Radiative energy losses of the hot gas in galaxy clusters occur on timescales significantly shorter than the Hubble time, leading to massive accumulation of cold gas and vigorous star formation, in contradiction to observations. Several sources of heat have been discussed, most promising being heating by the SMBH in central galaxies through inflation of bubbles of relativistic plasma. The missing link in this scenario is the mechanisms, by which energy from bubbles is transported to the hot gas. Dissipation of gas turbulence, induced by bubbles during their buoyant rise and expansion, is a possible mechanisms. However, direct measurements of gas velocities will be possible only with future X-ray calorimeter on board the Astro-H observatory. We recently overcame this problem, by analyzing long Chandra observations of the X-ray brightest clusters of galaxies and measuring statistical properties of density fluctuations, which allowed us to constrain the velocity power spectrum of gas motions in the ICM indirectly. I will show that the heating rate due to dissipation of turbulence is indeed sufficient to balance the radiative cooling locally at each radius within the cores. Turbulent dissipation, therefore, might be the key element in resolving the gas cooling problem in cluster cores and other X-ray gas-rich systems.