 7720 $175146.64-2933310.8$ 267.944457 -29.633404 0.2 4.9 22.6 7721 $175146.69-293510.8$ 267.944457 -29.634404 0.2 4.1 15.5 7723 $175146.67-293368.6$ 267.94465 -29.59240 0.3 6.7 34.1 773 $175146.71-29308.6$ 267.94465 -29.59360 0.2 4.1 15.5 7725 $175146.71-2933554.9$ 267.94465 -29.59360 0.2 4.1 29.1 7726 $175146.71-2933564.8$ 267.94465 -29.59360 0.2 4.1 29.1 7725 $175146.77-2933546.8$ 267.94465 -29.59360 0.2 4.1 29.1 7726	218 76 5	76.0 63.4	1 0.90	6.6 < -5	a	780.8	2.7	$2.2\! imes\!10^{-15}$
7.14 $175146.46-293123.2$ 267.94362 -29.52312 0.2 5.7 48.0 7.15 $175146.50-293225.4$ 267.94378 -29.55707 0.2 4.5 46.3 7.17 $175146.50-293325.4$ 267.94378 -29.55707 0.2 4.5 46.3 7.17 $175146.50-293325.4$ 267.94378 -29.55707 0.2 4.5 46.3 7.17 $175146.50-293325.4$ 267.94381 -29.605511 0.2 4.2 29.7 7.18 $175146.51-293619.8$ 267.94430 -29.63404 0.2 4.2 29.7 7.19 $175146.54-2933202.5$ 267.94434 -29.47608 0.3 8.0 40.2 7.20 $175146.64-292833.8$ 267.94454 -29.47608 0.3 8.0 40.2 7.21 $175146.69-293510.8$ 267.94457 -29.56834 0.2 4.1 15.6 7.22 $175146.71-29308.6$ 267.94465 -29.59860 0.2 4.1 15.6 7.23 $175146.71-29308.6$ 267.94465 -29.59240 0.3 6.7 34.1 7.24 $175146.71-2933554.9$ 267.94465 -29.59360 0.2 4.1 29.1 7.25 $175146.71-2933554.9$ 267.94465 -29.59636 0.2 4.1 29.1 7.25 $175146.71-2933554.9$ 267.94465 -29.59636 0.2 4.1 29.1 7.25 $175146.77-2935546.8$ 267.94465 -29.59636 0.2 4.1 29.1 7.26 1		28.2 10.7	7 0.87	2.7 - 3.8	 80	766.0	2.0	$4.0 imes 10^{-16}$
7.15175146.50-293219.2 267.94375 -29.53707 0.1 5.1 475.8 7.16175146.50-293325.4 267.94378 -29.55707 0.2 4.5 46.3 7.17175146.51-293619.8 267.94381 -29.66551 0.2 4.5 46.3 7.18175146.51-293619.8 267.94394 -29.66551 0.2 4.2 29.7 7.19175146.54-293314.2 267.94434 -29.63730 0.2 5.2 43.8 7.10175146.54-293802.5 267.94434 -29.47608 0.3 8.0 40.2 7.20175146.64-292833.8 267.94454 -29.47608 0.3 8.0 40.2 7.21175146.69-293510.8 267.94457 -29.56834 0.2 4.1 15.5 7.22175146.69-293510.8 267.94465 -29.506341 0.2 4.1 15.5 7.23175146.71-29308.6 267.94465 -29.50240 0.3 6.7 34.1 7.25175146.71-2933554.9 267.94465 -29.59360 0.2 4.1 29.1 7.25175146.71-2933554.9 267.94465 -29.59360 0.2 4.1 29.1 7.25175146.71-2933554.9 267.94465 -29.59636 0.2 4.1 29.1 7.26175146.71-2933554.9 267.94465 -29.59636 0.2 4.1 29.1 7.26175146.77-2935546.8 267.94465 -29.59636 0.2 4.1 29.1 7.26175146.77-2935546.8 2	18.0 10.8	57.0 5.1	0.89	4.2 < -5	a	808.8	1.1	4.3×10^{-16}
716 $175146.50-293325.4$ 267.94378 -29.55707 0.2 4.5 46.3 717 $175146.51-293619.8$ 267.94381 -29.60551 0.2 4.2 29.7 718 $175146.51-293619.8$ 267.94394 -29.53730 0.2 5.2 43.8 719 $175146.54-293202.5$ 267.944410 -29.63344 0.2 4.9 22.6 770 $175146.58-293802.5$ 267.944410 -29.63344 0.2 4.9 22.6 771 $175146.64-292833.8$ 267.94454 -29.47608 0.3 8.0 40.5 772 $175146.69-293510.8$ 267.94457 -29.661116 0.2 4.1 15.5 772 $175146.69-293640.1$ 267.94465 -29.61116 0.2 4.3 21.6 772 $175146.71-29308.6$ 267.94465 -29.61116 0.2 4.3 21.6 773 $175146.71-2933554.9$ 267.94465 -29.50860 0.2 4.1 29.1 774 $175146.71-2933554.9$ 267.94465 -29.59360 0.2 4.1 29.1 775 $175146.71-2933554.9$ 267.94465 -29.59360 0.2 4.1 29.1 775 $175146.71-2933554.9$ 267.94465 -29.59360 0.2 4.1 29.1 775 $175146.77-29335646$ 267.94465 -29.59636 0.2 4.1 29.1 775 $175146.77-29335648$ 267.94465 -29.59636 0.2 4.1 29.1 776 $175146.77-29356$	75.8 23.4 4	15.2 255.	2 0.90	19.9 < -5	ч 	817.4	2.2	8.3×10^{-15}
717 $175146.51-293619.8$ 267.94381 -29.60551 0.2 4.2 29.7 718 $175146.54-293214.2$ 267.94394 -29.53730 0.2 5.2 43.8 7719 $175146.58-293802.5$ 267.94410 -29.63404 0.2 4.9 22.6 720 $175146.64-292833.8$ 267.94434 -29.47608 0.3 8.0 40.2 721 $175146.64-292833.8$ 267.94457 -29.47608 0.3 8.0 40.2 721 $175146.64-292833.8$ 267.94457 -29.61116 0.2 4.1 15.5 722 $175146.69-293510.8$ 267.94455 -29.61116 0.2 4.3 21.6 723 $175146.71-29308.6$ 267.94465 -29.50240 0.3 6.7 34.1 724 $175146.71-293856.9$ 267.94465 -29.594914 0.2 4.1 29.1 725 $175146.71-293856.9$ 267.94465 -29.59636 0.2 4.1 29.1 726 $175146.71-293856.9$ 267.94465 -29.59636 0.2 4.1 29.1 726 $175146.71-293856.9$ 267.94465 -29.59636 0.2 4.1 29.1 726 $175146.72-293554.8$ 267.94465 -29.59636 0.2 4.1 29.1 726 $175146.72-293554.8$ 267.94465 -29.59636 0.2 4.1 29.1 726 $175146.72-293554.8$ 267.94465 -29.59636 0.2 4.1 29.1 72	16.3 9.2 2	28.7 8.4	0.89	4.7 < -5	ч 	819.9	1.4	$5.2\! imes\!10^{-16}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29.7 7.7 2	21.3 2.8	0.90	3.6 < -5	ю ж	721.1	1.0	3.1×10^{-16}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.8 9.9 4	13.2 0.0	0.90	4.2 < -5	ч 	817.5	1.1	3.8×10^{-16}
720175146.64-292833.8 267.94434 -29.47608 0.3 8.0 40.2 721175146.69-293510.8 267.94457 -29.58634 0.2 4.1 15.5 722175146.69-293640.1 267.94455 -29.61116 0.2 4.3 21.6 723175146.71-29308.6 267.94465 -29.50240 0.3 6.7 34.1 724175146.71-293356.9 267.94465 -29.59860 0.2 4.1 29.1 725175146.71-293356.9 267.94466 -29.59860 0.2 4.1 29.1 726175146.71-293356.9 267.94466 -29.59860 0.2 4.1 29.1 725175146.77-293356.9 267.94466 -29.59860 0.2 4.1 29.1 726175146.77-293356.9 267.94466 -29.59636 0.2 4.1 23.2 727175146.77-293356.9 267.94465 -29.59636 0.2 4.1 23.5 727175146.77-293129.2 267.94485 -29.69146 0.2 7.1 23.5	22.6 8.3 5	37.4 11.8	3 0.90	2.5 - 3.3	 	765.2	2.0	$4.0\! imes\!10^{-16}$
721 175146.69-293510.8 267.94457 -29.58634 0.2 4.1 15.5 722 175146.69-293640.1 267.94458 -29.61116 0.2 4.3 21.0 723 175146.71-293008.6 267.94465 -29.50240 0.3 6.7 34.1 724 175146.71-293354.9 267.94465 -29.59860 0.2 4.1 29.1 725 175146.71-2933554.9 267.94466 -29.59860 0.2 4.1 29.1 725 175146.71-2933554.9 267.94466 -29.59860 0.2 4.1 29.1 725 175146.71-2933556.9 267.94466 -29.59636 0.2 4.1 29.1 776 175146.72-2933546.8 267.944457 -29.59636 0.2 4.1 23.2 777 175146.76-294129.2 267.94485 -29.69146 0.2 7.3 178.1	10.2 16.2 1	98.8 20.8	5 0.90	2.4 - 2.5	ч. В	766.5	2.0	6.8×10^{-16}
722175146.69-293640.1267.94458 -29.61116 0.2 4.3 21.0 723175146.71-293008.6 267.94465 -29.50240 0.3 6.7 34.1 724175146.71-293554.9 267.94465 -29.59860 0.2 4.1 29.1 725175146.71-293856.9 267.94466 -29.64914 0.2 5.4 32.8 726175146.72-293856.9 267.94466 -29.59636 0.2 4.1 23.2 726175146.72-293546.8 267.94466 -29.59636 0.2 4.1 23.2 727175146.76-294129.2 267.94485 -29.69146 0.2 7.3 178.5	15.5 6.6 2	21.5 9.7	0.90	2.2 - 2.8	 	696.3	2.2	$3.5\! imes\!10^{-16}$
$ \begin{bmatrix} 723 & 175146.71-293008.6 & 267.94465 & -29.50240 & 0.3 & 6.7 & 34.1 \\ 724 & 175146.71-293554.9 & 267.94465 & -29.59860 & 0.2 & 4.1 & 29.1 \\ 1725 & 175146.71-293856.9 & 267.94466 & -29.64914 & 0.2 & 5.4 & 32.8 \\ 1726 & 175146.72-293546.8 & 267.94467 & -29.59636 & 0.2 & 4.1 & 23.8 \\ 1726 & 175146.72-293546.8 & 267.94467 & -29.59636 & 0.2 & 4.1 & 23.8 \\ 1721 & 175146.76-294129.2 & 267.94485 & -29.69146 & 0.2 & 7.3 & 178.7 \\ \end{bmatrix} $	21.0 7.3 2	24.0 8.2	0.90	2.7 - 3.9	: :. 60	714.5	1.8	$4.0\! imes\!10^{-16}$
724175146.71-293554.9267.94465 -29.59860 0.2 4.1 29.1 725175146.71-293856.9267.94466 -29.64914 0.2 5.4 32.8 726175146.72-293546.8267.94467 -29.59636 0.2 4.1 23.5 727175146.76-294129.2267.94485 -29.69146 0.2 7.3 178.5	34.1 12.2 9	98.9 2.4	0.90	2.7 - 3.1	р 	791.8	1.3	$3.7 imes 10^{-16}$
$ \begin{array}{rrrr} 725 & 175146.71-293856.9 & 267.94466 & -29.64914 & 0.2 & 5.4 & 32.8 \\ 726 & 175146.72-293546.8 & 267.94467 & -29.59636 & 0.2 & 4.1 & 23.3 \\ 727 & 175146.76-294129.2 & 267.94485 & -29.69146 & 0.2 & 7.3 & 178.5 \\ \end{array} $	29.1 7.6]	19.9 25.9	0.00	3.6 < -5	 8	713.7	4.7	1.5×10^{-15}
$\begin{array}{rrrr} 726 & 175146.72-293546.8 & 267.94467 & -29.59636 & 0.2 & 4.1 & 23.3 \\ .727 & 175146.76-294129.2 & 267.94485 & -29.69146 & 0.2 & 7.3 & 178.5 \\ \end{array}$	32.8 9.8 5	52.2 7.7	0.90	3.2 - 4.6	 	771.0	1.4	$4.0\! imes\!10^{-16}$
.727 175146.76 -294129.2 267.94485 -29.69146 0.2 7.3 178.2	23.3 7.0]	18.7 3.3	0.90	3.1 < -5	 	721.4	1.2	$3.0\! imes\!10^{-16}$
	78.2 19.0 1	58.8 121.	6 0.90	9.1 < -5	ч. В	764.9	2.8	4.3×10^{-15}
728 175146.77 - 293540.5 267.94488 -29.59461 0.2 4.1 20.85861616 0.2 4.1 20.85866666666666666666666666666666666666	20.8 6.8]	18.2 8.9	0.90	2.8 - 4.6	: :. 60	702.5	1.3	3.1×10^{-16}
729 175146.78 - 293400.3 267.94492 -29.56676 0.2 4.4 39.0666666666666666666666666666666666666	39.0 8.7 2	27.0 9.9	0.90	4.2 < -5	ч 	820.0	1.1	$3.5 imes 10^{-16}$
$730 175146.78 - 293752.8 267.94495 -29.63134 0.2 4.8 32.9 \\ 0.05 $	32.9 8.4 2	29.1 10.7	7 0.87	3.7 < -5	н но но	768.2	1.6	$5.0{ imes}10^{-16}$
731 175146.86 - 293521.3 267.94528 -29.58925 0.2 4.2 25.635626 -29.58625	25.6 7.2 1	18.4 13.4	1 0.90	3.3 < -5	 00	577.0	2.3	$7.7 { imes} 10^{-16}$
732 175146.92 - 294304.3 267.94554 -29.71786 0.1 8.7 704.5 -29.71786 0.1 -29.7766 -29.7766 -29.7766 -29.7766 -29.7766 -29.7766 -29.76666 -29.7666 -29.76666 -29.76666 -29.7666 -29.7666 -29.76666 -29.76666 -29.7666 -29.7666 -29.7666 -29.76666 -29.766666	04.5 31.8 2	64.5 559.	6 0.90	21.8 < -5	р 	728.9	3.2	$2.0 imes 10^{-14}$
733 175146.97 - 293424.6 267.94574 -29.57352 0.2 4.3 44.6 -29.57352 0.2 -29.57352 -29.5752	14.6 9.0 2	27.4 15.5	3 0.90	4.7 < -5	 Э	813.7	1.6	$5.7{ imes}10^{-16}$
.734 175146.98 - 292801.0 267.94579 -29.46695 0.3 8.5 60.7366676 0.12666666666666666666666666666666666666	30.7 17.6 2	23.3 40.7	7 0.88	3.4 - 4.4	ч 	749.7	3.3	1.8×10^{-15}

ristics	$E_{ m median}$ Photo $F_{ m x}$	$(\text{keV}) (\text{ergs s}^{-1} \text{ cm}^{-2})$	(17) (18)	$1.5 6.5 \times 10^{-16}$	1.4 3.2×10^{-16}	1.6 5.3×10^{-16}	$1.5 8.5 \times 10^{-16}$	$1.7 8.3 \times 10^{-16}$	$2.8 4.2 \times 10^{-15}$	2.1 8.8×10^{-16}	1.7 2.7×10^{-16}	1.9 5.9×10^{-16}	$1.5 6.2 \times 10^{-16}$	1.9 7.6×10^{-16}	$3.0 8.2 \times 10^{-15}$	1.1 2.1×10^{-16}	2.5 2.7×10^{-15}	1.4 4.3×10^{-15}	1.7 3.0×10^{-16}	1.2 1.8×10^{-16}	2.7 6.9×10^{-15}	1.4 1.0×10^{-15}	1.4 1.3×10^{-15}	1.7 3.2×10^{-16}	2.8 3.3×10^{-15}	1.1 3.1×10^{-16}	3.2 8.6×10^{-16}	2.6 2.9×10^{-15}	1.6 3.9×10^{-16}	1.7 2.3×10^{-15}	1.8 7.7×10^{-16}	$1.2 4.1 \times 10^{-16}$	$1.6 6.8 \times 10^{-16}$	1.6 3.4×10^{-16}	1.1 3.7×10^{-16}	1.7 3.9×10^{-16}	2.6 1.0×10^{-15}
Characte	Anom Var EffExp	(ks)	(14) (15) (16)	b 788.4	g 747.4	g 681.0	g 765.1	a 795.2	a 722.2	g 766.9	c 821.5	g 775.0	g 742.9	b 819.4	b 743.9	g 759.1	b 815.8	b 730.8	a 799.0	a 821.5	a 735.6	g 693.9	a 704.9	b 806.9	g 644.6	b 771.3	a 818.8	g 675.2	b 810.0	g 732.3	b 816.7	g 736.0	g 725.8	a 809.5	b 798.6	g 792.0	g 667.2
	$_{\rm ard}$ PSF PS $P_{\rm B}$	Frac	(11) (12) (13)	1 0.90 3.8 < -5	0.90 2.1 -2.2	0.90 3.6 < -5	3 0.90 5.3 < -5	9 0.90 2.9 -3.7	6 0.90 10.9 < -5	5 0.90 4.2 <-5	0.90 2.4 -3.0	3 0.90 3.9 < -5	1 0.90 4.2 < -5	2 0.90 4.7 < -5	5 0.90 12.8 < -5	0.90 2.1 -2.3	5 0.90 9.2 <-5	3 0.54 11.5 < -5	0.89 2.0 -2.0	0.90 2.2 -2.6	0 0.50 10.2 < -5	1 0.90 5.6 < -5	9 0.87 4.8 < -5	0.90 2.3 -2.5	3 0.89 8.8 < -5	0.85 2.3 -2.4	9 0.90 3.5 < -5	0.90 7.0 < -5	0.73 $3.0 - 4.5$	1 0.88 8.0 < -5	3 0.90 4.9 < -5	0.90 3.8 < -5	8 0.78 3.0 -3.9	0.57 2.5 -3.9	0.90 $3.4 < -5$	0.90 3.0 -4.6	3 0.90 3.0 -4.1
Extracted Counts	$\Delta C_{\rm net} C'_{\rm bkg} C_{\rm net,h}$	I	(8) (9) (10)	13.3 107.3 11.	11.4 89.6 5.1	7.6 19.7 6.9	11.7 59.3 19.5	11.7 86.9 12.9	24.8 302.8 194.	10.3 49.0 23.	7.7 31.4 0.9	8.6 28.8 18.5	9.6 38.2 12.7	10.2 42.3 23.5	23.4 211.4 211.	9.2 53.6 0.5	14.4 53.4 92.8	16.4 56.5 42.5	10.3 71.6 6.3	7.8 33.6 3.8	14.6 43.3 96.0	10.2 33.3 13.4	19.1 244.6 11.9	9.7 59.6 8.5	12.5 28.2 80.6	$13.0 \ 120.1 \ 6.0$	9.1 38.8 24.9	12.1 44.3 53.0	7.9 29.0 6.3	17.0 129.3 51.	10.5 44.7 22.6	8.8 32.0 0.0	12.1 92.7 14.8	6.1 14.3 1.2	11.4 75.8 0.3	8.3 33.2 12.(9.8 53.1 18.8
n	. Err θ C_{net}	(,) (,,) ((5) (6) (7)	030 0.2 6.8 51.7	$599 \ 0.3 \ 6.2 \ 25.4$	308 0.2 4.2 29.3	243 0.2 5.6 64.7	849 0.3 6.5 36.1	290 0.2 9.2 275.2	281 0.2 5.3 46.0	882 0.2 4.6 19.6	486 0.2 4.2 35.2	647 0.2 5.1 42.8	$156 \ 0.2 \ 4.9 \ 50.7$	$421 \ 0.2 \ 8.1 \ 306.6$	908 0.2 5.6 20.4	257 0.1 5.2 137.6	$236 \ 0.2 \ 8.5 \ 194.5$	837 0.3 6.1 21.4	$690 \ 0.2 \ 4.6 \ 18.4$	$078 \ 0.2 \ 8.5 \ 154.7$	745 0.2 4.9 59.7	781 0.3 8.8 93.4	$059 \ 0.2 \ 5.7 \ 23.4$	823 0.1 4.5 113.8	173 0.3 7.4 30.9	083 0.2 4.8 34.2	221 0.2 5.4 88.7	$565 \ 0.2 \ 5.5 \ 25.0$	754 0.2 7.4 139.7	$436 \ 0.2 \ 5.0 \ 54.3$	$332 \ 0.2 \ 4.7 \ 35.0$	161 0.3 7.6 38.3	488 0.2 5.6 16.7	$024 \ 0.2 \ 6.2 \ 41.2$	967 0.2 4.6 26.8	967 0.3 5.8 30.9
Positio	R.A. Decl.	(deg) (deg)	(3) (4)) 267.94605 - 29.500	$5\ 267.94620\ -29.665$) 267.94624 - 29.595	$7 \ 267.94634 \ -29.652$	$5\ 267.94664\ -29.508$	$1\ 267.94665\ -29.455$	$1 \ 267.94668 \ -29.645$	$7 \ 267.94673 \ -29.558$	$5 \ 267.94681 \ -29.584$	2 267.94701 -29.636	$3\ 267.94774\ -29.551$	$1 \ 267.94776 \ -29.704$	$3\ 267.94796\ -29.649$	$2\ 267.94817\ -29.545$	$5 \ 267.94819 \ -29.715$	$1\ 267.94886\ -29.518$	3 267.94915 -29.566	3 267.94952 -29.710	3 267.95023 -29.627	$1\ 267.95030\ -29.717$	$1\ 267.95055\ -29.530$	$3\ 267.95064\ -29.588$	$2\ 267.95077\ -29.491$) 267.95084 -29.560	$3\ 267.95099\ -29.645$	$3\ 267.95140\ -29.535$	$1\ 267.95142\ -29.687$	$7 \ 267.95154 \ -29.554$	3 267.95157 -29.615	3 267.95160 -29.691	$5\ 267.95178\ -29.534$	3 267.95253 -29.520	3 267.95272 -29.599	3 267 95294 - 29 640
Source	CXOU J		(2)	175147.05-293001.0	175147.08 - 293957.5	175147.09 - 293535.0	175147.12 - 293908.5	175147.19 - 293030.8	175147.19 - 292710.4	175147.20 - 293834.i	175147.21 - 293331.5	175147.23 - 293505.8	175147.28 - 293811.5	175147.45 - 293305.6	175147.46 - 294215.1	175147.51 - 293856.6	175147.56 - 293233.5	175147.56 - 294244.5	175147.72 - 293106.1	175147.79 - 293400.8	175147.88 - 294238.8	175148.05 - 293738.8	175148.07 - 294304.1	175148.13 - 293150.1	175148.15 - 293517.6	175148.18 - 292930.5	175148.20 - 293338.6	175148.23 - 293831.6	175148.33 - 293208.5	175148.34 - 294115.5	175148.36 - 293315.5	175148.37 - 293647.9	175148.38-294129.8	175148.42 - 293205.5	175148.60 - 293112.8	175148.65 - 293558.8	175148 70-293858 5
	Seq	#	(1)	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759	1760	1761	1762	1763	1764	1765	1766	1767	1768

source list
Chandra
A.1:
Table

	V Q	Position			2	EXULA		ounts	Ц Д Д Д Д	DG			C C	naracteri Effensione	Stics	$Dh_{0} \neq 0$
d CAUUJ	п. А.	Deci.	ЦЦ	Ь	Unet 4	▲ Cnet	Cbkg	net,hard	101	D L	LB	AHOIH	Var	Ellexp	L_{median}	FIIOUO FX
	(deg)	(deg)	()	S						Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$
) (2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
69 175148.77 - 293404	.2 267.95322	-29.56786	0.1	4.8	61.7	9.9	25.3	30.2	0.82	5.9	< -5	:	c	814.3	2.0	1.1×10^{-15}
70 175148.79-293008	.8 267.95330	-29.50247	0.3	7.0	45.2	13.2	111.8	18.5	0.90	3.3	-4.4	:	ъ	777.5	1.6	$6.2 imes 10^{-16}$
71 175148.82 - 292856	$.0\ 267.95345$	-29.48224	0.3	7.9	33.0	15.5	187.0	31.8	0.90	2.1	-2.0	:	ъ	745.1	3.2	9.3×10^{-16}
72 175148.85 - 294121	.5 267.95355	-29.68931	0.2	7.5	110.4	15.7	117.6	17.4	0.85	6.8	$^{-5}_{-5}$: :00	÷	719.2	1.3	1.5×10^{-15}
73 175148.85 - 293641	$.1 \ 267.95356$	-29.61143	0.2	4.8	31.9	8.8	36.1	2.9	0.90	3.4	$^{-5}_{-5}$	50 60	÷	772.7	1.3	$3.8 imes 10^{-16}$
74 175148.91 - 293409	.3 267.95380	-29.56928	0.2	4.8	30.3	7.8	22.7	9.2	0.81	3.6	~ -5	:	q	813.9	1.7	$4.6 imes 10^{-16}$
75 175148.91 - 293505	.6 267.95381	-29.58489	0.0	4.6 1	779.1	43.2	39.9	398.4	0.89	40.7	-5	: 60	ł	759.2	1.4	$2.2 { imes} 10^{-14}$
76 175149.04 - 293220	.9 267.95437	-29.53916	0.2	5.5	43.9	11.0	65.1	19.1	0.90	3.8	-5 -5	:	ъ	807.5	1.9	$6.7 { imes} 10^{-16}$
77 175149.07 -293651	.7 267.95450	-29.61437	0.2	4.9	34.0	9.0	37.0	23.2	0.89	3.6	-5	: 60	i	778.8	2.7	$8.1 { imes} 10^{-16}$
78 175149.09-293123	$.1 \ 267.95455$	-29.52310	0.2	6.1	63.4	12.3	73.6	6.1	0.89	4.9	< -5 -5	:	ದ	798.3	1.1	$5.7{ imes}10^{-16}$
79 175149.10 - 293802	$.1 \ 267.95460$	-29.63393	0.2	5.3	45.6	10.2	46.4	20.7	0.90	4.3	~ -5	: 60	÷	739.5	1.7	7.4×10^{-16}
80 175149.12-293352	.6 267.95470	-29.56463	0.2	4.9	40.4	9.7	42.6	28.0	0.91	4.0	$^{-5}_{-5}$:	ъ	812.5	2.4	$7.7 imes 10^{-16}$
81 175149.23-293938	.8 267.95516	-29.66078	0.2	6.3	74.9	12.8	74.1	59.0	0.90	5.6	~ -5	: 50	÷	666.0	2.6	2.4×10^{-15}
82 175149.33-293228	.8 267.95555	-29.54135	0.2	5.5	36.9	10.7	64.1	0.6	0.90	3.3	-4.8	:	q	802.1	1.0	3.3×10^{-16}
83 175149.33-293030	$.1 \ 267.95556$	-29.50836	0.3	6.8	32.0	7.8	21.0	8.8	0.53	3.8	$^{-5}_{-5}$:	в	780.1	1.1	4.5×10^{-16}
84 175149.40-292738	.6 267.95586	-29.46073	0.2	9.1	217.9	23.3	293.1	180.2	0.90	9.1	< -5 -5	÷	ದ	736.0	3.3	6.4×10^{-15}
85 175149.45 - 292812	$.1\ 267.95608$	-29.47004	0.3	8.6	88.6	19.2	252.4	50.2	0.90	4.5	<-5 -5	÷	ದ	745.0	2.3	$1.8 { imes} 10^{-15}$
86 175149.51 - 293147	.8 267.95632	-29.52995	0.2	5.9	40.9	11.1	68.1	3.2	0.89	3.5	<-5 -5	:	в	798.5	1.1	$3.7 imes 10^{-16}$
87 175149.55-294040	$.0\ 267.95647$	-29.67779	0.2	7.1	92.8	15.1	117.2	29.0	0.90	5.9	<-5 -5	: 60	÷	661.7	1.7	$1.9{ imes}10^{-15}$
88 175149.57-294253	$.4 \ 267.95655$	-29.71483	0.3	8.9	125.0	20.7	274.0	4.2	0.91	5.9	<-5 -5	: 60	÷	683.9	1.0	1.3×10^{-15}
89 175149.59 - 293215	.2 267.95663	-29.53757	0.2	5.7	21.3	10.1	67.7	18.5	0.90	2.0	-2.1	:	в	799.2	3.8	$6.7 imes 10^{-16}$
90 175149.59 - 293801	$.1 \ 267.95666$	-29.63364	0.2	5.4	27.7	9.2	46.3	11.4	0.87	2.9	-3.9	: 60	÷	766.5	1.5	3.9×10^{-16}
91 175149.61 - 293034	.7 267.95673	-29.50965	0.2	6.8	56.9	9.7	27.1	21.1	0.62	5.6	~ -5	:	ъ	780.4	1.7	1.2×10^{-15}
92 175149.72 - 293736	.6 267.95717	-29.62685	0.2	5.2	60.5	11.1	49.5	36.2	0.89	5.2	~ -5	: 60	÷	779.1	2.5	1.4×10^{-15}
93 175149.77 - 293544	.8 267.95740	-29.59579	0.2	4.8	39.3	9.5	40.7	6.7	0.90	3.9	-5-	:	q	800.6	1.2	$4.0 imes 10^{-16}$
94 175149.81 - 293657	.8 267.95756	-29.61608	0.2	5.0	30.8	9.3	44.2	21.9	0.90	3.1	-4.6	:	υ	802.6	2.8	$7.2 { imes} 10^{-16}$
95 175149.89 - 293454	$.0\ 267.95790$	-29.58168	0.2	4.8	17.5	8.3	41.5	2.9	0.90	2.0	-2.2	: 60	÷	734.4	1.4	$2.2{ imes}10^{-16}$
96 175149.90 - 293040	.4 267.95793	-29.51123	0.2	6.7	32.2	8.7	33.8	8.0	0.67	3.5	$^{-5}_{-5}$:	ပ	766.9	1.3	4.8×10^{-16}
97 175149.91 - 294003	.1 267.95797	-29.66755	0.2	6.7	69.4	13.6	90.6	18.6	0.90	4.9	$^{-5}_{-5}$: :00	÷	688.6	1.7	2.4×10^{-15}
98 175149.91 - 293844	.3 267.95799	-29.64566	0.1	5.9	158.0	15.5	65.0	116.6	0.90	9.9	~ -5	: 60	÷	756.1	3.2	2.4×10^{-15}
99 175149.96 - 293204	.9 267.95819	-29.53470	0.2	5.9	28.0	10.5	69.0	4.4	0.89	2.5	-3.0	:	q	798.6	1.6	$3.7 imes 10^{-16}$
00 175150.02 - 294232	.3 267.95845	-29.70899	0.3	8.6	93.6	19.1	242.4	6.3	0.91	4.8	$^{-5}_{-5}$: :00	÷	670.0	1.3	1.4×10^{-15}
01 175150.05 - 293903	.5 267.95856	-29.65099	0.2	6.1	64.4	12.3	71.6	14.0	0.90	5.0	~ -5	50 60	÷	755.0	1.4	8.3×10^{-16}
02 175150.10 -293112	.9 267.95877	-29.52025	0.3	6.4	28.4	11.5	89.6	9.8	0.90	2.4	-2.6	:	ъ	779.9	8.1	4.3×10^{-16}

	n Photo F_{x}	$(ergs s^{-1} cm^{-2})$	(18)	5.7×10^{-16}	$4.2 imes 10^{-16}$	1.2×10^{-14}	$9.5 imes 10^{-16}$	2.4×10^{-16}	$4.0 imes 10^{-16}$	4.7×10^{-16}	6.5×10^{-16}	$6.7 imes 10^{-16}$	$2.2 imes 10^{-15}$	4.1×10^{-16}	$7.0 imes 10^{-16}$	1.0×10^{-15}	1.3×10^{-15}	1.7×10^{-15}	3.9×10^{-15}	$2.9 imes 10^{-15}$	2.1×10^{-15}	$5.6 imes 10^{-15}$	3.4×10^{-15}	2.8×10^{-15}	6.7×10^{-16}	$6.8 imes 10^{-16}$	6.7×10^{-16}	3.8×10^{-15}	2.2×10^{-15}	$2.2 imes 10^{-15}$	6.9×10^{-16}	4.3×10^{-14}	1.0×10^{-15}	3.3×10^{-16}	6.9×10^{-15}	6.1×10^{-16}	4.2×10^{-16}
ristics	$E_{ m medial}$	(keV)	(17)	1.8	1.2	2.8	4.9	1.1	1.8	2.1	1.4	1.8	2.2	2.6	1.8	1.9	2.1	1.3	1.3	1.5	1.5	1.5	3.0	1.1	2.8	1.5	1.5	2.4	1.2	2.7	3.3	3.6	3.1	1.1	2.9	1.8	2.4
haracte	EffExp	(ks)	(16)	752.2	758.8	785.5	634.9	797.5	797.4	758.9	798.2	749.1	758.2	792.8	758.8	798.9	793.4	806.5	807.4	787.9	716.9	699.4	789.4	766.0	725.5	802.2	787.5	758.5	722.7	773.2	778.7	794.1	791.6	788.6	705.7	794.3	779.7
	Var		(15)	:	q	q	÷	ъ	q	÷	÷	÷	g	÷	ł	c	g	q	ъ	c	ъ	ပ	÷	q	ł	q	q	ъ	q	q	а	q	ł	q	ł	ъ	ದ
	Anom		(14)	: :00	:	i	50 50	÷	i	50 60	: :00	: :00	:	50 60	: 60	i	i	i	÷	i	:	÷	50 60	:	: :00	i	i	÷	:	i	i	i	: 60	i	: 60	÷	:
	$P_{\rm B}$		(13)) -3.9	-3.1	~ -5	-2.6	5 -3.1	3.9	, -3.5	-5-5	-4.0	$^{-2}_{-2}$	6 -3.2	-4.6	~ -5	~ -5	~ -5	$^{-2}$	~ -5	~ -5	-5 - 5	~ -5	~ -5) -3.8	6 -4.5	-5-5	~ -5	- 5	-5	-2.2	<pre></pre>	$^{-5}_{-5}$	-4.1	- 5	-3.8	-2.5
	$_{\rm PS}$	Frac	(12)	3.0	2.7	20.6	2.2	2.6	2.8	2.7	5.1	3.1	6.1	2.6	3.1	5.7	ы. С	10.2	17.4	12.5	0.0	13.0	9.2	13.5	3.0	5	ŝ	9.0	8.4	6.0	2.1	36.3	3.0	3.1	10.4	2.0	2.5
	¹ PSF		(11)	0.89	0.90	0.90	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.91	0.90	0.90	0.90	0.90	0.90	0.90	0.43	0.47	0.90	0.88	0.82	0.90	0.90	0.89	0.90	0.90	0.90	0.90
ounts	$\sigma_{\rm net,harc}$		(10)	18.4	0.0	382.1	23.1	5.4	10.9	14.2	9.1	17.5	65.6	18.6	14.0	29.6	38.2	28.7	65.8	47.9	37.9	107.5	93.1	24.6	35.6	4.8	6.1	110.1	22.4	55.7	17.8	1225.1	25.4	0.0	153.3	13.3	19.5
teted C	$C'_{\rm bkg}$)	(6)	72.5	149.8	75.5	34.5	55.0	40.6	42.9	40.9	101.2	208.5	53.8	39.1	39.8	61.7	56.2	53.8	67.6	329.5	366.1	42.4	138.2	152.2	7.7	9.1	177.9	259.5	92.2	83.7	62.7	48.6	67.5	198.4	59.9	89.4
Extra	ΔC_{net}		(8)	11.0	14.5	25.1	7.9	9.6	8.8	8.8	10.4	12.6	18.7	9.5	8.8	10.8	12.3	15.4	21.4	17.6	22.7	28.4	13.7	21.5	14.8	5.2	6.6	19.6	21.9	14.0	11.0	39.4	9.9	10.7	21.3	10.1	11.5
	$C_{\rm net}$		(2)	34.5	40.2	527.5	18.5	26.0	26.4	25.1	55.1	40.8	116.5	26.2	28.9	65.2	75.3	162.8	380.2	223.4	150.5	401.9	130.6	297.8	45.8	14.3	27.9	180.1	188.5	87.8	24.3	1447.3	37.4	34.5	226.6	31.1	27.6
	θ	C	(9)	6.2	7.5	6.1	4.9	5.4	4.9	4.9	5.0	6.6	8.1	5.2	5.0	5.0	5.4	5.4	5.1	5.7	9.3	9.7	5.1	7.3	7.3	5.6	5.6	7.8	9.0	7.2	6.1	5.6	5.3	5.5	8.1	5.5	6.3
	Err		(5)	0.2	0.3	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.3	0.2	0.1	0.1	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.0	0.2	0.2	0.2	0.2	0.2
Position	Decl.	(deg)	(4)	-29.65378	-29.49445	-29.52881	-29.57930	-29.62737	-29.59460	-29.58228	-29.60030	-29.66244	-29.48306	-29.61711	-29.59229	-29.60346	-29.62577	-29.55479	-29.57059	-29.63531	-29.45869	-29.45066	-29.60506	-29.50154	-29.67931	-29.54923	-29.54969	-29.49117	-29.46724	-29.50442	-29.64676	-29.55287	-29.61194	-29.62308	-29.69472	-29.56015	-29.53084
	R. A.	(deg)	(3)	267.95878	267.95909	267.95932	267.95950	267.95951	267.95974	267.95983	267.96003	267.96023	267.96032	267.96050	267.96054	267.96060	267.96083	267.96089	267.96111	267.96144	267.96172	267.96184	267.96209	267.96224	267.96230	267.96232	267.96287	267.96289	267.96324	267.96329	267.96345	267.96371	267.96400	267.96479	267.96510	267.96525	267.96528
Source	CXOU J		(2)	175150.10 - 293913.6	175150.18 - 292940.0	175150.23 - 293143.7	175150.27 - 293445.4	175150.28 - 293738.5	175150.33 - 293540.5	175150.35 - 293456.2	175150.40 - 293601.0	175150.45 - 293944.7	175150.47 - 292859.0	175150.52 - 293701.6	175150.52 - 293532.2	175150.54 - 293612.4	175150.59 - 293732.7	175150.61 - 293317.2	175150.66 - 293414.1	175150.74 - 293807.1	175150.81 - 292731.2	175150.84 - 292702.3	175150.90 - 293618.2	175150.93 - 293005.5	175150.95 - 294045.5	175150.95 - 293257.2	175151.08 - 293258.8	175151.09 - 292928.2	175151.17 - 292802.0	175151.18 - 293015.9	175151.22 - 293848.3	175151.29 - 293310.3	175151.35 - 293642.9	175151.54 - 293723.0	175151.62 - 294141.0	175151.66 - 293336.5	175151.66 - 293151.0
	Seq	#	(1)	1803	1804	1805	1806	1807	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	1836

197

(cont.)

source list
Chandra
A.1:
Table

1	Source		Position			1	Extra	cted Co	unts				ľ	ا ^ل	aracteris	stics	ı i	
Seq	CXOU J	R.A.	Decl.	Err	θ	Cnet Z	$^{\Delta C_{ m net}}$	$C'_{\rm bkg} O$	net,hard	PSF	PS F	B An	om	Var I	offExp	$E_{ m median}$	Photo $F_{\rm x}$	
#		(deg)	(deg)	<u>()</u>	S						Frac				(ks)	(keV)	$(ergs s^{-1} cm^{-2})$	
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12) (1	3) (1	4) (15)	(16)	(17)	(18)	
1837	175151.73 - 293732.3	267.96556	-29.62566	0.1	5.6	157.4	15.7	70.6	113.5	0.90	9.7 < -	-5	:	q	789.8	2.9	$3.9 imes 10^{-15}$	
1838	175151.81 - 293639.1	267.96588	-29.61087	0.1	5.4	113.9	13.5	54.1	45.2	0.90	> 1.8	-5	:.	÷	784.4	1.8	1.8×10^{-15}	
1839	175151.82 - 293203.5	267.96594	-29.53431	0.3	6.2	27.6	11.2	83.4	25.6	0.87	2.4 - 3	2.6	÷	8	780.2	3.7	8.9×10^{-16}	
1840	175151.89 - 294122.2	267.96624	-29.68952	0.2	7.9	327.8	23.2	182.2	30.9	0.90	13.8 <	-5	: ::	÷	717.3	1.1	$3.5\! imes\!10^{-15}$	
1841	175152.05 - 293805.1	267.96688	-29.63475	0.1	5.9	157.0	16.1	82.0	96.3	0.90	9.5 $<$	-5	÷	в	782.7	2.5	3.4×10^{-15}	
1842	175152.06 - 293547.7	267.96692	-29.59661	0.2	5.3	74.4	11.7	48.6	62.2	0.90	6.1 <	-5	: :00	÷	782.0	3.3	$2.2 imes 10^{-15}$	
1843	175152.20 - 293348.3	267.96752	-29.56344	0.2	5.5	32.7	10.4	62.3	18.4	0.90	3.0 - 1	4.0	ł	q	789.6	2.4	$6.5\! imes\!10^{-16}$	
1844	175152.27 - 292810.0	267.96782	-29.46947	0.3	9.0	81.4	17.3	194.6	48.8	0.81	4.6 < -	5-5	÷	ರ	721.6	2.9	2.4×10^{-15}	
1845	175152.28 - 292830.6	267.96786	-29.47517	0.3	8.7	112.6	20.1	264.4	77.2	0.90	5.5	-5	ł	в	724.2	3.1	$3.2 imes 10^{-15}$	
1846	175152.32 - 293202.5	267.96801	-29.53404	0.2	6.3	60.9	12.9	90.1	17.1	0.90	4.5 < -	-5	ł	c	779.5	1.3	$6.6\! imes\!10^{-16}$	
1847	175152.41 - 293244.9	267.96840	-29.54582	0.1	6.0	476.0	24.1	79.0	341.7	0.89	19.3 < -	5-5	:	в	784.0	2.9	1.2×10^{-14}	
1848	175152.46 - 294214.4	267.96861	-29.70402	0.2	8.7	328.3	24.9	260.7	274.3	0.91	12.9 <	-5	:. :00	:	704.0	3.7	$1.2 { imes} 10^{-14}$	
1849	175152.49 - 292908.7	267.96871	-29.48577	0.2	8.2	192.6	20.3	191.4	123.3	0.88	9.3 <	-5	ł	q	730.1	2.6	4.8×10^{-15}	
1850	175152.54 - 293415.4	267.96895	-29.57096	0.2	5.5	24.6	9.7	57.4	17.5	0.90	2.4 - 5	2.8	: 60	:	756.0	2.9	$6.2 imes 10^{-16}$	
1851	175152.55 - 293452.9	267.96899	-29.58137	0.1	5.4	289.1	19.1	53.9	202.1	0.90	14.8 <	5-5	÷	q	762.0	2.8	6.9×10^{-15}	
1852	175152.56 - 292957.0	267.96903	-29.49919	0.3	7.7	42.6	15.1	164.4	9.2	0.90	2.7 - 3	3.2	:	q	740.2	1.5	$5.8 imes 10^{-16}$	
1853	175152.59 - 292712.9	267.96916	-29.45359	0.2	9.8	68.8	11.6	52.2	53.6	0.46	5.7 < .2	-5	÷	в	713.8	3.2	$4.0 imes 10^{-15}$	
1854	175152.60 - 294101.6	267.96917	-29.68380	0.3	7.8	51.5	16.2	188.5	6.8	0.90	3.1	3.9	: ::	÷	719.1	1.4	$7.0 imes 10^{-16}$	
1855	175152.63 - 293750.8	267.96931	-29.63079	0.2	5.9	47.5	12.0	82.5	18.6	0.90	3.8	-5	:. :00	÷	765.4	1.8	7.9×10^{-16}	
1856	175152.64 - 293813.6	267.96934	-29.63712	0.2	6.1	32.8	11.3	81.2	11.8	0.88	2.8	3.4	: 50	÷	765.5	1.7	$9.8 imes 10^{-16}$	
1857	175152.64 - 292920.2	267.96935	-29.48897	0.2	8.1	69.9	14.2	113.1	3.7	0.78	4.8 <	-5	:	в	734.4	1.1	$1.2 imes 10^{-15}$	
1858	175152.64 - 293051.8	267.96936	-29.51439	0.1	7.1	260.7	20.1	120.3	205.0	0.90	12.6 < 1	-5	÷	в	761.1	3.2	$2.5 imes 10^{-15}$	
1859	175152.69 - 293214.9	267.96958	-29.53748	0.2	6.3	42.1	8.2	16.9	30.3	0.53	4.8 <	-5	÷	8	778.9	2.8	$1.7 { imes} 10^{-15}$	
1860	175152.78 - 293309.2	267.96995	-29.55256	0.2	5.9	30.9	10.9	75.1	26.4	0.89	2.7 -:	3.3	÷	8	782.9	3.2	8.3×10^{-16}	
1861	175152.83 - 293934.9	267.97013	-29.65970	0.2	6.9	54.6	14.4	133.4	36.1	0.90	3.7 < 100	-5	: 60	÷	758.3	2.7	1.4×10^{-15}	
1862	175152.91 - 293216.7	267.97047	-29.53798	0.2	6.3	44.4	8.3	16.6	17.4	0.53	5.0 <	-5	÷	в	781.6	1.8	1.1×10^{-15}	
1863	175152.96 - 294124.3	267.97068	-29.69009	0.2	8.1	115.9	18.3	195.1	43.7	0.89	6.2 $<$	-5	: .00	÷	713.4	1.7	$2.0 imes 10^{-15}$	
1864	175152.99 - 293453.8	267.97082	-29.58161	0.2	5.5	43.5	10.7	58.5	27.8	0.89	3.9 <	-5	:.	÷	755.3	2.5	$9.6 imes 10^{-16}$	
1865	175153.09 - 294037.4	267.97122	-29.67708	0.2	7.6	186.5	19.8	180.5	113.9	0.90	9.2 < -	-5	:	в	749.0	2.4	4.1×10^{-15}	
1866	175153.10 - 292719.9	267.97129	-29.45554	0.3	9.8	51.5	10.8	52.5	44.3	0.45	4.6 < 100	-5	÷	q	716.9	3.5	$3.3{ imes}10^{-15}$	
1867	175153.30 - 293415.8	267.97212	-29.57107	0.2	5.6	43.2	9.9	42.8	14.7	0.82	4.2 < -	-5	:. :00	÷	718.6	1.7	$7.3 { imes} 10^{-16}$	
1868	175153.31 - 293658.7	267.97216	-29.61633	0.2	5.8	34.7	11.2	76.3	7.3	0.90	3.0	3.8	:. :00	÷	783.8	1.3	$3.9 imes 10^{-16}$	
1869	175153.33 - 294245.0	267.97222	-29.71251	0.1	$9.2 \ 1$	202.7	39.6	313.3	985.9	0.90	30.0 <	-5	: 50	÷	686.0	3.5	$1.6 { imes} 10^{-14}$	
1870	175153.33 - 293535.5	267.97225	-29.59321	0.2	5.6	50.4	11.2	61.6	6.3	0.89	4.3 <	-5	÷	q	786.1	1.3	$1.5 { imes} 10^{-15}$	
(cont.)																		

	n Photo F_x	$(ergs \ s^{-1} \ cm^{-2})$	(18)	6.9×10^{-16}	$2.0 imes 10^{-15}$	$1.6 imes 10^{-15}$	1.4×10^{-15}	$2.8 imes 10^{-15}$	7.1×10^{-16}	$5.5\! imes\!10^{-16}$	$1.1\! imes\!10^{-15}$	1.1×10^{-15}	1.8×10^{-15}	1.2×10^{-15}	$6.6\! imes\!10^{-16}$	$1.5 imes 10^{-15}$	$7.7 imes 10^{-15}$	$2.7 imes 10^{-15}$	$7.0 imes 10^{-16}$	$2.5 imes 10^{-15}$	$3.2 imes 10^{-16}$	1.0×10^{-15}	$2.2 imes 10^{-15}$	1.3×10^{-15}	4.8×10^{-16}	1.7×10^{-14}	7.2×10^{-16}	$1.6e{-13}$	1.7×10^{-15}	$3.6 imes 10^{-15}$	$7.0 imes 10^{-16}$	$7.2 imes 10^{-16}$	8.1×10^{-16}	$3.8 imes 10^{-16}$	4.8×10^{-16}	$3.7 imes 10^{-15}$	5.3×10^{-15}
istics	$E_{ m media}$	(keV)	(17)	1.7	1.3	2.4	2.6	1.3	1.9	1.1	2.5	1.2	1.2	2.7	1.7	1.4	2.9	2.8	1.7	1.6	1.3	3.4	2.7	1.8	1.6	3.2	1.9	2.7	1.2	3.0	2.1	1.9	1.5	1.1	2.2	2.6	3.3
haracte	EffExp	(ks)	(16)	766.5	774.1	791.8	747.8	755.1	707.2	786.8	781.2	749.7	765.0	766.3	646.5	761.9	786.4	594.9	780.8	778.6	770.4	762.6	765.9	725.0	769.0	743.0	770.7	722.4	776.5	767.5	766.3	771.2	752.2	767.6	745.7	747.4	716.8
0	Var		(15)	÷	÷	q	÷	ъ	÷	÷	q	÷	i	÷	÷	i	q	÷	ų	ъ	ъ	q	q	ъ	q	÷	q	ပ	ъ	8	q	υ	i	ъ	÷	q	q
	Anom		(14)	: :00	: :00	÷	: 20	i	: :00	: 60	i	: :00	: 60	: 20	: :00	: 60	:	: 20	i	i	:	÷	i	÷	i	: 60	÷	:	i	÷	÷	i	: 60	:	: :00	i	:
	$P_{\rm B}$		(13)	~ -5	$\stackrel{>}{\sim}$	$\stackrel{>}{\sim}$	$\stackrel{-2}{\sim}$	$\stackrel{\circ}{_{-2}}$	$\stackrel{>}{\sim}$	$\stackrel{>}{\sim}$	$\stackrel{\circ}{-}$	$\stackrel{>}{\sim}$	~ -5	~ -5	$\stackrel{>}{\sim}$	$\stackrel{>}{\sim}$	$\stackrel{\circ}{-}$	-4.5	$\stackrel{>}{\sim}$	$\stackrel{>}{\sim}$	-2.9	-2.2	$\stackrel{>}{\sim}$	~ -5	-3.4	~ -5	-4.1	~ -5	~ -5	~ -5	-3.8	-4.5	$\stackrel{>}{\sim}$	-4.0	-2.2	$\stackrel{>}{\sim}$	~ -5
	$_{\mathrm{PS}}$	Frac	(12)	4.3	8.1	6.0	5.0	12.0	3.7	4.6	4.3	6.0	9.3	3.6	3.6	7.1	15.0	3.5	4.0	10.1	2.5	2.2	5.6	3.8	2.8	19.8	3.2	77.1	9.1	7.9	3.0	3.3	4.6	3.1	2.1	7.8	6.8
	PSF		(11)	0.89	0.90	0.87	0.78	0.89	0.66	0.87	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.88	0.90	0.89	0.90	0.91	0.91	0.89	0.90	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.89	0.90	0.48
unts	net,hard		(10)	18.0	13.7	43.7	35.3	24.2	13.0	6.4	31.0	0.0	18.5	37.3	14.6	27.8	223.9	52.3	20.9	56.5	4.9	25.1	69.1	30.2	9.1	458.5	21.5	4336.1	22.1	98.7	20.6	18.9	17.3	2.5	10.9	104.1	73.1
cted Co	$C'_{\rm bkg}$ C)	(6)	94.6	85.5	65.8	40.5	126.3	18.5	64.2	64.2	128.4	114.7	104.1	56.1	120.2	79.2	373.5	70.9	102.7	78.0	181.0	169.3	263.6	87.2	178.1	115.7	352.4	122.6	141.7	101.8	102.0	83.1	100.3	82.6	209.4	64.3
Extra	$\Delta C_{ m net}$		(8)	13.0	15.2	12.6	10.3	19.9	7.5	11.6	11.3	15.6	17.4	13.0	10.3	16.1	20.4	22.1	11.5	17.5	11.0	15.4	17.0	19.1	11.6	27.8	13.3	83.0	17.6	17.5	12.5	12.7	12.6	12.5	11.0	19.9	13.1
	Cnet Z		(2)	57.4	126.5	78.2	53.5	244.7	29.5	55.8	50.8	96.6	166.3	48.9	38.9	117.8	312.8	79.5	48.1	181.3	29.0	35.0	97.7	74.4	33.8	561.9	44.3	440.6	165.4	142.3	39.2	44.0	60.9	40.7	24.4	159.6	92.7
	θ	S	(9)	6.2	6.0	5.7	5.7	7.2	5.7	5.7	5.6	6.8	6.6	6.4	5.7	6.7	5.8	0.4	5.8	6.2	5.9	7.8	7.6	8.4	6.1	7.5	6.9	9.4 6	6.6	7.4	6.2	6.4	6.0	6.1	6.1	8.1	9.7
	Err	<i>…</i>	(5)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.3]	0.2	0.1	0.2	0.3	0.2	0.3	0.2	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2
Dosition	Decl.	(deg)	(4)	-29.63713	-29.62635	-29.61091	-29.56996	-29.51500	-29.57113	-29.60594	-29.59212	-29.65431	-29.64563	-29.63979	-29.58834	-29.64983	-29.61163	-29.44544	-29.60619	-29.62901	-29.56493	-29.50273	-29.50790	-29.69198	-29.55781	-29.66842	-29.52963	-29.46837	-29.64102	-29.51713	-29.61957	-29.55159	-29.60459	-29.61414	-29.56906	-29.49810	-29.46310
	R. A.	(deg)	(3)	267.97243 -	267.97245 -	267.97270 -	267.97309 -	267.97329 -	267.97334 -	267.97337 -	267.97383 -	267.97417 -	267.97419 -	267.97430 -	267.97435 -	267.97437 -	267.97460 -	267.97510 -	267.97522 -	267.97576 -	267.97589 -	267.97608 -	267.97642 -	267.97668 -	267.97683 -	267.97726 -	267.97737 -	- 967.97796	267.97879 -	267.97895 -	267.97915 -	267.97933 -	267.97933 -	267.97974 -	267.97978 -	267.98040 -	267.98058 -
Source	CXOU J		(2)	175153.38 - 293813.6	175153.38-293734.8 2	175153.44 - 293639.2	175153.54 - 293411.8	175153.58 - 293053.9	175153.60 - 293416.0	175153.60 - 293621.3	175153.71 - 293531.6	175153.80 - 293915.5	175153.80 - 293844.2	175153.83 - 293823.2	175153.84 - 293518.0	175153.84 - 293859.4	175153.90 - 293641.8	175154.02 - 292643.5	175154.05 - 293622.2	175154.18 - 293744.4	175154.21 - 293353.7	175154.25 - 293009.8	175154.34 - 293028.4	175154.40 - 294131.1	175154.43 - 293328.1	175154.54 - 294006.3	175154.56 - 293146.6	175154.71 - 292806.1	175154.90 - 293827.6	175154.94 - 293101.6	175154.99 - 293710.4	175155.03 - 293305.7	175155.03 - 293616.5	175155.13 - 293650.9	175155.14 - 293408.6	175155.29 - 292953.1	175155.33-292747.1
	Seq	#	(1)	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904

list
source
Chandra
A.1:
Table

	D A	Position	ید تا	P	<		Ji ju	Surus	D C D C	DC	D	an Out	Uov Vov	Taracter Effern		Dhoto F
r 0000				5	Unet L	Unet	Cbkg	√net,hard			7 B 7	IIIOIIT	A du	dvania VV	Umedian	-2^{-1}
	(deg)	(deg)		Ð						Frac				(ks)	(keV)	(ergs s ⁻¹ cm ⁻²)
(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
75155.40 - 293356.6	267.98084	-29.56573	0.2	6.2	30.8	11.7	92.2	10.0	0.89	2.5	-2.8	÷	q	774.8	1.5	$4.0 imes 10^{-16}$
75155.47 - 293907.8	267.98114	-29.65218	0.2	7.1	121.8	17.2	152.2	54.6	0.90	6.9	$\stackrel{<}{-5}$	i	а	764.4	1.9	$2.0{ imes}10^{-15}$
75155.69 - 293113.9	267.98206	-29.52053	0.2	7.4	125.8	16.9	139.2	49.0	0.89	7.2	$\stackrel{<}{-5}$	÷	а	761.7	1.8	$2.0{ imes}10^{-15}$
75155.70 - 293303.0	267.98210	-29.55083	0.2	6.5	57.2	13.6	109.8	5.6	0.89	4.1	< -5	÷	c	774.5	1.1	$5.5 imes 10^{-16}$
75155.75 - 294019.4	267.98230	-29.67208	0.2	7.8	85.0	18.0	215.0	48.4	0.89	4.6	$\stackrel{<}{-}$	÷	ပ	749.8	2.4	1.8×10^{-15}
75155.80 - 293733.6	267.98253	-29.62600	0.2	6.5	36.3	12.5	103.7	8.2	0.87	2.8	-3.3	÷	q	754.5	1.5	4.9×10^{-16}
75155.93 - 293555.1	267.98305	-29.59866	0.2	6.1	131.9	15.4	87.1	86.8	0.90	8.3	~ -5	÷	5	760.4	2.6	$3.0\! imes\!10^{-15}$
75156.01 - 292755.1	267.98340	-29.46532	0.2	9.7	140.7	16.5	111.3	87.6	0.59	8.3	~ -5	:	а	721.1	2.6	$5.1\! imes\!10^{-15}$
175156.06 - 293544.2	267.98360	-29.59561	0.2	6.2	57.4	12.7	88.6	63.5	0.90	4.3	~ -5	i	q	770.3	4.9	$2.5\! imes\!10^{-15}$
175156.20 - 293518.2	267.98418	-29.58841	0.3	6.2	27.0	10.9	79.0	12.7	0.89	2.4	-2.6	: 60	ł	665.4	2.0	$5.6\! imes\!10^{-16}$
175156.21 - 293742.0	267.98424	-29.62834	0.3	6.6	30.6	10.1	60.4	18.5	0.74	2.9	-3.7	÷	а	743.8	3.1	$1.0 imes 10^{-15}$
175156.25 - 293031.1	267.98438	-29.50864	0.2	7.9	247.6	21.6	190.4	57.5	0.90	11.2	~ -5	i	ပ	751.8	1.5	$3.2 imes 10^{-15}$
175156.27 - 293733.7	267.98449	-29.62604	0.2	6.6	65.3	12.7	80.7	7.3	0.80	4.9	~ -5	÷	q	754.1	1.3	8.3×10^{-16}
175156.37 - 293007.6	267.98488	-29.50211	0.2	8.2	198.1	19.7	165.9	119.8	0.84	9.8	~ -5	i	q	748.9	2.4	$4.5 imes 10^{-15}$
175156.55 - 293226.0	267.98564	-29.54056	0.2	6.9	66.5	14.5	125.5	27.9	0.89	4.4	~ -5	i	а	765.5	1.7	9.9×10^{-16}
175156.57 - 293939.2	267.98572	-29.66091	0.3	7.6	48.8	16.4	197.2	18.4	0.90	2.9	-3.4	: :00	ł	733.0	1.5	$6.8 { imes} 10^{-16}$
175156.59 - 293417.3	267.98582	-29.57148	0.3	6.3	39.5	11.7	83.5	26.7	0.90	3.2	-4.4	: 60	ł	611.2	2.9	1.3×10^{-15}
175156.61 - 294239.4	267.98588	-29.71095	0.3	9.6	131.4	21.8	310.6	80.6	0.85	5.9	< -5	÷	а	700.8	2.9	3.9×10^{-15}
175156.63 - 293306.6	267.98598	-29.55184	0.2	6.7	63.3	14.0	115.7	40.7	0.90	4.3	~ -5	÷	c	766.8	2.9	$1.6\! imes\!10^{-15}$
175156.65 - 294222.9	267.98606	-29.70638	0.3	9.4	59.3	16.7	197.7	36.5	0.73	3.4	-4.7	i	g	712.7	2.6	1.8×10^{-15}
75156.67 - 293018.8	267.98616	-29.50523	0.3	8.1	42.2	11.7	80.8	29.8	0.68	3.4	-5.0	÷	а	751.0	2.8	1.3×10^{-15}
75156.81 - 293716.8	267.98674	-29.62135	0.2	6.6	30.1	13.2	127.9	0.2	0.89	2.2	-2.2	: 60	ł	756.0	1.0	$2.7{ imes}10^{-16}$
75156.91 - 293433.6	267.98713	-29.57602	0.2	6.4	82.7	12.5	58.3	20.0	0.79	6.4	~ -5	: 60	ł	690.4	1.4	1.3×10^{-15}
[75157.05 - 293442.2	267.98773	-29.57840	0.2	6.4	98.7	13.5	68.3	45.0	0.80	7.0	$\stackrel{>}{\sim}$	i	q	761.1	1.9	1.9×10^{-15}
175157.27 - 293823.8	267.98865	-29.63997	0.2	7.1	79.6	16.0	155.4	64.5	0.90	4.8	< -5	÷	c	751.5	3.3	2.3×10^{-15}
75157.50 - 293258.0	267.98959	-29.54945	0.2	6.9	59.0	14.3	128.0	39.7	0.90	4.0	~ -5	i	q	762.5	2.8	1.4×10^{-15}
75157.51 - 293754.1	267.98964	-29.63170	0.2	6.9	93.2	16.5	157.8	32.2	0.90	5.5	$\stackrel{<}{-5}$	÷	а	754.5	1.6	1.3×10^{-15}
75157.60 - 294148.7	267.99001	-29.69688	0.2	9.1	306.0	26.5	359.0	22.6	0.90	11.3	~ -5	÷	q	708.5	1.3	$3.9 imes 10^{-15}$
75157.61 - 293721.9	267.99006	-29.62277	0.2	6.8	49.1	12.2	84.9	15.7	0.78	3.9	~ -5	i	q	761.5	1.6	8.1×10^{-16}
75157.65 - 293731.8	267.99021	-29.62551	0.2	6.8	88.6	14.8	113.4	29.8	0.84	5.8	$\stackrel{>}{\sim}$	÷	q	760.4	1.4	1.2×10^{-15}
75157.78 - 293122.1	267.99076	-29.52282	0.2	7.7	82.4	16.7	173.6	1.8	0.90	4.8	~ -5	i	q	756.7	1.2	$8.6\! imes\!10^{-16}$
75157.79 - 293047.0	267.99081	-29.51308	0.2	8.0	261.8	22.2	200.2	48.3	0.90	11.6	~ -5	i	ပ	753.3	1.3	$2.9 { imes} 10^{-15}$
75157.79 - 293431.6	267.99081	-29.57544	0.2	6.6	54.1	13.4	108.9	7.4	0.90	3.9	~ -5	: 50	ł	681.8	1.3	$7.2 { imes} 10^{-16}$
75157 90-294112 4	267 99129	-29 68679	ςU	10	- 206 S	2 U C	0101	68.1	0.70	0 8	۲ ا		c	7007	ع ۱	$9 E \sim 10 - 15$

	_{in} Photo F _x	$(ergs s^{-1} cm^{-2})$	(18)	8.7×10^{-15}	1.0×10^{-15}	6.8×10^{-16}	$9.3 imes 10^{-16}$	1.9×10^{-15}	6.3×10^{-15}	8.1×10^{-16}	3.4×10^{-15}	1.4×10^{-15}	$1.5 imes 10^{-15}$	$5.5 imes 10^{-16}$	$3.1 imes 10^{-15}$	8.9×10^{-16}	2.1×10^{-15}	4.3×10^{-16}	$8.5 imes 10^{-15}$	$2.9 imes 10^{-16}$	2.8×10^{-15}	$2.6 imes 10^{-15}$	1.4×10^{-15}	$2.2 imes 10^{-15}$	6.7×10^{-15}	$9.7 imes 10^{-15}$	1.2×10^{-15}	1.1×10^{-15}	1.2×10^{-15}	$5.5 imes 10^{-16}$	2.9×10^{-15}	1.0×10^{-15}	2.2×10^{-15}	6.8×10^{-16}	5.4×10^{-15}	3.6×10^{-16}	2.7×10^{-15}
ristics	$E_{ m media}$	(keV)	(17)	3.3	2.8	2.1	2.7	2.4	3.3	1.8	3.6	2.0	1.4	1.2	3.0	1.3	1.1	1.6	2.3	1.0	1.9	2.0	4.1	3.1	3.1	2.6	1.2	4.3	2.0	1.4	2.6	1.1	2.7	1.4	3.0	1.3	2.9
characte	EffExp	(ks)	(16)	761.7	740.8	744.3	755.9	765.2	712.4	743.6	754.7	613.7	750.9	715.3	630.8	697.9	728.7	753.2	718.3	755.0	751.3	722.2	723.8	697.5	747.8	755.1	593.5	756.6	744.2	758.8	750.7	686.1	592.9	747.6	657.0	749.8	713.6
$^{\circ}$	Var		(15)	ы	5	ပ	q	а	ರ	÷	ပ	÷	а	÷	ł	а	ပ	q	ರ	÷	g	а	÷	÷	q	ł	ł	q	ъ	q	÷	ł	÷	ъ	ъ	а	а
	Anom		(14)	:	:	:	:	:	:	50 60	:	: 60	:	: 60	:. 20	:	:	:	:	50 60	:	:	50 60	: 50	÷	: 60	: 60	:	÷	÷	: 60	: 60	: 60	:	÷	÷	:
	$P_{\rm B}$	0	(13)	-5	↓ -2.5	7 -3.1	6 -2.8	5-5	-5 - 5	~ -5	2-2	1 -4.4	~ -5	1 - 4.5	-5) -3.4	5	2.3	$^{-5}_{-5}$	3 -2.3	~ -5	~ -5	5 -2.7	-5-5	-5	S−−5	<-5	-2.1	~ -5) -3.8	-5 - 5	< -5	$\dot{\sim} -5$	2 -4.1	< -5) -2.0	55
	$_{\rm PS}$	Frae	(12)	13.6	2.4	2	2.2	5.0	8.	ŝ	6.0	3.4	6.6	3.4	5.]	3.0	80.00	2.7	14.5	5	\$.	7	2	4	11.4	16.5	ы. 1	2.]	4	3.0	6.9	ы 1-	4.6	3.5	6.7	5.0	4.5
	¹ PSF		(11)	0.90	0.90	0.90	0.90	0.90	0.79	0.90	0.90	0.89	0.90	0.86	0.90	0.90	0.91	0.90	0.90	0.90	0.66	0.85	0.89	0.78	0.84	0.90	0.90	0.89	0.77	0.89	0.90	0.90	0.90	0.90	0.90	0.90	0.90
ounts	$\sigma_{\rm net,hard}$		(10)	234.5	28.7	18.5	30.4	50.3	120.9	20.6	94.2	29.7	25.4	7.8	66.1	8.6	17.9	6.5	222.1	0.0	60.0	65.5	37.1	49.4	173.8	254.3	10.6	18.8	29.7	3.5	77.9	12.1	42.6	11.1	129.4	2.1	64.2
acted C	$C'_{\rm bkg}$		(6)	145.3	200.4	112.0	171.3	134.8	201.8	125.1	178.1	232.7	184.7	112.0	229.2	408.3	265.4	123.5	328.9	128.8	66.7	155.6	126.0	112.2	134.4	150.3	119.2	147.6	102.2	150.6	153.0	146.6	115.3	188.6	455.7	158.4	360.8
Extra	ΔC_{net}		(8)	21.8	16.2	12.8	15.2	15.7	20.2	13.9	17.6	17.9	18.2	13.2	18.8	22.7	22.4	13.1	27.7	13.3	14.5	17.6	13.4	14.0	19.7	24.2	14.9	14.0	13.4	14.7	17.2	16.2	14.1	16.3	26.0	14.4	22.2
	$C_{\rm net}$		(-)	304.7	39.6	36.0	39.7	90.2	178.2	49.9	107.9	62.3	123.3	46.0	97.8	69.7	203.6	30.5	400.1	31.2	127.3	132.4	35.0	65.8	230.6	407.7	84.8	30.4	59.8	45.4	122.0	96.4	66.7	53.4	178.3	30.6	98.2
	θ	S	(9)	7.2	7.6	6.6	7.6	6.8	8.9	6.7	7.3	9.1	7.8	6.8	8.9	9.5	8.2	6.8	8.8	6.8	7.8	8.1	6.9	8.2	7.8	7.0	7.0	7.3	7.8	7.2	7.1	7.2	7.1	7.4	10.1	7.1	9.1
	Err	Ĵ	(2)	0.1	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.3	0.2	0.3	0.3	0.3	0.2	0.3	0.2	0.3	0.2	0.2	0.3	0.3	0.2	0.1	0.2	0.3	0.3	0.3	0.2	0.2	0.3	0.2	0.3	0.3	0.3
Position	Decl.	(deg)	(4)	-29.53871	-29.65426	-29.58988	-29.52798	-29.56368	-29.68888	-29.57719	-29.63736	-29.48835	-29.52348	-29.58152	-29.49362	-29.70199	-29.66588	-29.59074	-29.68340	-29.59415	-29.52653	-29.51847	-29.58096	-29.51557	-29.52942	-29.60953	-29.57066	-29.55198	-29.53276	-29.55992	-29.60554	-29.56714	-29.58601	-29.62666	-29.71046	-29.57737	-29.68526
	R. A.	(deg)	(3)	267.99142	267.99201	267.99210	267.99263	267.99310	267.99355	267.99399	267.99421	267.99444	267.99460	267.99510	267.99517	267.99523	267.99566	267.99593	267.99638	267.99668	267.99687	267.99762	267.99770	267.99795	267.99845	267.99846	267.99861	267.99880	267.99959	268.00008	268.00058	268.00068	268.00110	268.00141	268.00183	268.00199	268.00265
Source	CXOU J		(2)	175157.94 - 293219.3	175158.08 - 293915.3	175158.10 - 293523.5	175158.23 - 293140.7	175158.34 - 293349.2	175158.45 - 294119.9	175158.55 - 293437.8	175158.61 - 293814.5	175158.66 - 292918.0	175158.70 - 293124.5	175158.82 - 293453.4	175158.84 - 292937.0	175158.85 - 294207.1	175158.95 - 293957.1	175159.02 - 293526.6	175159.13 - 294100.2	175159.20 - 293538.9	175159.24 - 293135.5	175159.42 - 293106.4	175159.44 - 293451.4	175159.50 - 293056.0	175159.62 - 293145.9	175159.63 - 293634.2	175159.66 - 293414.3	175159.71 - 293307.1	175159.90 - 293157.9	175200.01 - 293335.7	175200.13 - 293619.9	175200.16 - 293401.6	175200.26 - 293509.6	175200.33 - 293735.9	175200.43 - 294237.6	175200.47 - 293438.5	175200.63 - 294106.9
	Seq	#	(1)	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972

201

(cont.)

source list
Chandra
A.1:
Table

	Photo $F_{\rm x}$	$(ergs s^{-1} cm^{-2})$	(18)	1.5×10^{-15}	$8.2 imes 10^{-15}$	$2.0 imes 10^{-15}$	$6.2 imes 10^{-16}$	4.9×10^{-15}	$1.0 imes 10^{-15}$	$2.1\! imes\!10^{-15}$	$1.2 imes 10^{-15}$	1.6×10^{-15}	$5.2 imes 10^{-15}$	$1.7 { imes} 10^{-15}$	1.4×10^{-15}	$8.5 imes 10^{-16}$	4.1×10^{-15}	$3.2 imes 10^{-15}$	6.1×10^{-16}	$2.0 imes 10^{-15}$	$2.8 imes 10^{-15}$	$2.6\! imes\!10^{-15}$	1.5×10^{-15}	$5.7 imes 10^{-15}$	1.0×10^{-14}	$5.0 imes 10^{-15}$	$2.2 imes 10^{-15}$	$2.1\! imes\!10^{-15}$	$5.4 imes 10^{-15}$	$2.6 imes 10^{-15}$	$4.7 imes 10^{-15}$	$3.1 imes 10^{-15}$	$1.3 { imes} 10^{-15}$
stics	$E_{ m median}$	(keV)	(17)	2.1	3.6	1.4	1.8	1.2	2.3	1.3	1.3	2.5	2.4	1.5	2.2	1.2	2.1	2.9	1.5	1.2	1.7	1.4	1.4	2.5	3.3	2.9	1.9	1.8	3.2	3.9	3.5	2.5	1.5
naracteri	EffExp .	(ks)	(16)	736.3	635.8	728.8	734.6	746.2	740.8	735.3	736.9	738.8	677.7	688.8	568.9	716.9	590.0	741.0	727.3	711.1	610.2	698.1	689.7	680.1	622.0	698.7	620.1	687.4	635.7	640.4	569.6	296.9	594.9
õ	Var		(15)	q	÷	c	ъ	ъ	υ	÷	÷	q	÷	q	÷	q	÷	в	÷	÷	÷	÷	÷	÷	в	÷	÷	÷	÷	ಸ	÷	÷	÷
	Anom		(14)	:	: 60	÷	i	i	i	: 60	: 60	i	: 60	÷	: 60	i	: 60	÷	: 60	: 60	: 60	: 60	: 60	: 60	i	: 60	50 60	: 60	: :00	i	: 20	: 60	: 60
	PS $P_{\rm B}$ A	rac	12) (13)	4.8 < -5	10.6 < -5	6.8 < -5	2.5 - 2.7	17.4 <-5	3.1 - 3.9	7.9 < -5	5.6 < -5	4.0 < -5	10.6 < -5	4.2 < -5	3.6 < -5	3.6 - 4.8	8.6 < -5	6.4 < -5	2.4 - 2.4	8.6 < -5	5.4 < -5	7.8 < -5	4.8 < -5	8.7 < -5	9.9 < -5	10.6 < -5	3.7 < -5	5.4 < -5	6.2 < -5	3.0 - 3.8	4.9 < -5	3.3 - 4.6	2.9 - 3.3
	\mathbf{PSF}	щ	(11) (0.90	0.90	0.89	0.89	0.89]	0.77	0.90	0.82	0.80	0.88]	0.90	0.90	0.89	0.89	0.89	0.90	0.90	0.68	0.82	0.89	0.90	0.84	0.90	0.90	0.83	0.81	0.69	0.90	0.90	0.90
ounts	7net,hard		(10)	46.1	190.5	27.1	17.7	57.4	23.1	27.6	11.5	37.7	119.2	28.5	30.4	8.4	88.1	78.2	12.7	28.9	28.7	44.1	24.6	147.2	200.8	172.8	18.5	43.0	105.2	37.6	97.9	30.3	16.4
teted Co	$C'_{\rm bkg}$ (0	(6)	170.4	166.4	291.1	165.0	158.8	116.5	236.1	128.5	138.4	148.8	502.9	144.3	307.3	145.0	181.8	237.5	198.0	207.8	216.2	334.4	365.5	391.1	315.6	209.2	237.7	270.6	165.5	324.8	129.3	465.7
Extra	$\Delta C_{\rm net}$		(8)	16.6	20.3	21.8	14.9	25.2	13.3	20.8	15.4	14.8	19.7	25.6	14.8	20.3	18.1	18.0	17.5	20.0	18.3	20.1	21.8	25.0	26.4	24.9	17.3	19.3	20.8	15.3	21.6	14.0	24.0
	Cnet 4		(2)	81.6	219.6	151.9	38.0	446.2	42.5	168.9	89.5	61.6	214.2	109.1	54.7	74.7	161.0	119.2	42.5	176.0	102.2	159.8	107.6	222.5	266.9	270.4	65.8	106.3	132.4	47.5	108.2	47.7	72.3
	θ	$\mathbf{\hat{c}}$	(9)	7.6	. 6.7	8.6	7.4	7.3	7.7	7.9	7.4	7.8	7.4	0.1	7.5	8.8	7.5	7.5	8.0	7.7	0.5	8.9	9.2	9.4	0.4	80.00	8.2	9.0	9.7	9.6	9.6	8.9	0.3
	Err	Ē	(2)	0.2	0.2	0.2	0.3	0.1	0.3	0.2	0.2	0.2	0.2	0.3 1	0.3	0.3	0.2	0.2	0.3	0.2	0.3 1	0.2	0.3	0.2	$0.2 \ 1$	0.2	0.3	0.3	0.2	0.3	0.3	0.4	0.3 1
Position	Decl.	(deg)	(4)	-29.54523	-29.53209	-29.66870	-29.56230	-29.60701	-29.62762	-29.63759	-29.60823	-29.63073	-29.58135	-29.70464	-29.56778	-29.66971	-29.58396	-29.59431	-29.63051	-29.60086	-29.70929	-29.66080	-29.66967	-29.67520	-29.70544	-29.65321	-29.61925	-29.65997	-29.68222	-29.67769	-29.67035	-29.64490	-29.69200
	R.A.	(deg)	(3)	268.00268	268.00325	268.00359	268.00394	268.00440	268.00609	268.00616	268.00682	268.00699	268.00700	268.00751	268.00838	268.00856	268.00958	268.01000	268.01253	268.01376	268.01405	268.01612	268.01624	268.01672	268.01781	268.01902	268.01904	268.01957	268.02103	268.02255	268.02601	268.02652	268.02706
Source	CXOU J		(2)	175200.64 - 293242.8	175200.77 - 293155.5	175200.86 - 294007.3	175200.94 - 293344.2	175201.05 - 293625.2	175201.46 - 293739.4	175201.47 - 293815.3	175201.63 - 293629.6	175201.67 - 293750.6	175201.68 - 293452.8	175201.80 - 294216.7	175202.01 - 293404.0	175202.05 - 294010.9	175202.29 - 293502.2	175202.39 - 293539.5	175203.00 - 293749.8	175203.30 - 293603.1	175203.37 - 294233.4	175203.86 - 293938.8	175203.89 - 294010.8	175204.01 - 294030.7	175204.27 - 294219.5	175204.56 - 293911.5	175204.56 - 293709.3	175204.69 - 293935.8	175205.04 - 294056.0	175205.41 - 294039.6	175206.24 - 294013.2	175206.36 - 293841.6	175206.49 - 294131.1
	Seq	#	(1)	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002

Fraction of the PSF (at 1.497 keV) enclosed within the extraction region. A reduced PSF fraction (significantly below 90%) may indicate that the source is in a evidence for variability $(0.05 < P_{KS})$; b = possibly variable $(0.005 < P_{KS} < 0.05)$; c = definitely variable $(P_{KS} < 0.005)$. No value is reported for sources in chip column 6. ⁽⁹⁾ Background counts expected in the source extraction region (total band). ⁽¹⁰⁾ Estimated net counts extracted in the hard band (2.0–8.0 keV). ⁽¹¹⁾ crowded region. ⁽¹²⁾ Photometric significance. ⁽¹³⁾ Logarithmic probability that extracted counts (0.5–8.0 keV) are solely from background. ⁽¹⁴⁾Source anomalies: g = fractional time that source was on a detector (FRACEXPO from*mkarf*) is < 0.9⁽¹⁵⁾ Variability characterization based on K-S statistic (0.5–8.0 keV): <math>a = nogaps or on field edges. ⁽¹⁶⁾ Effective exposure time: approximate time the source would have to be observed on-axis to obtain the reported number of counts. ⁽¹⁷⁾ Background-corrected median photon energy (0.5–8.0 keV). ⁽¹⁸⁾ Photometric flux estimate in the 0.5–8.0 keV band.

Appendix B

Thermal Spectral Fitting

Figure B.1: Thermal spectral fittings for X-ray sources, which have source counts over 500.

Figure B.1: Continued.

Appendix C

Power-law Spectral Fitting

Figure C.1: Power-law spectral fittings for X-ray sources, which have source counts over 500.

Figure C.1: Continued.

Figure C.1: Continued.

Appendix D

X-ray Light curves of Variable Sources

Figure D.1: Concatenated light curves for variable $(P_{\rm KS} < 5 \times 10^{-3})$ and bright (more than 1000 counts) sources. The light curves show variations in count rate (black histograms are binned and blue adaptively smoothed curve) and red histogram shows variations in median energy. Time intervals between observations are indicated by black dotted vertical lines.

Figure D.1: Light curves of variable sources in the group Ab.

Figure D.1: Light curves of variable sources in the group Ab.

Figure D.1: Light curves of variable sources in the group Ab.

Figure D.1: Light curves of variable sources in the group Ab.

Figure D.1: Light curves of variable sources in the group B1.

Figure D.1: Light curves of variable sources in the group B1.

Figure D.1: Light curves of variable sources in the group B1.

Figure D.1: Light curves of variable sources in the group B2.

Figure D.1: Light curves of variable sources in the group B2.

Figure D.1: Light curves of variable sources in the group B2.

Figure D.1: Light curves of variable sources in the group B2.

Figure D.1: Light curves of variable sources in the group B2.

Figure D.1: Light curves of variable sources in the group B2.

Figure D.1: Light curves of variable sources in the group B2.

Figure D.1: Light curves of variable sources in the group B2.

Figure D.1: Light curves of variable sources in the group B2.

Figure D.1: Light curves of variable sources in the group B2.

232

Appendix E

Chandra–SIRIUS Counterpart Sources list

counterpartpairs
Chandra-SIRIUS
Table E.1:

Seq	R.A.	Decl.	ΔR	J mag	$\Delta Jmaq$	H mag	$\Delta Hmaq$	K _s mag	$\Delta Kmaq$
#	(J2000.0)	(J2000.0)	(arcsec)	(mag)	(mag)	(mag)	(mag)	(mag)	(mag)
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)
6	267.6925	-29.4965	1.1	:	:	:	:	13.73	0.11
13	267.7012	-29.5476	0.9	12.02	0.01	10.58	0.01	:	:
21	267.7048	-29.5628	0.3	14.36	0.08	:	:	12.83	0.06
30	267.7105	-29.5007	0.2	15.46	0.10	14.45	0.10	14.28	0.12
41	267.7168	-29.5841	0.7	12.61	0.01	:	:	12.06	0.02
43	267.7174	-29.5981	1.1	13.33	0.03	12.29	0.04	:	:
49	267.7206	-29.5261	1.2	11.50	0.01	:	÷	÷	÷
51	267.7207	-29.5464	0.4	11.03	0.01	:	:	:	:
59	267.7240	-29.5224	1.1	11.37	0.01	10.91	0.01	:	:
66	267.7258	-29.7242	1.2	15.48	0.12	14.36	0.11	:	:
68	267.7264	-29.6441	1.2	13.28	0.03	12.26	0.03	:	:
72	267.7276	-29.5267	0.9	15.36	0.14	:	:	13.76	0.11
88	267.7323	-29.6641	0.6	16.30	0.13	15.23	0.16	:	:
101	267.7379	-29.5846	1.0	13.96	0.05	:	:	12.41	0.03
111	267.7400	-29.6057	1.0	14.81	0.11	:	:	13.54	0.08
115	267.7411	-29.5095	1.2	:	:	13.66	0.05	13.21	0.05
122	267.7450	-29.6358	0.4	14.54	0.05	13.90	0.10	13.37	0.06
135	267.7482	-29.6836	1.0	:	:	:	:	13.30	0.07
141	267.7491	-29.5610	0.6	13.70	0.05	:	:	:	:
144	267.7506	-29.5347	0.6	13.98	0.05	13.49	0.11	13.26	0.07
146	267.7507	-29.5057	0.9	13.71	0.04	:	:	:	:
155	267.7546	-29.5276	0.8	15.68	0.11	15.12	0.13	:	÷
167	267.7580	-29.5559	0.9	:	:	:	:	14.89	0.16
168	267.7585	-29.5975	0.2	13.85	0.05	:	:	12.47	0.04
194	267.7643	-29.6281	1.1	14.32	0.07	13.03	0.06	13.07	0.07
199	267.7663	-29.5941	0.9	11.27	0.01	:	:	:	:
202	267.7664	-29.6873	0.4	11.53	0.01	11.16	0.01	11.07	0.01
206	267.7667	-29.6705	1.0	11.18	0.01	:	:	:	:
213	267.7673	-29.6919	0.8	11.49	0.01	10.88	0.01	:	:
220	267.7692	-29.5588	1.1	13.04	0.02	:	:	:	:
235	267.7719	-29.4958	1.0	15.81	0.18	:	:	:	:
243	267.7731	-29.5628	0.4	11.38	0.01	:	:	:	:
249	267.7737	-29.6345	1.0	10.23	0.01	:	:	÷	÷
276	267.7801	-29.7156	0.5	13.85	0.05	12.98	0.04	12.62	0.04
288	267.7821	-29.5686	0.1	14.83	0.08	:		14.32	0.12
(cont.)									

234

APPENDIX E. CHANDRA–SIRIUS COUNTERPART SOURCES LIST

counterpartpairs
-SIRIUS
Chandra
E.1:
Table

$\Delta Kmag$	(mag)	(10)	0.01	0.02	0.11	0.13	0.03	0.07	0.14	0.06	0.05	0.05	0.04	:	0.06	:	:	0.03	÷	0.04	0.03	:	:	:	0.10	÷	÷	0.08	0.07	0.08	0.03	0.10	÷	0.10	0.01	0.05	0.07	
$K_{\rm s} \ { m mag}$	(mag)	(6)	11.48	10.96	13.64	13.70	11.58	13.20	14.69	13.92	12.85	12.99	13.10	:	13.49	:	:	12.65	÷	12.35	12.13	:	:	÷	13.99	÷	÷	13.51	13.40	13.34	12.00	14.23	÷	13.96	11.06	12.83	13.18	
$\Delta Hmag$	(mag)	(8)	0.01	0.02	0.07	:	0.04	0.09	:	0.07	0.05	0.08	0.03	0.12	0.04	0.14	:	0.02	:	0.04	0.02	0.06	:	0.11	0.09	0.12	:	0.09	0.06	0.08	0.02	0.09	0.19	0.09	0.01	0.04	0.07	
$H \mod$	(mag)	(2)	11.81	11.32	13.43	:	11.95	13.74	:	14.33	13.27	13.44	13.32	15.20	13.51	15.41	:	12.94	:	12.82	12.20	13.47	:	14.47	14.27	14.73	:	14.13	13.60	13.67	12.06	14.45	15.53	14.39	11.43	13.15	13.53	
$\Delta J mag$	(mag)	(9)	0.01	0.02	0.09	0.08	0.02	0.04	:	0.09	0.06	0.05	0.04	0.09	0.04	:	0.04	0.03	0.01	0.05	:	:	0.10	0.08	0.12	:	0.01	0.09	:	:	0.01	0.12	:	0.11	0.01	0.05	0.07	
$J \mathrm{mag}$	(mag)	(5)	12.72	12.34	14.46	14.16	12.58	14.42	:	15.55	14.26	14.34	14.09	15.12	14.01	:	13.84	14.02	11.60	13.83	:	:	15.29	14.64	15.58	÷	11.32	15.19	:	÷	12.47	15.54	÷	15.38	12.35	13.91	14.30	
ΔR	(arcsec)	(4)	1.1	0.9	0.7	0.3	0.4	1.1	1.1	1.1	0.5	0.6	0.9	0.4	1.0	1.1	1.2	0.8	0.5	0.6	0.8	0.4	1.2	0.7	0.9	0.1	0.3	0.7	0.8	0.8	0.8	0.6	0.5	0.9	0.6	0.7	0.6	
Decl.	(J2000.0)	(3)	-29.6803	-29.5475	-29.5471	-29.5759	-29.5906	-29.6184	-29.6103	-29.4897	-29.5742	-29.5742	-29.6207	-29.5949	-29.5572	-29.5799	-29.6288	-29.7196	-29.5539	-29.6087	-29.6189	-29.5633	-29.5468	-29.5869	-29.5794	-29.6595	-29.6542	-29.6866	-29.5935	-29.5328	-29.6398	-29.6944	-29.5329	-29.6018	-29.5042	-29.6126	-29.6278	
R.A.	(J2000.0)	(2)	267.7841	267.7863	267.7878	267.7899	267.7899	267.7914	267.7919	267.7963	267.7984	267.7984	267.7996	267.8017	267.8027	267.8033	267.8082	267.8109	267.8124	267.8124	267.8144	267.8162	267.8171	267.8173	267.8180	267.8193	267.8206	267.8211	267.8211	267.8215	267.8217	267.8233	267.8245	267.8267	267.8274	267.8281	267.8284	
Seq	#	(1)	296	304	312	319	320	328	332	361	372	372	379	395	404	408	449	460	466	467	484	492	500	503	505	519	527	532	533	535	538	558	568	589	599	609	611	(cont.)

counterpartpairs
Chandra-SIRIUS
Table E.1:

Seq	R.A.	Decl.	ΔR	J mag	$\Delta Jmag$	H mag	$\Delta Hmag$	$K_{\rm s}$ mag	$\Delta K mag$
#	(J2000.0)	(J2000.0)	(arcsec)	(mag)	(mag)	(mag)	(mag)	(mag)	(mag)
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)
625	267.8298	-29.5976	0.3	13.69	0.07	12.50	0.06	12.20	0.06
630	267.8301	-29.5562	0.4	15.44	0.12	14.28	0.10	14.33	0.17
631	267.8301	-29.6549	0.8	15.12	0.06	13.56	0.04	13.25	0.07
647	267.8317	-29.5423	0.3	14.31	0.07	13.80	0.09	13.90	0.12
671	267.8343	-29.6557	1.1	:	:	12.11	0.01	11.77	0.02
674	267.8344	-29.5815	0.6	12.27	0.01	11.95	0.01	11.99	0.01
683	267.8356	-29.4952	1.2	13.93	0.04	:	:	:	:
2697	267.8366	-29.5422	0.3	14.02	0.03	12.73	0.02	12.35	0.02
669	267.8364	-29.6852	1.1	13.41	0.04	12.32	0.03	12.02	0.03
720	267.8386	-29.5749	1.0	:	:	15.19	0.11	14.95	0.16
723	267.8388	-29.5139	0.4	:	:	:	:	13.22	0.07
737	267.8408	-29.5972	0.7	13.44	0.02	12.90	0.05	13.11	0.07
750	267.8414	-29.6429	0.7	14.21	0.07	13.34	0.06	13.03	0.07
765	267.8425	-29.5744	0.2	:	÷	15.17	0.14	14.83	0.15
771	267.8433	-29.6004	0.8	10.44	0.01	:	÷	:	÷
792	267.8452	-29.5874	0.3	15.58	0.17	14.85	0.13	:	÷
795	267.8457	-29.6462	1.1	16.49	0.10	13.38	0.05	÷	:
814	267.8474	-29.6873	0.3	14.83	0.07	14.39	0.10	14.19	0.11
816	267.8476	-29.6129	0.7	10.93	0.01	:	:	÷	:
817	267.8477	-29.5486	0.2	14.57	0.09	13.86	0.09	13.53	0.11
822	267.8484	-29.5727	0.8	:	:	14.02	0.07	:	:
827	267.8486	-29.5100	0.9	12.09	0.01	11.86	0.01	11.83	0.01
839	267.8494	-29.5919	0.3	14.62	0.08	13.33	0.06	12.88	0.06
840	267.8496	-29.6352	1.0	:	÷	:	÷	14.10	0.15
841	267.8496	-29.6086	0.5	14.42	0.06	13.32	0.06	13.12	0.07
846	267.8504	-29.4813	1.0	14.01	0.03	12.65	0.03	12.20	0.03
872	267.8522	-29.7323	1.1	13.95	0.05	12.89	0.03	12.55	0.04
874	267.8525	-29.4921	0.6	13.89	0.05	12.51	0.04	12.32	0.04
876	267.8527	-29.5757	0.4	14.37	0.07	13.77	0.07	13.77	0.09
887	267.8540	-29.5788	0.8	14.69	0.08	13.63	0.07	13.40	0.08
890	267.8544	-29.5753	1.1	14.43	0.08	14.00	0.10	14.10	0.14
206	267.8566	-29.6775	0.8	15.36	0.10	14.19	0.08	13.74	0.08
915	267.8577	-29.5048	1.0	13.17	0.02	:	÷	12.71	0.05
921	267.8585	-29.6114	0.5	14.72	0.06	14.18	0.08	14.11	0.11
927	267.8591	-29.5346	0.1	10.96	0.01		:		:
(cont.)									

APPENDIX E. CHANDRA–SIRIUS COUNTERPART SOURCES LIST

236

counterpartpairs
Chandra-SIRIUS
[able E.1:

Seq	R.A.	Decl.	ΔR	J mag	$\Delta Jmag$	$H \mod$	$\Delta Hmag$	$K_{\rm s}$ mag	$\Delta Kmag$
#	(J2000.0)	(J2000.0)	(arcsec)	(mag)	(mag)	(mag)	(mag)	(mag)	(mag)
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)
934	267.8597	-29.6628	1.0	:	:	12.63	0.05	12.32	0.06
944	267.8611	-29.5673	0.5	12.74	0.01	12.35	0.02	12.28	0.03
976	267.8647	-29.6685	0.9	11.38	0.01	:	:	:	:
980	267.8653	-29.6269	0.9	12.92	0.02	12.09	0.02	11.93	0.03
989	267.8662	-29.6328	0.5	15.35	0.11	14.15	0.09	13.78	0.09
266	267.8668	-29.5813	0.3	:	:	:	:	13.51	0.07
666	267.8668	-29.6764	0.9	13.24	0.02	12.28	0.02	11.83	0.02
1000	267.8673	-29.6176	1.0	11.26	0.01	10.95	0.01	10.92	0.01
1003	267.8675	-29.5631	0.2	10.86	0.01	:	:	:	:
1007	267.8677	-29.4977	0.7	12.61	0.01	12.35	0.03	12.29	0.03
1010	267.8681	-29.6061	0.8	15.12	0.10	14.20	0.12	14.20	0.14
1019	267.8686	-29.6069	0.5	13.71	0.03	12.66	0.02	12.32	0.02
1034	267.8700	-29.5838	0.8	15.21	0.09	14.53	0.10	14.47	0.12
1044	267.8714	-29.5037	0.9	14.34	0.06	13.68	0.07	13.71	0.11
1047	267.8716	-29.5215	0.3	14.80	0.05	13.86	0.07	13.50	0.05
1049	267.8718	-29.4934	0.4	15.71	0.10	÷	:	14.21	0.09
1061	267.8727	-29.5614	0.9	15.16	0.10	14.17	0.09	13.74	0.08
1066	267.8732	-29.6714	0.2	:	:	14.46	0.14	14.21	0.10
1079	267.8746	-29.5353	0.8	15.45	0.16	14.60	0.16	:	:
1082	267.8750	-29.5825	0.3	15.61	0.13	14.92	0.13	14.72	0.14
1084	267.8754	-29.6794	0.4	11.72	0.01	10.86	0.01	10.59	0.01
1092	267.8760	-29.5259	0.2	15.13	0.11	÷	:	13.79	0.09
1094	267.8768	-29.5834	0.4	12.06	0.01	11.37	0.01	11.19	0.01
1099	267.8776	-29.5411	0.4	10.79	0.01	:	:	÷	:
1100	267.8775	-29.5847	0.6	10.82	0.01	:	:	:	:
1118	267.8790	-29.6560	0.7	12.36	0.01	11.75	0.01	11.64	0.01
1121	267.8793	-29.5751	0.5	14.90	0.11	13.77	0.08	13.44	0.09
1151	267.8824	-29.5641	0.7	13.97	0.04	13.01	0.03	12.72	0.04
1159	267.8828	-29.7252	0.8	13.36	0.02	12.22	0.01	11.80	0.01
1165	267.8831	-29.6597	0.8	15.75	0.13	14.56	0.09	14.16	0.10
1171	267.8838	-29.5478	0.3	14.38	0.09	13.45	0.07	13.15	0.07
1178	267.8845	-29.6539	0.2	13.77	0.03	13.21	0.04	13.07	0.04
1185	267.8852	-29.6279	0.9	15.42	0.09	14.32	0.06	14.08	0.07
1203	267.8872	-29.4441	1.1	11.34	0.01	:	:	:	:
4 . 4 .									

counterpartpairs
Chandra-SIRIUS
Table E.1:

Sec.	R A	Decl	$\wedge B$.I mao	\.Tmaa	H mao	ΛH_{maa}	K _e mao	ΔK_{mad}
hoo	(TODOO 0)	(10000.0)	,)	9mm /	Group Control	9mm 11	6mm 115	Sum Sur	6mm TT
# ((0.0002L)	(0.0002L)	(arcsec)	(mag)	(mag)	(mag)	(mag)	(mag)	(mag)
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)
1216	267.8888	-29.5453	1.1	:	:	14.95	0.13	:	:
1217	267.8884	-29.6086	1.1	14.59	0.10	13.77	0.08	13.39	0.10
1223	267.8890	-29.6057	1.1	13.52	0.04	13.07	0.05	13.08	0.06
1239	267.8908	-29.6146	0.3	14.48	0.08	13.66	0.09	13.41	0.10
1245	267.8916	-29.5973	0.3	14.75	0.10	13.48	0.07	13.21	0.07
1280	267.8946	-29.5219	0.2	12.45	0.01	11.94	0.02	11.76	0.02
1283	267.8947	-29.6407	0.4	12.78	0.01	12.36	0.02	12.32	0.03
1299	267.8956	-29.5413	0.2	:	:	14.80	0.13	14.92	0.13
1325	267.8990	-29.5334	0.3	13.90	0.04	13.35	0.04	13.24	0.05
1330	267.8999	-29.6216	0.3	15.67	0.13	÷	:	÷	:
1337	267.9008	-29.5237	1.1	13.95	0.06	:	:	÷	:
1346	267.9017	-29.5473	1.2	13.50	0.02	:	:	÷	:
1353	267.9020	-29.5093	0.2	11.84	0.01	11.28	0.01	11.05	0.01
1360	267.9027	-29.7281	1.0	12.78	0.01	11.53	0.01	11.06	0.01
1368	267.9042	-29.5253	0.5	13.59	0.02	12.78	0.02	12.39	0.02
1369	267.9045	-29.5829	0.2	:	:	14.17	0.11	÷	:
1377	267.9055	-29.5694	0.1	:	:	:	:	14.66	0.19
1388	267.9059	-29.5476	1.2	13.92	0.04	:	:	13.62	0.07
1399	267.9069	-29.5515	0.6	12.48	0.02	11.77	0.01	11.53	0.02
1410	267.9078	-29.5876	1.0	14.96	0.11	14.36	0.09	14.38	0.11
1415	267.9087	-29.6848	0.6	12.29	0.02	11.66	0.02	12.86	0.05
1424	267.9099	-29.6282	1.1	14.41	0.05	13.42	0.04	13.11	0.04
1425	267.9097	-29.7112	0.3	13.99	0.04	13.26	0.04	13.07	0.05
1454	267.9120	-29.5575	1.1	10.73	0.01	:	:	÷	:
1456	267.9122	-29.5967	0.4	15.17	0.09	14.17	0.10	14.08	0.11
1469	267.9136	-29.6182	0.8	14.67	0.08	14.15	0.11	13.90	0.12
1473	267.9137	-29.5593	1.2	14.04	0.04	13.03	0.03	12.75	0.04
1477	267.9142	-29.4879	0.6	11.18	0.01	10.68	0.01	10.60	0.01
1478	267.9142	-29.4641	1.1	15.43	0.10	:	:	14.02	0.09
1483	267.9145	-29.5623	1.2	:	:	:	:	13.27	0.09
1488	267.9150	-29.5843	0.5	13.26	0.03	12.94	0.04	12.85	0.05
1494	267.9157	-29.5964	0.4	15.22	0.10	14.77	0.11	14.73	0.15
1495	267.9157	-29.6196	0.5	13.80	0.04	13.27	0.05	13.25	0.05
1503	267.9170	-29.5003	0.8	14.65	0.07	13.65	0.08	13.23	0.06
1509	267.9176	-29.5094	0.9	13.03	0.02	12.50	0.03	12.35	0.03
(cont.)									

APPENDIX E. CHANDRA-SIRIUS COUNTERPART SOURCES LIST

counterpartpairs
<i>lra</i> -SIRIUS
: Chane
E.1
Table

Seq	R.A.	Decl.	ΔR	$J \mathrm{mag}$	$\Delta Jmag$	H mag	$\Delta Hmag$	$K_{\rm s}$ mag	$\Delta Kmag$
#	(J2000.0)	(J2000.0)	(arcsec)	(mag)	(mag)	(mag)	(mag)	(mag)	(mag)
(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)
1519	267.9183	-29.6675	1.1	:	:	14.46	0.11	14.37	0.12
1525	267.9190	-29.6928	0.0	:	:	:	:	14.26	0.16
1532	267.9194	-29.5629	0.9	15.32	0.11	14.24	0.09	13.96	0.10
1557	267.9226	-29.5857	0.6	15.88	0.14	:	:	:	:
1572	267.9247	-29.4906	0.5	:	:	14.37	0.15	13.90	0.11
1577	267.9253	-29.5935	0.4	13.64	0.03	13.18	0.03	13.12	0.04
1579	267.9255	-29.5524	0.6	13.53	0.03	13.09	0.04	12.91	0.06
1582	267.9260	-29.4666	0.9	14.62	0.08	:	:	:	÷
1582	267.9260	-29.4666	1.2	:	:	13.77	0.06	:	÷
1603	267.9282	-29.4546	0.6	13.48	0.03	13.32	0.03	13.19	0.04
1603	267.9282	-29.4546	0.6	13.74	0.02	13.28	0.05	13.09	0.03
1666	267.9368	-29.6008	0.3	14.32	0.06	13.58	0.05	13.21	0.06
1667	267.9367	-29.6199	1.1	14.10	0.09	:	:	:	:
1669	267.9374	-29.4631	0.2	14.37	0.10	:	:	:	:
1677	267.9382	-29.4503	1.0	11.69	0.01	:	:	:	:
1684	267.9391	-29.6104	0.6	:	:	12.04	0.02	11.97	0.04
1685	267.9393	-29.5681	0.5	14.89	0.13	14.09	0.12	14.15	0.16
1687	267.9402	-29.4739	0.9	14.18	0.07	:	:	:	:
1706	267.9425	-29.5488	0.4	14.48	0.11	:	:	:	÷
1717	267.9439	-29.6054	0.7	13.26	0.02	:	:	:	:
1729	267.9448	-29.5668	0.7	14.54	0.07	13.64	0.04	13.46	0.07
1740	267.9467	-29.5084	0.9	15.97	0.15	14.55	0.10	13.94	0.09
1763	267.9516	-29.6134	0.6	14.06	0.07	:	:	:	:
1771	267.9534	-29.4823	0.4	13.10	0.02	11.88	0.02	11.47	0.01
1774	267.9539	-29.5692	1.0	13.91	0.07	÷	:	÷	:
1775	267.9538	-29.5849	0.4	12.00	0.01	11.34	0.01	11.15	0.01
1809	267.9597	-29.5822	0.4	14.91	0.14	13.91	0.09	13.63	0.12
1810	267.9599	-29.6001	0.9	:	:	13.74	0.05	13.39	0.06
1817	267.9608	-29.5548	0.3	:	:	14.74	0.12	:	:
1818	267.9610	-29.5706	0.6	:	:	14.45	0.09	:	:
1820	267.9618	-29.4586	0.7	:	:	14.09	0.10	13.89	0.10
1823	267.9622	-29.5017	1.1	13.18	0.03	12.60	0.04	12.48	0.04
1832	267.9639	-29.6120	0.8	14.25	0.10	:	:	:	:
1833	267.9646	-29.6231	0.8	13.20	0.03	12.79	0.03	12.78	0.05

R.A.	Decl.	ΔR	J mag	$\Delta Jmag$	$H \mod$	$\Delta Hmag$	$K_{ m s}~{ m mag}$	$\Delta K mag$
0.0)	(J2000.0)	(arcsec)	(mag)	(mag)	(mag)	(mag)	(mag)	(mag)
2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)
.9681	-29.5342	1.2	14.02	0.03	:	:	:	:
.9692	-29.6309	1.0	14.70	0.08	13.82	0.06	13.55	0.11
.9693	-29.4891	1.1	12.28	0.01	11.54	0.01	11.56	0.01
.9720	-29.5931	1.2	:	:	11.61	0.01	:	:
.9740	-29.6457	1.1	:	:	10.97	0.01	10.61	0.01
.9808	-29.5657	0.5	14.40	0.09	13.46	0.06	:	:
7.9843	-29.5087	0.6	13.19	0.02	12.60	0.02	12.39	0.03
0066.7	-29.6254	1.0	:	:	13.07	0.05	12.33	0.04
3.0015	-29.6267	0.8	14.57	0.08	:	:	:	:
0.0045	-29.6070	0.6	10.47	0.01	:	:	:	:
0060	-29.6275	0.2	:	:	14.70	0.11	:	:
0006	-29.5839	0.6	10.28	0.01	:	:	:	:

 Table E.1: Chandra-SIRIUS counterpartpairs

 $^{(1)}$ X-ray catalog sequence number, sorted by R. A. $^{(2),(3)}$ NIR source position. $^{(4)}$ The distance between X-ray source and NIR source. $^{(5),(7),(9)}$ J, H, K_s magnitude. (6),(8),(10) J, H, $K_{\rm s}$ -magnitude errors.

Acknowledgements

This PhD thesis was completed by supports from many people. I am grateful to professor Ken Ebisawa who gave me an opportunity to study at ISAS. He gave me many advice about the Galactic Ridge X-ray Emission. I also appreciate to professor Masayuki Itoh who introduced me to X-ray astronomy and advised me to study at ISAS when I was the master's course at Kobe University.

I appreciate vary much to assistant professor Masahiro Tsujimoto. He always gave me many advice about my study and many knowledge which are X-ray and NIR astronomy and astrophysics, space-based and ground-based observations, presentation skills, and mental attitude to carry out my research. Moreover, when I felt down, he cheered me up and made me laugh with some jokes of Kansai dialect. It's not too much to say that this thesis could not have completed without him. Moreover, Dr. Takahiro Nagayama helped my observation using IRSF at the South African Astronomical Observatory.

I am oblige to Dr. Tessei Yoshida for giving me advice about my thesis and teaching me many things including logical thinking, basic astronomy and astrophysics, and how to write papers.

I appreciate all the members of the ISAS X-ray group. I especially thank to Ikuyuki Mitsuishi, Kentaro Someya, Hiroshi Yoshitake, Takayoshi Hayashi, Takehiro Miyakawa, Kei Saitou, Takahisa Fujinaga and Naoki Iso. Thanks to them, I spend happy time at ISAS.

Finally, I appreciate to my parents for supporting me. They helped me and understood my research life.

This work is based on data collected with IRSF telescope and Subaru telescope. The former is operated by Nagoya University and the South African Astronomical Observatory. The latter is operated by the National Astronomical Observatory of Japan. The *Chandra* data were obtained through *Chandra* X-ray Observatory Science Center (CXC) operated for NASA by the Smithsonian Astrophysical Observatory. This thesis makes use of data products from Two Micron All Sky Survey. In addition, we used IRAF which is distributed by the National Optical Astronomy Observatory.