

hot gas black hole

X-ray variability as an "AGN ruler" featuring: "The Markarian 3 case"

Matteo Guainazzi ASTRO-H Science Operation Team (SOT) - ISAS/JAXA ASTRO-H ESA Science Operation Center (SOC) - ESA/ESAC

AGN Spectral Energy Distribution

Ho et al., 1995, ApJ

Elvis et al., 2012, ApJ, 759. 6; Detmers 2011, A&A, 534, A37

Talk question: how and where are these components emitted?

AGN Spectral Energy Distribution

Ho et al., 1995, ApJ

Elvis et al., 2012, ApJ, 759. 6; Detmers 2011, A&A, 534, A37

Talk question: how and where are these components emitted?

AGN Spectral Energy Distribution

Ho et al., 1995, ApJ

Elvis et al., 2012, ApJ, 759. 6; Detmers 2011, A&A, 534, A37

Talk question: how and where are these components emitted?

Outline

Subject: the innermost parsec around the accretion black hole

- Estimates of spatial scales in AGN: optical, IR
- Estimates of spatial scales in AGN: X-ray methods
- New results: the monitoring campaign on Markarian 3
- New perspectives with ASTRO-H

- AGN innermost parsec structure
- AGN feeding from the host galaxy
- AGN feed-back to the host galaxy
- Synthesis models of the Cosmic X-ray Background

- AGN innermost parsec structure
- AGN feeding from the host galaxy
- AGN feed-back to the host galaxy
- Synthesis models of the Cosmic X-ray Background

• AGN innerr

Sazonov et al., 2007, 462, 57

- AGN feedir
- AGN feed-l
- Synthesis r

- AGN innermost parsec structure
- AGN feeding from the host galaxy
- AGN feed-back to the host galaxy
- Synthesis models of the Cosmic X-ray Background

How to determine spatial scales in AGN

- optical imaging: $\sim 10^2$ pc (Note: radio imaging ignored in this talk)
- IR interferometry: ~10 pc
- IR reverberation: ~1 pc
- optical lines reverberation: $\sim 10^{-1}$ pc
- X-ray absorption variability: ~10⁻¹-10 pc
- X-ray reverberation: $\sim 10^{-4}$ pc ($\sim 10 r_g$)
- optical/X-ray µlensing: $\sim 10^{-2/}10^{-4}$ pc ($\sim 10^{2}/10$ r_g)
- X-ray continuum variability: $\sim 10^{-4}$ pc ($\sim 10 r_g$)

Outline

Subject: the innermost parsec around the accretion black hole

- Estimates of spatial scales in AGN: optical, IR
- Estimates of spatial scales in AGN: X-ray methods
- New results: the monitoring campaign on Markarian 3
- New perspectives with ASTRO-H

Reverberation+(IR) interferometry

Burtscher et al., 2015, A&A, 558, A8149

Dust shape (IR interferometry)

Burtscher et al., 2013, A&A, 558, 149

Tristram et al., 2014, A&A, 563, 82

10 pc 10 pc 10 pc

Dust shape (IR interferometry)

5 m

10 pc

5 ma

I Zw

Mrk 1239

IRAS 13349+2438

NGC 5998

5 mas

10 pc

5 mas

Burtscher et al., 2013, A&A, 558, 149

3C 273

H 0557-385

5 mas

10 pc

5 mas

С 1323 A ESO 323-77 В паз

IRAS 09149-6206

5 ma

10 pc

5 mas

IRAS 05189-2524

Tristram et al., 2014, A&A, 563, 82

Outline

Subject: the innermost parsec around the accretion black hole

- Estimates of spatial scales in AGN: optical, IR
- Estimates of spatial scales in AGN: X-ray methods
- New results: the monitoring campaign on Markarian 3
- New perspectives with ASTRO-H

X-rays: a very compact corona

Lawrence et al., 1987, Nat, 325, 694; Barr & Mushotzky, 1986, Nat, 320, 421

Occultation by "cold" clouds

Risaliti et al., 2007, ApJ, 659, L111

Assuming a cloud in: a) Keplerian motion; b) virial turbulent motion; c) ionization equilibrium with the AGN:

- Source Linear size D~10¹³⁻¹⁴ cm
- Distance from the AGN d~10⁻¹ pc

Occultation event statistics

Markowitz et al,. 2014, MNRAS, 439, 1403

8 AGN with occultation events in the RXTE archive (~270 years in the AGN life)

BLR clouds IR continuum Dust (0.4-1 x sublimation radius, R_d) X-ray clouds

Time-dependent photo-ionisation

Time-dependent photo-ionisation

BLR/torus winds: NGC5548

Kaastra et al., 2014, Science, 345, 74

Strongly absorbed X-ray state in 2013, simultaneous to the appearance of broad UV absorption lines

Laha et al., in preparation

Ionised outflow launching radius

Kaastra et al., 2014, Science, 345, 74

Ionised outflows Iaunching radius versus dust sublimation radius in a large sample of AGN

Outline

Subject: the innermost parsec around the accretion black hole

- Estimates of spatial scales in AGN: optical, IR
- Estimates of spatial scales in AGN: X-ray methods
- New results: the monitoring campaign on Markarian 3
- New perspectives with ASTRO-H

Markarian 3

- Heavily obscured (N_H≥7x10²³ cm⁻²) Seyfert 2 (Awaki et al. 1991, Cappi et al. 1999)
- 3-7 keV band dominated by Compton-reflection + ~1 keV EW Fe K_{α} fluorescent line
- Extended soft X-ray emission (*Chandra*/ACIS; Sako et al. 2000)

- \Rightarrow AGN photo-ionised XNLR (Pounds et al. 2005, Bianchi et al. 2005)
- Iwasawa et al. (1993) discovered variability of the Compton-reflection component (factor of ~3 in ~3.6 years)
- Studying the (sparse) X-ray history, Guainazzi et al. (2012) propose that X-ray variability may prove the dust clumpy nature (almost at the same time, Marinucci et al. 2012 reach the same conclusion studying the ACIS images of the Circinus Galaxy)

Markarian 3: hard X-ray spectrum

Yaqoob et al., 2015, arXiv:1508.07685

Mkn3 2014-2015 NuSTAR campaign

Guainazzi et al., in preparation

<u>9 observations</u>: 5 in autumn 2014 (7, 14 Sep, 1, 9, 23 Oct), 4 in spring 2015 (19, 22 Mar, 5, 8 Apr). NuSTAR + Suzaku or XMM-Newton

The spectra of Markarian 3 above ~3 keV show variability on all time-scales down to ~2 days

Absorber column density variability

Absorber column density variability

Absorber column density variability

Mkn3: X-ray vs. IR absorber/reprocessor

Guainazzi et al., in preparation; IR results from Sales et al., 2014. 441. 630

	X-rays (gas+dust)	IR (dust)
N (10	2.2±0.9	0.5±0.3
N	13-38	9±3
θ	66.0	50
θ	68.9	61

Still poorly known:

- X-ray cloud size/volume filling factor (R_{cloud} ≤ 2000 R_s)
- X-ray cloud density ($n \ge 10^5 \text{ cm}^{-3}$)
- radial profile of gas and dust (no idea)

IR analysis suggests that the torus extends up to ~7-8 pc

Structure of the absorber

Ennering et al., 1992, ApJ, 385, 460

Structure of the absorber

Ennering et al., 1992, ApJ, 385, 460

Markarian 3 HETG spectrum (770 ks)

Failed winds and the origin of BLRs

Czerny & Hryniewicz, 2011, A&A, 525, L8

Outline

Subject: the innermost parsec around the accretion black hole

- Estimates of spatial scales in AGN: optical, IR
- Estimates of spatial scales in AGN: X-ray methods
- New results: the monitoring campaign on Markarian 3
- New perspectives with ASTRO-H

Spectroscopy of optically thick nuclear gas

Reynolds et al., 2014, arXiv:1412.1177

To verify if this model is correct we need to know at which scale Compton scattering and Fe K_{α} fluorescence line are produced

Measurements of the profile of the K_{α} iron line with the SXS!

simulation of 100 ks on NGC4388 (very similar AGN to Markarian 3)

Conclusions

