国産ホールスラスタを用いた地球-火星間輸送ミッションの航行期間 に対する運転モード及び地球脱出 C3 についての解析

Analysis of the operation mode and the Earth escape C3 for the flight time of the Earth-Mars transport mission using Hall thruster

○牧 麦・鳥羽 瑛仁(静大・院)・船木 一幸(宇宙航空研究開発機構)・山極 芳樹(静大)

○Baku Maki • Akihito Toba(The University of Shizuoka) • Ikkoh Funaki(JAXA) • Yoshiki Yamagiwa(The University of Shizuoka)

Abstract (概要)

This paper discusses the transportation system of one way trip from the Earth to Mars orbit by using the hall thruster developing Japan under the assumption of the launch the H3-24L launch vehicle. The hall thruster studied in this paper can operate in three modes, the high thrust mode, the medium mode and the high specific impulse mode. In this paper, the dependency of payload mass at low mars orbit (320km) on the flight time and Earth escape C3 were investigated by performing orbit optimization analysis based on the direct collocation method for each mode. Furthermore, by comparing the analytical results with that in the case of chemical propulsion, we clarified the pattern (Earth escape C3, operation mode) of the hall thruster which is superior to chemical propulsion. As a result, under the condition superior to chemical propulsion, the medium mode, $C3=3 \text{ km}^2/\text{s}^2$ is the optimum pattern when the shortest flight time is required for mission. On the other hand, when the maximum payload mass is required for mission, the high specific impulse, $C3=1\text{km}^2/\text{s}^2$ is the optimul pattern.

記号の説明

<i>r</i> :	軌道半径
θ:	角度
<i>t</i> :	時間
<i>m</i> :	宇宙機質量
ṁ:	推進剤流量
m_0 :	初期質量
m_p :	推進剤質量
m_{pl} :	ペイロード質量
<i>M</i> :	太陽質量
g:	重力加速度
<i>G</i> :	万有引力定数
<i>f</i> :	微分ベクトル
F:	推力
F_r :	半径方向推力
F_{θ} :	円周方向推力
<i>P</i> :	発電量
I_{sp} :	比推力
<i>i</i> :	節点番号
S :	等式拘束条件
u :	制御ベクトル

<i>x</i> :	状態ベクトル
Δt :	節点間の時間幅
ΔV :	必要速度増分
V_0 :	初期軌道速度
V_f :	終端軌道速度
η_t :	推進効率
φ:	軌道傾斜角

1. はじめに

1.1 研究背景 近年,火星に関する様々なミッションが 検討されている¹⁾. これらのミッションは高いペイロード比 が要求されることから,高比推力が必要となる.よって多く の先行研究で,電気推進を利用した検討が行われている^{2,3)}. 電気推進の中でも特に注目されているのはホールスラスタ である.ホールスラスタは高比推力かつ高推力を誇るため惑 星探査に適している⁴⁾. 日本でも技術試験衛星9号機に搭載 予定の国産ホールスラスタが開発されている.国産ホールス ラスタは高推力,中間,高比推力の3つのモードを自由に切 り替えることのできるデュアル作動が特徴で様々なミッシ ョンに応用できる可能性を秘めている⁵⁾.

火星探査ミッションに関して,諸外国では巨大な打ち上げ

図1 国産ホールスラスタを用いた地球ー火星間輸送ミッションにおける航行期間と宇宙機最終質量の関係

ロケットを用いて大型の宇宙機を深宇宙へ投入する検討を 行っているものが多い^の.日本はそのような巨大な打ち上げ ロケットは所有していないが,現在開発中のH3ロケットの ような中型ロケットでも国産ホールスラスタのような電気 推進を用いることで十分なペイロード比が期待できる.この ように日本の独自技術のみで火星探査を検討することは, 2030年以降の国際協働有人火星探査¹⁾において,日本がリー ダーシップを発揮するための礎となる.

1.2 先行研究 国産ホールスラスタを用いた地球一火星 ミッションについて,航行期間を100日刻みで変化させたと きの運転モード及び地球脱出 C3 の異なる12パターンの火 星軌道到着時宇宙機質量の結果を図1に示す⁷⁾.図1より, ほとんどのパターンにおいて航行期間400日から宇宙機最 終質量が頭打ちとなっていることがわかる.また,C3に関 しては全モードともC3=2km²/s²が最適C3であることが分 かった.しかしこれらの結果は,航行期間が100日刻みかつ C3は2km²/s²刻みで解析しているため,得られた傾向は定性 的なものであると言わざるを得ない.

1.3 研究目的 本研究では解析変数を先行研究からより 細かく設定することによって,国産ホールスラスタを用いた 地球一火星間輸送ミッションにおける航行期間と C3 の定量 的な影響を得ることを目的とする.さらに国産ホールスラス タと化学推進を比較し,国産ホールスラスタに利得が得られ る条件も明らかにする.以上を達成するために次のような具 体的な目的を挙げる.

- ① 各モードにおいて航行期間及び C3 の影響を明らかに する.
- ② 上記の結果と化学推進を比較し利得が得られるパター

ン(モード・C3)及び航行期間を明らかにする.

③ 以上の結果より化学推進に対し優位性を有する条件下 での航行期間に対する国産ホールスラスタの最適パタ ーンを得る.

2. 解析手法

2.1 打ち上げシステム 本研究では打ち上げロケットとして,現在開発中のJAXAのH3ロケットのH3-24L型を用いて地球公転軌道へ直接打ち上げを行う.H3-24L型の打ち上げ能力はH2A-202型ロケットの打ち上げ能力を計算により求め,H2AロケットのUser's manual⁸⁾より整合性を確認し,同様の手法にH3-24L型の諸元を代入することによって求めた.図2にH2A-202型ロケットの整合性の確認とH3-24L型の打ち上げ能力を示す.

図 2 H2A-202型, H3-24L型の打ち上げ能力

2.2 解析モデル 地球公転軌道へ投入された宇宙機が火 星低軌道(高度 320 km)に到達するまでを 2 つの段階に分 けて検討を行う.1 つ目は地球公転軌道から火星公転軌道ま での遷移であり,2 つ目は火星公転軌道から火星低軌道まで の遷移である.地球公転軌道から火星公転軌道への遷移に関 しては,太陽の重力のみが宇宙機に作用するとし,宇宙機は 太陽を原点とした平面内を運動するものとする.火星公転軌 道から火星低軌道への遷移に関しては,火星の重力のみが宇 宙機に作用するため,火星影響圏から火星低軌道までの遷移 を考え,宇宙機は火星を中心とした 3 次元平面を運動する. 惑星間航行では二体問題を,火星影響圏内では理論式を用い て検討を行う.

宇宙機に関しては1つの質点と仮定し、スラスタ作動は全て太陽電池パドルからの発電でまかなうものとする.

2.3 支配方程式 地球公転軌道一火星公転軌道に関して は、太陽と宇宙機の二体問題と仮定し、式(1)及び(2)で 表される半径方向と周方向の運動方程式を用いる⁹. 推進剤 流量は式(3),推力に関しては式(4)のように表される. これらの式を用いて数値計算を行うことにより、宇宙機の軌 道の最適化を行う.

$$m\left[\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2 + \frac{GM}{r^2}\right] = F_r \tag{1}$$

$$m\left(r\frac{d^2\theta}{dt^2} + 2\frac{dr}{dt} \cdot \frac{d\theta}{dt}\right) = F_{\theta}$$
⁽²⁾

$$\dot{m} = \frac{2\eta_t P}{\left(\mathbf{g} \cdot I_{sp}\right)^2} \tag{3}$$

$$F = \sqrt{F_r^2 + F_\theta^2} = \frac{2\eta_t P}{\mathbf{g} \cdot I_{sp}} \tag{4}$$

火星影響圏内に関しては,軌道遷移に必要な速度増分を式 (5)で表される Edelbaum の式を用いて解析的に求める¹⁰⁾. 求めた速度増分を用いて,影響圏ないでの軌道輸送に必要な 推進剤質量は式(6)より求める¹¹⁾.

$$\Delta V = \sqrt{V_0^2 + V_f^2 - 2V_0 V_f \cos\frac{\pi}{2}\varphi}$$
(5)

$$m_p = m_0 \left[1 - e^{\left(\frac{-\Delta V}{g \cdot I_{sp}}\right)} \right] \tag{6}$$

2.4 非線形計画法 本研究では、地球公転軌道一火星公 転軌道間航行に対して、宇宙機終端質量を最適化変数,推力 方向及びスロットリングを制御変数とし、非線形計画法を用 いて遷移軌道を最適化する. 各節点間の状態量ベクトル及び それらの 微 分 ベクトル に Fourth-degree Gauss-Lobatto quadrature rule 及 び Fourth-degree Gauss-Lobatto system constraints を適応する ^{12,13}. これらの方法は $t_i \ge t_{i+1}$ の節点間 の 3 つの補間点 t_1 , t_2 及び t_3 で補間するものである. t_1 及び t_3 での状態量 x_1 及び x_3 は式 (7) 及び式 (8) にて求めること ができる.また,状態量x₁及びx₃での等式拘束条件は式(9) 及び(10)のように表される.

$$\begin{aligned} x_1 &= \frac{1}{50} \{ (7\sqrt{5} + 9)x_i + 32x_2 + (-7\sqrt{5} + 9)x_{i+1} \\ &+ \Delta t_i [(\sqrt{5} + 1)f_i + (\sqrt{5} - 1)f_{i+1}] \} \\ x_3 &= \frac{1}{50} \{ (-7\sqrt{5} + 9)x_i + 32x_2 + (7\sqrt{5} + 9)x_{i+1} \\ &+ \Delta t_i [(-\sqrt{5} + 1)f_i + (-\sqrt{5} - 1)f_{i+1}] \} \\ S_1 &= \frac{1}{120} \{ (60 + 32\sqrt{5})x_i - 64\sqrt{5}x_2 \\ &- (60 - 32\sqrt{5})x_{i+1} + \Delta t_i [(5 + 3\sqrt{5})f_i + 50f_1 \\ &+ (5 - 3\sqrt{5})f_{i+1}] \} = 0 \\ S_3 &= \frac{1}{120} \{ (60 - 32\sqrt{5})x_i + 64\sqrt{5}x_2 \\ &- (60 + 32\sqrt{5})x_{i+1} + \Delta t_i [(5 - 3\sqrt{5})f_i + 50f_1 \\ &+ (5 + 3\sqrt{5})f_{i+1}] \} = 0 \end{aligned}$$
(10)

また,制御変数に関してはt₁及びt₃において以下の式(11), (12)に表されるように線形補間を行う.

$$u_1 = (u_{i+1} - u_i) \left(\frac{1}{2} - \frac{1}{2\sqrt{5}}\right) + u_i \tag{11}$$

$$u_3 = (u_{i+1} - u_i) \left(\frac{1}{2} + \frac{1}{2\sqrt{5}}\right) + u_i \tag{12}$$

本研究では、Matlab の Optimization Toolbox 内の fmincon という関数の Interior-Point というアルゴリズムを使用し、最 適化問題の計算を行った.これは内点法のアルゴリズムであ るため最適化前の初期軌道を制約範囲内に設定する必要が ある.そこで初期軌道は4次のルンゲ・クッタ法を用いて求 めた.

2.5 解析条件 地上から H3-24L 型ロケットで地球公転 軌道まで直接打ち上げることを想定する. 惑星間空間での地 球に対する相対速度の2乗をC3と表し,本研究では,C3を 0,1,2,3km²/s²の4つの条件について検討を行う. このC3 は打ち上げロケットから宇宙機に与えられるため,C3によ って打ち上げロケットの打ち上げ能力が変化する. H3-24L 型の打ち上げ能力は図2より求められ,表1のようになる.

また、本研究で宇宙機スラスタ想定する国産ホールスラス タは高推力、中間、高比推力の3つのモードで運転可能であ り、それぞれについて解析を行う.3つのモードの諸元を表 2に示す⁵⁾.また、国産ホールスラスタを推進機とする電気 推進と化学推進と比較するにあたり、それぞれの宇宙機の諸 元を表3のように設定した.電源系比質量は太陽電池、リチ ウムイオンバッテリー、電力制御器を含めた値であり ETS9 を参考にした¹⁴⁾.化学推進に関しては MMX を参考した¹⁵⁾¹⁶⁾.

地球公転軌道から火星公転軌道への軌道遷移に対して遷 移軌道の最適化を行い,火星影響圏内での軌道遷移に関して

は理論式を用いた. 宇宙機の初期条件として軌道半径は地球 公転軌道半径とし、軌道速度は地球の公転速度にC3の平方 根を加えるものとする.終端条件としては火星の公転運動と 同期していることとし、地球と火星の相対運動については本 研究では考慮していない. 地球公転軌道及び火星公転軌道は 円運動をしているものと仮定する. 軌道半径の変化に伴い太 陽からの距離が変化するため、その距離に応じた発電量とな り,発電量に応じて宇宙機の最大推力値も変化するものとし ている. 最適化計算の際の初期と終端時での拘束条件に関し て、表4に示す.また、航行期間に関しては200日から500 日まで10日刻みで変化させ解析した.火星公転軌道から火 星低軌道への軌道遷移に関しては、目標高度 320 km とする ²⁾. また,初期高度である火星影響圏の境界の高度を5.773× 10⁵ km としている ⁹⁾.

化学推進の軌道に関しては MMX を参考に惑星間遷移は ランベルト問題を解くことにより求め、火星影響圏内は3イ ンパルスの双楕円遷移を仮定している 17).

本研究におけるペイロード質量の定義は, 電気推進, 化学 推進ともに火星低軌道到着時ドライ質量から電源系質量,推 進系質量、タンク質量を引いた値とする.

表1 H3-24L型の打ち上げ能力

$C_3 [\rm km^2/s^2]$	0	1	2	3
初期質量 [kg]	4000	3900	3800	3700

表2 国産ホールスラスタの諸元			
	高推力	中間	高比推力
推力 [mN]	480	390	120
比推力 [s]	1300	1900	2500
推進効率 [-]	0.51	0.61	0.49
供給電力[kW]		6	
質量 [kg]		45	
比質量 [kg/kW]		7.5	

表 3	宇宙機諸元
10	

	電気推進	化学推進
初期質量	4000~3700 kg	2900 kg
比推力	1300~2500 s	325 s
消費電力	24 kW	0.836 kW
電力制御器変換効率	0.8	0.8
発電電力@地球軌道上	30 kW	1.05 kW
電源系比質量	40 kg/kW	40 kg/kW
構造係数	0.15	0.15
電源系質量	1200 kg	42 kg
推進系質量	180 kg	335 kg

|--|

	初期時	終端時
軌道半径 [A.U.]	1.000	1.524
角度 [rad]	0	free
半径方向速度 [km/s]	0	0
周方向速度 [km/s]	29.78	24.13

3. 解析結果

図3 高推力モードにおける航行期間と 火星低軌道到着時ペイロード質量の関係

図4 中間モードにおける航行期間と 火星低軌道到着時ペイロード質量の関係

図5 高比推力モードにおける航行期間と 火星低軌道到着時ペイロード質量の関係

図6 国産ホールスラスタ(24kW)の各航行期間における最適パターン

図 3 に高推力モードにおける航行期間と火星低軌道到着 時ペイロード質量の解析結果を示す.まず高推力モードにお いて最もペイロード質量を獲得できる最適 C3 は 2km²/s² と いうことが分かった.このとき獲得できる最大のペイロード 質量は 656kg で必要な航行期間は 320 日である.また,高推 力モードにおいて,ミッションを成立させるための最小航行 期間は 3 モード中最短の 250 日であり,この場合 C3 は 2km²/s² 以上必要であるということが分かった.化学推進に 対するペイロード質量の利得に関しては全 C3 とも優位性を 示せなかった.

次に図4に示す中間モードの結果について述べる.中間モ ードにおいて最適 C3 は 1km²/s² となった.このとき獲得で きる最大のペイロード質量は 1112kg で必要な航行期間は 350日である.また、中間モードにおいて、ミッションを成 立させるための最小航行期間は 280日であり、この場合 C3 は 3km²/s²以上必要であるということが分かった.化学推進 に対するペイロード質量の利得に関しては、C3=0 km²/s² の ときは航行期間 330日から、C3=1km²/s² のときは航行期間 310日から、C3=2、3km²/s² のときは航行期間 300日から優 位性を示す.

最後に高比推力モードの解析結果を図5に示す.高比推力 モードにおいて最適C3は中間モードと同様に1km²/s²とな った.このとき獲得できる最大のペイロード質量は3モード 中最大の1396kgで必要な航行期間は410日である.また, 高比推力モードにおいて、ミッションを成立させるための最 小航行期間は3モード中最長の360日であり、この場合C3 は3km²/s²以上必要であった.化学推進に対するペイロード 質量の利得に関しては、C3=0km²/s²のときは航行期間420 日から、C3=1km²/s²のときは航行期間390日から、C3= 2km²/s²のときは航行期間370日から、C3=3km²/s²のときは 航行期間360日から優位性を示すことが分かった.

以上3モードの結果を踏まえ各航行期間における最適パ ターンをプロットしたグラフを図6に示す.図6より国産ホ ールスラスタは航行期間が長くなるにつれ,最適な運転モー

ドが高推力,中間,高比推力モードの順に推移していくこと が分かる. さらにモードごとにみると, 航行期間が長くなる につれ最適な C3 が 3km²/s², 2km²/s², 1km²/s² の順に推移し ていくことが分かる. 最適パターンに C3=0 km²/s² が含まれ ないことより、国産ホールスラスタを用いた本ミッションに おいては打ち上げ能力を犠牲にしてでもC3を与えた方が良 いということがいえる. 化学推進に対しペイロード質量の面 で優位性を有する条件下での最適パターンはミッション要 求によって異なる.まずミッション要求が航行期間最短化で あった場合,最適パターンは中間モード,C3=3 km²/s²とな る.このときの最短航行期間は300日であるが、獲得できる ペイロード質量は954kg である.一方, ミッション要求がペ イロード質量最大化であった場合,最適パターンは高比推力 モード, C3=1 km²/s²となる. このときの最大獲得ペイロー ド質量は1396kgであるが,必要な航行期間は410日である. また、本研究の本筋とずれるが、高推力モードに関して化学 推進と比較しても大幅な航行期間短縮の傾向がみられた. 一 般的に短い航行期間が化学推進の利点とされているが,今回 の結果はそれを覆すものになる可能性があるため、今後詳し く調査したい.

4. おわりに

H3-24L 型ロケットで惑星空間に直接打ち上げた国産ホー ルスラスタ搭載宇宙機を用いた地球-火星間輸送ミッショ ンについて,運転モード,地球脱出 C3,航行期間を変数と し解析を行った.解析結果の評価指標としては火星低軌道 (320km)到着時のペイロード質量とし,化学推進と比較を し,化学推進に対し優位性を有するパターン(運転モード・ C3)の調査も行った.

解析の結果,高推力モードの最大ペイロード質量は C3= 2km²/s² で,このとき航行期間 320 日から 656kg で,ミッシ ョン成立のための最小航行期間はC3=2km²/s²以上で 250 日 ということが分かった.化学推進に対する優位性は全 C3 と

もないことが分かった. 次に中間モードの最大ペイロード質 量は C3=1km²/s² で、このとき航行期間 350 日から 1112kg で、ミッション成立のための最小航行期間はC3=3km²/s²以 上で280日ということが分かった. 化学推進に対する優位性 は C3=0 km²/s² のときは航行期間 330 日から, C3=1km²/s² のときは航行期間 310 日から, C3=2, 3km²/s²のときは航行 期間 300 日から示すことが分かった. 最後に高比推力モード の最大ペイロード質量はC3=1km²/s²で、このとき航行期間 410 日から 1396kg で、ミッション成立のための最小航行期 間は C3=3 km²/s²以上で 360 日ということが分かった. 化学 推進に対する優位性はC3=0km²/s2のときは航行期間420日 から、C3=1km²/s²のときは航行期間 390 日から、C3=2km²/s² のときは航行期間 370 日から、C3=3km²/s²のときは航行期 間360日から示すことが分かった.また化学推進に対し優位 性を有する条件下での国産ホールスラスタの最適パターン は、ミッション要求が航行期間最短化の場合は中間モード、 C3=3km²/s², ミッション要求がペイロード質量最大化の場 合は高比推力モード, C3=1km²/s²であることが分かった.

本研究では国産ホールスラスタの搭載台数を4 台と仮定 したため、スラスタ投入電力24kWにおける解析結果となっ ている. 今後はスラスタ台数を解析パラメータに加え、より 最適なシステム設計を行う必要がある.

参考文献

- 1) ISECG, 国際宇宙探査ロードマップ, NP-2013-06-0945-HQ, 2013.
- Theresa D. Kowalkowski, Zachary J. Bailey, Robert E. Lock, Erick J. Sturm, and Ryan C. Woolley, Robotic Mars Exploration Trajectories Using Hall Thrusters, AAS14-364, 2014.
- Yasuhiro Saito, Kiyoshi Kinefuchi, Noki Nagao, Koichi Okita, and Hitoshi Kuninaka, R&D Activities of Electric Propulsion in Japan, IEPC-2015-28, 2015.
- David Y. Oh, Richard R. Hofer, Ira Katz, Jon A. Sims, Noah Z. Warner, Thomas M. Randolph, Ronald T. Reeve, and Robert C. Moeller, Benefit of Using Hall Thrusters for a Mars Sample Return Mission, IEPC-2009-217, 2009.
- 5) 田代洋輔,杉村文隆,飯原重保,伊藤彦,渕上健児,渡 邊裕樹,張科寅,窪田健一,船木一幸,全電化衛星向け ホールスラスタの開発状況,JSASS-2016-4132, 2016.
- Carolyn R. Mercer, Melissa L. McGuire, Steven R. Oleson, Michael J. Barrett, Solar Electric Propulsion Concepts for Human Space Exploration, AIAA-2015-4521,2015.
- 7) 牧麦,船木一幸,山極芳樹,鳥羽瑛仁,国産ホールスラスタを用いた地球ー火星間輸送ミッションの検討,第62回宇宙科学技術連合講演会1E05,2018.
- MHI launch services, H-IIA User's Manual Ver.4.0, MHI launch services, 2015.
- 9) 木村逸郎, ロケット工学, 養賢堂, 1993.
- 10) Vladimir A. Chobotov, et.al., Orbital Mechanics Third Edition,

AIAA Education Series, 2002.

- 11) 栗木恭一, 荒川義博, 電気推進ロケット入門, 東京大学 出版, 2003
- 12) 川邉博康, 最適制御問題の直接解法と滑空飛行への応用 に関する研究, 1999 年九州大学博士論文, 1999.
- 13) Albert L. H., Bruce A. C., Direct Optimization Using Collocation Based on High-Order Gauss-Lobatto Quadrature Rules, Journal of Guidance, Control and Dynamics, Vol. 19, No.3, 1996.
- 14) Kentaro Nishi, Kunitoshi Nishijo, Satoru Ozawa, Tadahiko Sano, Yasushi Hatooka and Tsutomu Fukatsu, Conceptual Design for Next Engineering Test Satellite, ISTS 2017-j-14,2017.
- 15) 今田高峰,嶋田貴信,尾川順子,戸梶歩,川勝康弘,火 星衛星探査計画(MMX)の探査機システム設計,第62 回宇宙科学技術連合講演会1C03,2018.
- 16) 國中均, 宇宙科学ミッション(MMX・DESTINY・・JUICE) の検討結果について, 科学技術・学術審議会他 資料 42-3, 2018.
- 17) 尾崎直哉,井上博夏,尾川順子,池田人,バレシ・ニコ ラ,川勝康弘,火星探査計画(MMX)の軌道設計,第62 回宇宙科学技術連合講演会1C04, 2018.