Calibration of an Instrument to Measure Vibrational Temperature of Molecular Nitrogen by Laboratory Experiment and Improvement of the Analysis Method

By

Naoko HAMADA¹, Junichi KURIHARA¹ and Koh-ichiro OYAMA²

Abstract: The vibrational and rotational temperature of the molecular nitrogen and its density were measured in the lower thermosphere by a sounding rocket S-310-24 over Uchinoura in Japan on February 1996. At 100 km, the vibrational and rotational temperatures were estimated to be under 500 K, respectively. They numerically showed that molecular nitrogen wasn’t vibrationally excited during the nighttime at the lower solar activity, and the vibrational temperature was recognized to be consistent with the neutral kinetic temperature.

By using the information obtained from the previous flight, the instrument was improved to measure vibrational temperature exactly. Electron gun was improved to increase a beam current, which can excite molecular nitrogen. Also, a diameter of the objective lens in the spectrometer is changed to be 2 times larger than the original size to increase the number of detected photons, and the number of mirror is decreased from 4 to 1 to hold an attenuation of the incident light. By means of the instrument consisting of such components, the vibrational and rotational temperatures, and the density of atmospheric molecular nitrogen were simultaneously measured during a sounding rocket S-310-30 flight in the lower thermosphere between 100-150 km, over Uchinoura, Kagoshima in Japan, on February 6, 2002.

We have discussed a method to determine the vibrational and rotational temperatures from data obtained in the laboratory experiment, considering the following improvements.

¹ 東京大学理学系研究科
² 宇宙科学研究所
1. To use 1N (1,1) band of luminescence N_2^+ which was ignored in the analysis of S-310-24.
2. To change the intensity of obtained spectra.
3. To exclude the effect of 2nd positive system.
4. To determine the FWHM of the instrument function so that it identically can fit the experimental spectra.

The data obtained in the laboratory experiment with the rocket-borne system are analyzed by this new method and results were discussed.

概要

1996年2月に鹿児島宇宙空間観測所により観測ロケットS-310-24号機が打ち上げられ、窒素振動温度測定器により、高度 100 〜 160km における窒素分子の振動温度・回転温度及び数密度の同時観測がなされた。観測結果は高度100kmにおいて振動温度500K以下、回転温度250Kを示し、低太陽活動時の夜間において窒素分子はほとんど振動励起されず、振動温度と大気温度はほぼ一致する予測を実証した。

この観測結果をふまえて、振動励起された窒素分子の振動温度を測定するために、改良を施し高性能化した測定器を製作した。測定器には、窒素分子を電離励起する電子ビーム電流を増やす、分光器の対物レンズの口径を2倍にし光量を増加する、分光器内部のミラーを4枚から1枚に減らして光の滅衰を抑えるなどの改良を行なった。この高性能化された測定器を用いて、2002年2月にS310-30号機による高度 100 〜 140km の窒素分子の振動温度・回転温度及び数密度の同時観測が予定されている。

本研究では、この測定器のフライトモデルを用いて得られた測定データに対して、より正確な振動・回転温度を算出する解析手法を検討した。その結果、前回の24号機で無視された N_2^+の発光バンド1N(1,1)を再現する、測定スペクトルの強度を変数としたフィッティングを行なう。温度の誤差となる2Pバンドの効果を取り除く、さらに、測定スペクトルに合う装置間数を求めめるなどの手法を考案した。これらの新しい解析手法を用いて室内実験による測定データを解析し、測定器の較正精度についての考察を行なった。

1. はじめに

高度90〜150kmの下部熱圏は、宇宙空間からのエネルギーと熱圏の下方からのエネルギーが接触するため、熱圏の構造を理解する上で重要な領域である。

これまで電離圏のエネルギー収支という観点から、電子温度やイオン温度の理論計算が行なわれた(Hanson, Evans [1967])。Geissler and Bowhill [1965]は、太陽EUV放射を吸収して生成された光電子とambientな電子との衝突による加熱、電子ガスから中性大気への熱伝導による冷却を考慮し電子温度を求めた。その結果、電子温度は高度120km付近で熱平衡からずれはじめ単調増加し、225km付近で最大となる。その後、高度上昇とともに電子温度は低下し、350km付近で再び熱平衡に達した。

また、1960年代より電離圏の電子温度測定がロケット観測(Parish et al. [1962], Brace et al. [1963], Nagy et al. [1963])や、レーダー観測(Bowles et al. [1962], Evans [1962] [1964])によって行なわれた。ロケット観測では中性大気温度よりも高い電子温度が報告されており(Oyama et al. [1980], Oyama and Hiroa [1985]), その一例を図1に示す。
図1 ロケット観測による電子温度（*）、理論計算(点線と破線:Walker[1969])、およびロケット観測によるN₂振動温度(実線:O’Neil[1974])との比較(Oyama and Hirao[1985])

\[\text{O}^{1}(D) + \text{N}_2 \rightarrow \text{O}^{3}(P) + \text{N}_2^* \] (1)

\[\text{N} + \text{NO} \rightarrow \text{N}_2^* + \text{O} \] (2)

\[\text{N}_2 + \text{e} \rightarrow \text{N}_2^* + \text{e} \] (3)

脱亜起については、Walker[1968]で振動エネルギーが電子との衝突で失われることを提案した。また、Walker[1969]は、N₂が赤外不活性な気体であるため、衝突による消光が重要となる高度120km以下で、最も消光に寄与するのはO₂ではなく、CO₂であることを見い出した。

\[\text{N}_2^* + \text{CO}_2 \rightarrow \text{N}_2 + \text{CO}_2 \] (4)

\[\text{N}_2^* + \text{O} \rightarrow \text{N}_2 + \text{O} \] (5)

\[\text{N}_2^* + \text{O}_2 \rightarrow \text{N}_2 + \text{O}_2 \] (6)

このN₂のOによって消光する効率が非常に良いと、N₂振動温度は高くなる。N₂の並進-振動の緩和時間は次の式から計算される。

\[\tau_{VT} = (k_1[O] + k_2[O_2])^{-1} \] (7)
k_1 は O による消光の反応速度係数で、McNeal et al. [1974] によると $3.5 \times 10^{-15}/\text{cm}^3 \cdot \text{s}$ である。この値に関して Brieg et al. [1973] は O による消光が重要となるのは高度 120 〜 200km であることを示した。反応 (6) の速度係数である k_2 は Taylor and Bitterman [1969] によれば約 $2.0 \times 10^{-18}/\text{cm}^3 \cdot \text{s}$、それほど重要ではない。

このように、エネルギー収支の点から見ると、N_2^* は 60 〜 150km の高度領域において反応 (1) の O(1D) の冷却源として、また、4.3μm の赤外放射冷却をする振動励起された CO$_2$ の熱源として非常に重要である。多くの研究者達がこのような中間圈と下部熱圏におけるエネルギー収支の観点から N_2 と CO$_2$ の振動温度を同時計算することを試みてきた。反応 (4) が早い理由は N_2 の励起エネルギーが 0.2886eV で CO$_2$ の非対称振動モードの励起エネルギー 0.2908eV と非常に近いためである。これは共鳴システムと考えられるので、反応 (4) を改めて

$$N_2^* + \text{CO}_2 \leftrightarrow \text{CO}_2^* + N_2$$

(8)

と書くことにする。この反応の速度係数は 300K で $6.0 \times 10^{-13}/\text{cm}^3 \cdot \text{s}$ (Pavlov [1987], Nebel et al. [1994]) で大きく、N_2 と CO$_2$ の振動占有率は、この過程によって決定されると考えられる。Kumer [1977] が、はじめてこの反応を計算に取り入れた結果、振動温度は高度 140km で 529.5K, 90.2km で 308.4K, 81.1km で 307.8K となることを示した。また、Harris and Adams [1983] では、$N_2^*\cdot\text{CO}_2\cdot-4.3\mu\text{m}$ カッティングシステムを考慮し O(1D) エネルギーの熱エネルギーへの寄与を計算した結果、振動温度は高度 80km で 234K, 100km で 285K, 140km で 550K となった。

振動温度が高い場合には、超高層大气において重要なイオン反応である O$^+$ と N_2 の反応 (9) における反応速度係数に影響があることが Schmeltekopf et al. [1967] によって示された。

$$O^+ + N_2^* \rightarrow \text{NO}_2^+ + N$$

(9)

それによると、回転温度 300K、振動温度 300 〜 6000K で室内実験を行なった結果、反応速度係数が振動温度の関数になっていること、1000K 以上では振動温度により急激に反応係数が増加するがわかった。これを図 2 に示す。また、O’Malley [1971] は、この反応係数は太陽活動度の低い時期では 4 倍、高い時期では 17 倍に増えることを示した。

熱圏において N_2^* が過剰に存在するときの過程 (9) を通じて O$^+$ の消滅が増大する。NO$^+$ の再結合係数は $4.2 \times 10^{-7}(T_e/300)^{-0.85}/\text{cm}^3 \cdot \text{s}$ (Rees [1987]) であり、O$^+$ の再結合係数である $3 \times 10^{-12}(T_e/300)^{-0.7}/\text{cm}^3 \cdot \text{s}$ よりもはるかに大きいので、振動温度が高いと結果的に電離圏の電子密度が減少することになる。この性質の重要性は Varnum [1972] で指摘され、Newton et al. [1974] によって SAR arc の状況で検証された。摂動を含む時間発展連続の式は、SAR arc と同じ条件で N$_2^*$ の数を 1 〜 6 間で変える。SAR arc 内では N$_2$ 振動温度が上昇して、F2 層領域において (9) の反応が 7.6 倍に増えるため、電離圏の電子消費率を増やし、電子密度が減少することを導いた。

この (9) の反応による電子密度の減少は、F 層の冬季異常としても示された。Torr and Torr [1980] は、AE 衛星のデータから夏より冬に電子密度のピークが大きく出ることを (9) と季節的な中性大気成分の変化を考慮して計算した。その結果、(9) の反応による O$^+$ の季節変化への寄与は 20% となった。

Richards et al. [1986] は、$v=0 \sim 5$ の振動状態について時間発展させた連続の式と運動方程式を解いて、N_2 の振動占有率を求め、それにより、振動温度が上昇すると L=2.4 の高度で、夏季の昼間には (9) の反応率が増加し、O$^+$ の密度ピークが 2 倍減少することが示された。

Ennis et al. [1995] は、地球プラズマ層の時間発展のモデル SPPIM を用いて、$v=0 \sim 5$ の N$_2^*$ の季節変化を調べ、太陽活動度の高い夏季に F 層の電子密度は 2.5 倍減少するほどの N$_2^*$ がこの過程によって生成されると示した (図 3)。
図2 O⁺ + N₂(Tv) → NO⁺ + N の反応係数の Tv 依存性 (Schmeltekopf et al. [1967])

図3 電子密度の昼間の季節変化。実線は N₂⁺ を考慮し、破線は考慮していない (Ennis et al. [1995])

Nebel [1994] は、LTE が破れた領域で CO₂ と N₂ 非対称振動モードの振動温度を、4.3μm リム放射と line-by-line 放射輸送モデルを用いて計算し、ロケット観測 (SPIRE) から得られた 4.3μm
地球リム放射のデータと比較した。ここで中間層、下部熱層において CO₂と N₂の振動分布を決定できるため (8)の反応係数は5〜6×10^{-13}\, \text{cm}^3/\text{mol} \cdot \text{s} となる。この結果によると CO₂と N₂のカップリングにより低高度では N₂の振動温度は CO₂の振動温度と一致し、夜間の高高度では N₂の振動温度は中性大気温度と一致した。ところが昼間では太陽 pumping により CO₂非対称振動モードが励起されるため 320K となり、中性大気温度よりはるかに高くなった。

Pavlov [1988] は、(1)の反応による O(1D)との衝突や、(2)の反応による N と NO との非熱的衝突、(5)(6)の反応による酸素原子・分子との衝突による振動-姿勢エネルギー交換、異なる振動レベルの N₂* の衝突による振動-振動エネルギー交換、(8)の反応による CO₂との衝突による振動エネルギーの内向き交換、さらに N₂ 的輸送を含めた振動準位の分布について計算した。結果として、静穏時の中・低緯度で N₂* による電子密度の減少は 2 倍以上にならないことを示した。さらに、Pavlov[1994] は、この計算の枠組みの元でモスクワにおける 90 日目の地方時 12 時、地磁気活動度の指標 Ap = 10、太陽活動度は中程度の F10.7 = 150 という条件で N₂ 振動温度を計算した。中性大気温度が 100km で 194.4K、120km で 377.3K、140km で 648K であるのに対し、振動温度は [O(1D)] = 10^4 \, \text{cm}^3 の場合には 100km で 378K、120km で 383K、140km で 649K となり、[O(1D)] = 10^5 \, \text{cm}^3 の場合には 100km で 608K、120km で 423K、140km で 652K となった。N₂振動温度と中性大気温度の差が E 層下部で大きく 200K にも及んだ。しかし、電子温度はこの領域では中性大気温度より最大で 10K 程度高くならないで、観測されるような 100K 以上の電子温度の上昇は再現されなかった。

2. 窒素振動温度・回転温度の観測

2.1 地上観測

Hunten and Shepherd [1955] は、オーロラ中の N₂の 2nd Positive band の観測で N₂振動温度を 0〜1000K と求めた。これより、オーロラ中では酸素原子による早期消光のため高い振動温度を示すことが見られなかった。Vallance Jones and Hunten [1960] は、4 Åの分解能の分光器で測定された高高度オーロラのスペクトルで回転温度は 2200K、振動温度は 2050K で平衡に達していることがわかった。Broadfoot and Hunten [1966] によって、1N(0,0)バンド (3914 Å) の分光器による測定が 1年間行なわれ、中緯度通過経路では O(1D)の電荷交換により中性大気温度より低く、1600Kの回転温度が測定された。Vlaskov and Henriksen [1985] は、昼間と夜間のオーロラ分解光を用いて N₂の 1N(0,0)、1(1)、1(0)バンドを測定し、実効的な振動温度を計算した。その結果、高度 150km の昼間オーロラで 1000〜3000K、高度 350km の夜間オーロラで 1800〜2900K と決定した。

2.2 ロケット・スペースシャトルによる直接測定

下部熱層における N₂回転温度の直接測定は、Deleeuw and Davis [1969] で開発された電子ビームと 2つのフォトマルを使用した観測器を用いて Deleeuw and Davis [1972] により行なわれた。75〜150km における 1N(0,1) バンドのロケット観測により回転温度・数密度測定を行なわれ、110km 以上の US 標準大気モデルの中性大気温度とよく一致する結果を得た。O'Neil [1974] は、オーロラ中でロケットに搭載した 2.5eV の電子ビームによる 1N バンド (0,1)(0,2)(1,2)(2,4) の発光を用いて、高度 80〜175km の振動温度を測定した。その結果、N₂振動温度の上限値は図 6 に示すよう
2002年8月
窒素振動温度測定器の室内実験による較正と解析手法の改良

に115kmで800K，135kmで1000K，155kmで1200K，175kmで1500Kとなった。Torr et al. [1992]，Torr et al. [1993]は，1983年にSpacelab 1 shuttle missionにおいて，スペースシャトルに搭載された300Aから近赤外までのスペクトルを検出できる5つの分光器ISOにより昼間大気光の1Nバンドを測定した。このときの条件はF10.7 = 89，Ap = 23，高度250kmでの回転温度は3000K，見かけの振動温度は6000 ~ 8000Kであることがわかった。

2.3 S-310-24号機による観測

回転温度は観測された1N(0,1)バンドと1N(0,0)バンドのスペクトルを用いて解析された。120km以下では2つのバンドより求めた回転温度は互いによく一致する（図4）。120km以上で1N(0,1)バンドより求めた回転温度はMSIS86より小さくなり，130 ~ 150kmでは1N(0,0)バンドの回転温度は高度とともに減る。この結果より潮汐波起源の鉛直波長40kmの波状構造が見つかった。

図4 回転温度の高度プロファイル (a) ロケット上昇時 (b) ロケット下降時，実線：1NG(0,0)バンドより算出，点線：1NG(0,1)バンドより算出，太線：20スペクトルの平均データ
さらに、この観測により世界で初めて議論に耐えうる窒素振動温度を測定した。観測より求められた振動温度は高度100kmで400K (上限値：800K), 130kmで800K (上限値：1000K), 150kmで1000K (上限値：2000K) であった。今回の観測は太陽活動度が最低に近く、太陽紫外光のない夜間に行なわれたため、窒素分子はほとんど振動的に励起されないという予測を実証した形となった。図5に、S-310-24号機の振動温度の観測結果を、図6に、S-310-24号機の振動温度の観測結果とO’Neil[1974]の観測結果、さらに他の理論計算の結果を示す。

図5 S-310-24号機による振動温度の高度プロファイル

図6 過去の振動温度の計算結果と観測結果、Kawashima et al. [1999]
3. 本研究の目的

S-310-24 号機の観測において、$1N(0,0)$ バンドより求めた同軸温度が、高度 105km で 230K、
高度 120km で 460K、高度 135km で 540K、と中性大気温度より高く測定されたことについて、
Kawashima et al. [1999] は、MSIS86 モデルに重力波や渦汐波が反映されていないためとされている。
しかし、Kawashima et al. [1999] が行なった同測定器を用いた室内実験においても、室温 (300K)
と同じと予測される回転温度は検出されなかった。そのため、MSIS モデルのみが問題ではなく、
その他に回転温度が正確に算出されない原因を検討する必要がある。Kawashima et al. [1999] の測定
・観測スペクトルとともに、$1N(0,0)$ バンドの短波帯幅においてシミュレーションした理論スペク
トルと現の形が合わなかった。これは、後で述べるように 1N(1,1) バンドによるスペクトルであり、
回転温度を算出する際の問題となる。さらに、理論スペクトルを再現する際の装置関数を FWHM
の変数として変化させ、フィッティングを行なっている。本来、装置関数は測定器に対して一つ
と決まっているため、装置関数を変えてフィッティングを行うのは妥当ではない。Kawashima
et al. [1999] は、拡散ガラスで散乱させた水銀ランプの光を測定器で検出し、得た輝度スペクトル
から装置関数を求めている。この方法では、一様に平面上に広がった光を検出していないと考えら
れる。

本研究の目的は、Kawashima et al. [1999] が用いた解析手法をふまえてこれらの問題を解決し、
より高精度な回転 - 振動温度を導出する解析手法を考察することである。

また、振動励起された N_2 分子を確実に検出するために、より高精度な測定器を製作、太陽活動
度が高い 2002 年 2 月に観測を予定している。今回の S-310-30 号機での観測は、非破壊後の観測を
行なうことによって振動励起された N_2 分子振動温度の検出を狙う。

この新しく改良された測定器のフライトモデルを用いて、室内実験による測定データを新しい解
析法で解析し、測定器の校正と精度について検討する。

4. 測定法

4.1 測定原理

N_2 と N_2^+ のポテンシャルカーブを図 7 に示す。

N_2 及び N_2^+ にはいくつかの電子準位があり、各電子準位が振動準位に、さらに各振動準位が
回転準位に分かれている。通常、N_2 は、基底電子状態である $X^1\Sigma_g^+$ にある。一般に分子の同
電子準位での振動遷移は赤外域、同振動準位での回転遷移は遠赤外域のバンド放射を伴う。しかし
等核二原子分子では振動準位間の禁制遷移であるため、電子遷移に伴う振動回転バンドが振動回転
状態を知る有用な方法となる。図 8 に、N_2 及び N_2^+ の代表的な電子準位スペクトルを示す。本研
究では、Muntz [1962], Hunter [1968] の方法に従い、電子衝撃により N_2 の基底状態 $N_2(X^1\Sigma_g^+)$
から N_2^+ の励起状態 $N_2^+(B^2\Sigma_u^+)$ へ電離し、許容遷移である $N_2^+(B^2\Sigma_u^+) \rightarrow N_2^+(X^2\Sigma_g^+)$ に
伴う 1N バンドの発光スペクトルの振動回転構造を調べることで、N_2 の振動 - 回転温度を推定す
る。本研究で着目する、電子衝撃により N_2 が Franck-Condon 的に励起され、その後放射遷移す
る過程での振動準位の変化 (図 9) と、電子衝撃による反対に起こる際の、放射遷移をする過程で
の回転準位の変化を図 10 に示す。
図 7
N\textsubscript{2} 及びN\textsubscript{2}+ のシングレット（左）及びトリプレット（右）系のポテンシャルカーブ
(Cartwright [1978])

図 8
N\textsubscript{2} 及びN\textsubscript{2}+ の代分的な電子準位遷移スペクトル
図9 電離励起及び放射遷移に伴う振動準位の変化

図10 電離励起及び放射遷移に伴う回転準位の変化
基底状態の振動量子数、回転量子数はそれぞれ \(v_1''\), \(J_1''\) とし、\(N_2(\text{B}^2\Sigma_u^+)\) 状態では \(v', J'\) とする。\(N_2(X^1\Sigma_g^+)\) において、二原子分子の Schrödinger 方程式に、原子核運動と電子運動が相互作用しないとする Born-Oppenheimer 近似を仮定して解くと、エネルギー固有値は次のようにある。

\[
U(v_1'', J_1'') = G(v_1'') + F(J_1'') \\
G(v_1'') = e_v(v_1'' + \frac{1}{2}) \\
F(J_1'') = BJ_1''(J_1'' + 1)
\]

ここで、\(e_v\), \(B\) は、分子定数である。\(G(v_1'')\) は振動準位、\(F(J_1'')\) は回転準位のエネルギーである。振動分布、回転分布がそれぞれ熱平衡状態であれば、基底状態 \(N_2(X^1\Sigma_g^+)\) の振動分布、回転分布は Boltzmann 分布に従う。この条件のもとで、振動温度 \(T_v\), 回転温度 \(T_r\) は以下のよう定義される（Herzberg [1960]）。

基底状態における、ある特定の振動準位 \(v_1''\) の占有数（population），\(N_{v_1''}\) は

\[
N_{v_1''} = \frac{N_0}{Q_{v_1''}} \exp\left(-\frac{hcG(v_1'')}{kT_v}\right)
\]

となる。\(N_0\) は、基底状態にある全ての分子の占有数、\(h\) は Boltzmann 定数、\(c\) は光速、\(Q_{v_1''}\) は規格化定数である。図 11 に基底状態 \(N_2(X^1\Sigma_g^+)\) における振動準位 \(v_1'' = 0 \sim 5\) の占有数を \((N_{v_1''}/N_0) \times 100\%\) で表した占有率をそれぞれ \(T_v = 300, 800, 1500K\) のとき示す。\(T_v = 300, 800K\) のときには \(N_2\) 基底状態のほとんどが \(v_1'' = 0\) の振動準位にあることがわかる。

同様に、ある特定の振動準位 \(v_1''\) における回転準位 \(J_1''\) の占有率，\(N_{v_1'', J_1''}\) は

\[
N_{v_1'', J_1''} = \frac{N_{v_1''}}{Q_{J_1''}} (2J_1'' + 1) \exp\left(-\frac{hcF(J_1'')}{kT_r}\right)
\]

となる。\(Q_{J_1''}\) は規格化定数である。図 12 に基底状態 \(N_2(X^1\Sigma_g^+)\) の振動準位 \(v_1'' = 0\) における回転準位 \(J_1''\) の占有率を \((N_{v_1'', J_1''}/N_{v_1''}) \times 100\%\) で表した占有率をそれぞれ \(T_r = 300, 800, 1500K\)
図12 基底状態$N_2(X^1\Sigma_g^+)$の振動準位$v''_r = 0$における回転温度の違いによる回転準位の占有率の変化のときに示す。振動準位と異なり、分布はある準位にピークを持ち、回転温度が上がるにつれて分布のピークが高い準位にシフトしていく様子がわかる。

次に基底状態$N_2(X^1\Sigma_g^+)$から電子ビームによる電子衝撃によって励起状態$N_2(B^2\Sigma_u^+)$へ電離することを考える。Born-Oppenheimer近似的仮定のもとで、入射電子エネルギーが十分に大きければ入射電子と窒素分子の相互作用時間は十分に短く、電離に要する時間の間では窒素分子の原子核運動が静止しているとみなせる。したがって、基底状態と励起状態の振動準位間にはFranck-Condonの原理が成り立つ。つまり$N_2(X^1\Sigma_g^+)v = v''_r$にある分子が、$N_2(B^2\Sigma_u^+)v = v'$へ遷移する確率は$N_2(X^1\Sigma_g^+)$と$N_2(B^2\Sigma_u^+)$の波動関数の重なり積分の二乗に比例する。この重なり積分の二乗をFranck-Condon factorという。

$$ q(v''_r, v') = \left| \int \Psi_{v''_r} \Psi_v dr \right|^2 $$

$q(v''_r, v')$がFranck-Condon factor、$\Psi_{v''_r}$、$\Psi_{v'}$はそれぞれ$N_2(X^1\Sigma_g^+)$と$N_2(B^2\Sigma_u^+)$の波動関数である。$N_2(X^1\Sigma_g^+) \rightarrow N_2(B^2\Sigma_u^+)$のFranck-Condon factorは過去に数々の研究者が実験的・理論的に考察している。回転準位間の遷移に関しては、同じく入射電子エネルギーが十分に大きければ双極子(dipole)的遷移を行う。つまり、$N_2(X^1\Sigma_g^+)J = J''_r$にある分子が、$N_2(B^2\Sigma_u^+)J = J'$に遷移する際には$J' = J''_r \pm 1$を満たす遷移のみが許される。$J' = J''_r + 1$の遷移をR-branch、$J' = J''_r - 1$の遷移をP-branchと呼ぶ。遷移確率は以下のHönig-London factorに比例する。

$$ S_R(J''_r, J') = \frac{J''_r + 1}{2J''_r + 1} = \frac{J'}{2J' - 1} \quad (R-branch) \quad (16) $$

$$ S_P(J''_r, J') = \frac{J''_r}{2J''_r + 1} = \frac{J' + 1}{2J' + 3} \quad (P-branch) \quad (17) $$

$N_2(B^2\Sigma_u^+)$で$v = v'$、$J = J'$にある分子の占有数N_{vJ}は、振動状態に関しては$N_2(X^1\Sigma_g^+)$のあらゆる振動状態にある分子から Franck-Condon factorに比例する確率で励起され、回転状態に
関はく 1 か 1 かの回転状態にある分子のみから勧起されるので以下のようにになる。

\[
N_{p', J'} = N_{0} R \sum_{v'} N_{v'J'} S_{P}(J'_{1}, J') + N_{v'J'_{1}} S_{R}(J'_{1}, J')
\]

\[
\theta = \sum_{J'} [N_{v'J'} S_{P}(J'_{1}, J') + N_{v'J'_{1}} S_{R}(J'_{1}, J')]
\]

分母 \(\theta \) は規格化定数で、\(N_{0} \) は 1 秒間に電子ビームで電離されてできる N\(_{2}\) の数密度である。R は branching ratio で、電離する際に N\(_{2}\) は X\(_{2}\)Σ\(_{g}\)\(^{+}\), A\(_{2}\)Π\(_{u}\), B\(_{2}\)Σ\(_{u}\)\(^{+}\) のいずれかの電子状態に入るが、そのうち B\(_{2}\)Σ\(_{u}\)\(^{+}\)に影を示す。周囲の蒸素子の数密度を N\(_{0}\) [cm\(^{-3}\)], 電子ビーム中の電子数密度を n [cm\(^{-3}\)], 電子ビーム中の電子の速度を v [cm/s], 電子ビーム断面積を S [cm\(^{2}\)] として \(N_{0} \) は次式で与えられる (Stewart [1955])。

\[
N_{i}[cm^{-3} \cdot s] = N_{0} \sigma n v
\]

ビーム流密度が \(i = S e v \) であること。

\[
N_{i} = \frac{N_{0} \sigma i}{Se}
\]

最後に B\(_{2}\)Σ\(_{u}\)\(^{+}\) (v', J') → X\(_{2}\)Σ\(_{g}\)\(^{+}\) (v''\(_{g}\), J''\(_{g}\)) の発光過程を考える。この B\(_{2}\) (v', J') 状態は寿命が 60ms (Dufayard et al. [1974]) で、高度 100km 以上では平均衝突時間は 1ms より長いため発光までの間に衝突は起きないとみなせる。つまり、N\(_{2}\) (B\(_{2}\)Σ\(_{u}\)\(^{+}\)) 状態では衝突による振動・回転の再分布は起きない。

特定の振動回転スペクトルの単位体積当たりの光子放出率 (volume emission rate) (18) 式にさらに遷移確率を掛けることで与えられる。

\[
N_{v''J''}^{v'J'} = N_{v'J'} \frac{A(v', v''_{g}) S(J', J''_{g})}{\sum_{v''_{g}} \sum_{J''_{g}} A(v', J') S(J', J''_{g})}
\]

で与えられる。A(v', v''\(_{g}\)) は遷移確率 (Einstein 係数), S(J', J''\(_{g}\)) は Σ\(_{g}\)B\(_{2}\) (v', J') → Σ\(_{g}\)X\(_{2}\) (v''\(_{g}\), J''\(_{g}\)) の Hönl-London factor である。

以上の (14)(18)(21) を (22) に導入すると、以下のように三つのか独立な式に分けることができる。

\[
N_{v''J''}^{v'J'} = R \times (ion \ production \ rate) \times (vibrational \ structure) \times (rotational \ structure)
\]

(ion production rate) : \(N_{i} = \frac{N_{0} \sigma i}{Se} \)

(vibrational structure) : \(\frac{1}{Q_{v'}} \sum_{v''_{g}} A(v', v''_{g}) \sum_{v'} q(v', v''_{g}) \exp(-\frac{\hbar c G v''_{g}}{kT_{r}}) \)

(rotational structure) : \(\frac{1}{Q_{J'}} J' \exp(-\frac{\hbar c F - 1}{kT_{r}}) + (J' + 1) \exp(-\frac{\hbar c F + 1}{kT_{r}}) S(J', J''_{g}) \)

この ion production rate から数密度が、vibrational structure から振動温度が、rotational sturcture から回転温度が算出できる。

さて、振動温度については振動準位の異なる二つの振動回転スペクトル（例えば、1N(0,1) と 1N(1,2)）の強度比から求めることもできる。

\[
\frac{N_{v' = 0 \rightarrow v'' = 1}}{N_{v' = 1 \rightarrow v'' = 2}} = \frac{\sum_{v' = 0}^{4}(0,1) A(0,v''_{g}) \sum_{v'} q(0,v''_{g}) \exp(-\frac{\hbar c G v''_{g}}{kT_{r}})}{\sum_{v' = 1}^{4}(1,2) A(1,v''_{g}) \sum_{v'} q(1,v''_{g}) \exp(-\frac{\hbar c G v''_{g}}{kT_{r}})}
\]
(24) 式から Gilmore et al.[1992] による Franck-Condon factor を用いて計算した 1N(0, 1) と 1N(1, 2) の強度比と振動温度の関係を図 13 に示す。また、1N(0, 0) と 1N(1, 1) の強度比と振動温度の関係を図 14 に示す。

この図からわかるように、1N(0, 1)(1, 2) バンドの強度比では 500K 以下、また 1N(0, 0)(1, 1) バンドの強度比では 600K 以下の振動温度ではほとんど振動励起されず、振動温度に対し強度比がほぼ一定となる。高度 100km で予想される振動温度が中性ガス温度に近い 600K 以下だとすると、この高度では高い精度で強度比を測定する必要がある。

図 13 1N(0, 1) と 1N(1, 2) の強度比と振動温度の相関関係

図 14 1N(0, 0) と 1N(1, 1) の強度比と振動温度の相関関係
4.2 計算機シミュレーションによるスペクトル解析

1N(0,1) と 1N(1,2) から回転温度、回転温度を求める際、以下の問題点がある。

1. 回転温度を 1N(0,1) を形成する個々の回転スペクトルから求めるには回転スペクトルを分解する必要がある。そのために分光器の波長分解能は 0.01 nm 以下が必要とされ、ロケットに搭載可能な小型分光器では事実上不可能である。

2. 回転温度が高い (500K 以上) 場合、1N(0,1) と 1N(1,2) が重なり、1N(0,1) と 1N(1,2)
の比が振動温度で決まる本来の値からはずれる。

3. 2nd Positive Band (2P(1,5)) [426.8nm] が 1N(0,1) に重なる。

そこで、計算機シミュレーションによって 1nm 程度の波長分解能でも回転温度の算出を可能とし、2,3 の影響を取り入れることを試みた。Franck-Condon Factor と遷移確率は Gilmore et al. [1992] を、回転スペクトル波長は Dick [1978] によった。

それぞれの振動回転スペクトルは R-branch を構成する比較的まばらな回転スペクトル群と P-branch を構成する密集した回転スペクトル群からなる。実際に観測から得られるスペクトルは図 15 の振動回転スペクトルの一本一本の分光器の装置関数 (device function) を掛けて重ね合わせた波形である。装置関数とは単色光を分光器に入力した際の出力波形である。

図 15 シミュレーションスペクトルと装置関数

従って、適当な装置関数を掛けて豊み込み計算 (convolution) を行なえば、スペクトルプロファイルが装置関数・数密度・振動温度・回転温度を変数とする関数として再現できる。

ここで、まず装置関数を Gauss 型で仮定して、豊み込み計算をおこなわないスペクトルプロファイルを再現する。図 16 では、回転温度と回転温度を 300K とし、装置関数の半値幅を 0.8 1.2nm に変化させたときの理論スペクトルを示す。図 17 では、振動温度を 300K、装置関数の半値幅を 1.0nm とし、回転温度を 300 800K まで変化させたときの理論スペクトルを示す。また、図 18 では、回転温度を 300K、装置関数の半値幅を 1.0nm とし、振動温度を 300 1500K まで変化させたときの理論スペクトルを示す。この図 18 からも、振動温度が低いと理論スペクトルはあまり
変化していないことがわかる。

以上のようにして、計算機シミュレーションによる理論スペクトルを実験スペクトルまたは観測スペクトルにフィッティングさせれば、振動温度・回転温度が測定できる。

図16 装置間数を変えたときのスペクトルの変化

図17 回転温度を変えたときのスペクトルの変化
5. 改良された窒素振動温度測定器

5.1 測定器の概要

開発された搭載用窒素振動温度測定器 NTV-2（図 19）は、電子動部と分光器部から成り立っている。電子期より放出された電子ビームによって周囲の大気中の N₂ を電離励起させ、発光させる。この発光中の N₂⁺ の 1N バンド群を分光器で検出すことで、電離励起前の窒素分子基底状態に関する振動温度・回転温度・数密度を決定する。NTV-2 は S-310-24 号機の観測結果をふまえて、さらに高精度な振動温度測定をするため改良が行なわれた。

5.2 測定器の改良

S-310-24 号機の観測では、高度が上昇するほど誤差が大きくなる傾向があった。この原因は数密度の減少にともなう検出光子数のゆらぎと考えられる。そのため、検出光子数を増やすことでゆらぎを減らし、測定誤差を小さくする改良を行なった。

分光器においては、対物レンズの口径を 2 倍にして 4 倍の光量を得ることと、分光器内部のミラーを前回使用した 4 枚から 1 枚に減らすることで 1.37 倍の光量を得られる改良が施されている。さらに電子期の改良においては、単位体積当りの光子放出率は窒素分子の数と電子ビームの電流値に比例するため、電子ビーム電流値を増やすように前回使用したタンクステンのヘアピン型フィラメントから電子放出面積の広いコイル型フィラメントに変えた。毎回の観測で得られた最大ビーム電流値は 2mA に比べて、改良された電子期により得られるビーム電流値は 4 倍の 12mA である。

これらの改良により、前回と比較して 4 × 1.37 × 4 = 21.92 倍の検出光子数の増加が見込める。
5.3 電子銃部

電子銃の概略図を図 20 に、仕様を表 1 に示す。この電子銃において電子ビーム電流値は 8mA (2 × 10^{-4} Torr) 電子ビームエネルギー値は 1.0keV である。

電子銃は、ステンレス製の 3 つの電極からなる。電子を放出する直径 0.2mm のタンクステン・フィラメント、電子ビームを経るグリッド、加速電圧をかけて電子を引き出すアノードよりなる。

フィラメントより放出された電子は、150V に印加されたグリッドで絞られ、アノードに加えられた1kV の加速電圧で引き出される。加速電圧は、N_{2} の Franck - Condon 的励起が成り立つためには 600eV 以上必要であること、地球磁場によるビームの曲がりを最小限に抑えること (1keV の電子は、ビーム出口より 40cm の距離で 2 ～ 3cm 曲がる。)、さらに高電圧印加による放電を抑えることを総合的に判断して-1kV とした。

アノードより放出された電子は 100V に印加されたコレクターで捕集されロケット本体に帰還
される。コレクターはビーム電流値をモニターするとともに、ロケット本体の電位上昇を防止する

図 20 電子銃の概略図

表 1 電子銃の仕様

<table>
<thead>
<tr>
<th>フィラメント</th>
<th>大和テクノシステムズ製</th>
</tr>
</thead>
<tbody>
<tr>
<td>タングステン・コイル型</td>
<td>φ 0.2mm 3.5 巻</td>
</tr>
<tr>
<td>電子銃</td>
<td>アブコ製</td>
</tr>
<tr>
<td></td>
<td>グリッドφ 10.0mm</td>
</tr>
<tr>
<td></td>
<td>アノードφ 0.6mm</td>
</tr>
</tbody>
</table>

役目を持つ。さらにコレクターにビームが衝突することで生じる二次電子をコレクターに追い返す
ために、コレクター前方にメッシュを置く。メッシュには 50V の電圧を加えた。つまり、コレク
ターに対して 50V 負にバイアスされている。

ロケット観測では、電子銃の動作確認のため、アノード電圧、ヒーター電流、全放出電流、コレク
タ電流、メッシュ電流、キャップ電流及びピラニゲージによる電子銃内部の真空度をフライトと
きにテレメータで送信する。

5.4 分光器部

分光器の概略図を図 21 に示す。分光器は凹面回折格子を用いた。波長分解能は 1.1nm、波長域
は 352 〜 441nm である。

分光器は探光部、分光部、検出部の 3 つからなる。探光部では、電子ビームによって電離励起さ
れた N2⁺ からの光を口径 100mm の対物レンズで集光する。回折格子における高次光をカットす
る目的として、対物レンズ前面には高次光カットフィルタを配した。対物レンズを 2 枚にしたの
は、口径が大きくなる分収差が大きくなるのを補正するためである。表 2 に分光器の仕様を示す。

分光器では、スリットを通過した光が平面結像型 (Flat - field type) の凹面回折格子で分光さ
れ、検出部のイメージセンサに 1 次元のスペクトルとして結像される、イメージセンサはイメージ
ジインテンションファイア (I·I) としてマイクロチャンネルプレート (MCP) を 2 段付属したフォト
図 21 分光器の概略図

表 2 分光器の仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>製造元</th>
<th>参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>分光器</td>
<td>神和光器製</td>
<td>製 35-82-40-021</td>
</tr>
<tr>
<td></td>
<td>分解能 1.0nm</td>
<td>4.5nm/mm</td>
</tr>
<tr>
<td></td>
<td>波長域 352nm〜441nm</td>
<td>前焦点距離 231mm</td>
</tr>
<tr>
<td>高次光カットフィルタ</td>
<td>HOYA製 UV-30</td>
<td>後焦点距離 225nm〜251mm(780nm)</td>
</tr>
<tr>
<td></td>
<td>透過波長 300nm〜</td>
<td>波長 95nm</td>
</tr>
<tr>
<td>対物レンズ</td>
<td>シグマ光機製</td>
<td>F 値 2.4</td>
</tr>
<tr>
<td></td>
<td>直径 100mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>焦点距離 240mm</td>
<td></td>
</tr>
<tr>
<td>四面回折格子</td>
<td>Richardson Grating Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>分散 4.5nm/mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>前焦点距離 231nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>後焦点距離 225nm〜251mm(780nm)</td>
<td>F 値 95mm</td>
</tr>
<tr>
<td></td>
<td>刻線数 792.8 本/mm</td>
<td></td>
</tr>
</tbody>
</table>

ダイオードアレイで、これによって出力を約 2 × 10^2 倍に増幅することができる。I・I用高圧電源にかかる高電圧による放電を防ぐため、分光器は大気圧封じを施している。イメージセンサは全1024素子のうちI・Iに覆われている700素子からの出力電圧が検出光強に相当する。表3にイメージセンサの仕様を示す。
表3 イメージセンサの仕様

<table>
<thead>
<tr>
<th>型番</th>
<th>浜松ホトニック製 C4563-000MOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>分光感度</td>
<td>195nm ～ 850nm</td>
</tr>
<tr>
<td>最高感度波長</td>
<td>430nm</td>
</tr>
<tr>
<td>I・I用MCP</td>
<td>2段</td>
</tr>
<tr>
<td>I・I増倍率</td>
<td>約2 × 10^6倍</td>
</tr>
<tr>
<td>有効入力面サイズ</td>
<td>17.5mm × 2.5mm</td>
</tr>
<tr>
<td>有効チャンネル数</td>
<td>700ch</td>
</tr>
</tbody>
</table>

6. 窒素振動・回転温度の解析手法の改良

6.1 波長変換

実験で得た測定データにおいて、素子番号を波長に変換して解析を行うために、まず波長変換の式を求める。図22に水銀ランプの光を分光器で測定したスペクトルを示す。観測目的とする1N(0,0) ～ 1N(0,1)バンドの391.4 ～ 427.9nmの波長域が十分に収まっている。ここでKawashima et al. [1999]においては、水銀ランプの光を一様に広げるために分光器とランプの間に拡散ガラスを置いて測定を行なっている。しかし、この方法による水銀ランプのスペクトルを用いて解析を行うと、装置関数のFWHMを1.5倍に拡大する必要性があった。そのため、この方法では水銀ランプの光は一様に広がっていないと考え、本研究では水銀ランプの光を1m離した模造紙に照射し、一様に散乱させた光を分光器で得ることにした。

これらの水銀ランプ輝線の波長の値は既知であるから、図22を用いて波長較正を行う。使用した凹面回折格子は焦点面が平面になる平面結像型（Flat-field type）なので、波長への変換は一次関数で表すことができる。図22にイメージセンサの素子番号と強度の強い4本の水銀スペクトル

![水銀ランプのスペクトル](image-url)
のピーク波長との対応関係を示す。1次関数を最少二乗法でフィットさせると以下のようになる。

\[\lambda [\text{nm}] = 0.127919 \times N + 348.64 \]

ここで \(N \) は素子番号で、1から768までの数を取る。図23の直線がフィットさせた一次関数である。今後、この式を波長変換の式とする。

実験で得られたデータに波長変換を行なった測定スペクトル図図24に示す。観測目的とする(0,0), (0,1), (1,2)バンドのほかにいくつか存在するピークは二次電子によるものと考えられる2P

図23 素子番号と波長の対応関係を最少二乗法でフィットした直線

図24 ロケット搭載用測定器の全測定波長域での \(\text{N}_2^+ \) 1N 及び \(\text{N}_2 \) 2P バンド放射のスペクトル（チャンバー真空度は \(9.0 \times 10^{-5} \text{[Torr]} \)）
6.2 絶対感度較正

国立極地研究所にある積分球標準光源を用いて分光器の絶対感度較正を行なった。この積分球標準光源はオーロラや大気光を計測するフォトメーターを較正するために導入された標準光源であり、積分球、コントローラー、光源、モニター受光器の4つから成り立っている。

積分球は較正装置のメイン部分であり、直径2mで、内部は等方的な散乱を起こすためにOptron2 (BaSO₄の一種)でコーティングされている。これに、直径30cmのフォトメーター導入用ポートと光源、モニター受光器が取り付けている。較正する際には導入用ポートから積分球内部を観察し、積分球に取り付けられた光源は、内部に150Wのハロゲンランプスチック電球と出射スリットがセットされている。この光源や積分球内面の分光放射輝度の測定を行なう。高感度Si-photodiodeに極大透過波長630nm、FWHM30nmの干渉フィルターやが取り付けているモニター受光器で、積分球内面の630nmの分光放射輝度を測定した。ここで、分光放射輝度を3.98 × 10² ~ 5.97 × 10²[kR/nm]まで変えて較正試験を行なった。

分光器から得た波長に対する出力[V]を図25に、積分球光源の波長に対する強度[kR/nm]を図26に示す。図中において、分光放射輝度が1は5.97 × 10²[kR/nm]、2は3.98 × 10²[kR/nm]、3は1.99 × 10²[kR/nm]である。分光器で得た出力を積分球の強度で割ったものが、分光器の絶対的な感度[V nm/kR]となる（図27）。図27において370nm付近までの感度が低いのは分光器に340nm以下の波長の光をカットする高精度カットフィルターやを装着しているためである。430nm付近で感度が最大となっている。分光器で使用しているイメージセンサーが430nm付近で最大感度を持つものであることもとよく一致している。また、積分球光源の強度を変えても絶対感度は変化していないので分光器の感度は線形性が高いと言える。今後はこの感度を、測定データの出力電圧[V]に掛け合わせることで分光器に入射している光量[kR/nm]に変換したスペクトルデータを使用する。

図25 分光器で検出した積分球標準光源のスペクトル
6.3 フィッティング

実験で得たデータに対し、波長変換と絶対感度校正を行なった測定スペクトルから振動回転温度を求めめる。Kawashima et al.[1999]においては計算機シミュレーションによって振動温度・回転温度・装置間数の FWHM の 3 変数の関数形で表された理論スペクトルとのフィッティングを行なった。本研究においても、解析による温度の正確な導出を目指すため Gauss 型装置間数を用いないで、後述するように水銀ランプの輝線スペクトルから求めた装置間数を利用する。さらに、Kawashima et al. [1999] とは異なり、理論スペクトルと測定スペクトルのバンドピーク強度を合わせてフィッティングするのではなく、理論スペクトルと強度方向へ均一に拡大・縮小させた測定スペクトルとでフィッティングを行なった。なぜなら測定スペクトルは、1 ピクセルが 0.127nm に相当しているためにバンドピークが滑らかでなく平らになっていることがあり、正確なバンドピークを再現できていないためである。測定スペクトルのバンドピークが平らなまま理論スペクトルとフィッティングを行なうと、実際のスペクトルより上方向へ引きずられ、振動・回転温度がともに高く推定される可能性があるため、測定スペクトルを強度方向へ 0.8 〜 1.2 倍変化させた（図 28）。
図28 測定スペクトルの高さの変化

フィッティングを行い振動・回転温度を求める際に、まず 1N(0,0) バンドでは 385 ～ 395nm、1N(0,1) 及び 1N(1,2) バンドでは 420 ～ 430nm の波長域を 1000 分割して 0.01nm 間隔で補間する。ある波長 λ_i において、波長域のピーク値で規格化した測定・理論スペクトルの強度を $y(\lambda_i)$, $f(\lambda_i)$ として、フィッティングの誤差を次のように定義する。

$$Fitting\ Error = \frac{\sqrt{\sum_{i} (f(\lambda_i) - y(\lambda_i))^2}}{\sum_{i} y(\lambda_i)}$$

このフィッティングエラーが最小となるような振動温度・回転温度・スペクトル強度の組み合わせの理論スペクトルを最適であるとみなす。

6.4 1N(1,1) バンドの再現

これまで室内実験において同測定器で 1N(0,0) バンドより回転温度を測定すると、室内温度よりはるかに高い 350K と推定されていた。また、Kawashima et al. [1999] ではロケット観測において、高度 105km で 230K, 120km で 460K, 135km で 540K と中性大気温度 (MSIS-86) より高い回転温度が測定された。この高い回転温度の推定は 1N(0,0) バンドのすそ部分が理論スペクトルよりも広がっているためで、特に R-branch の短波長側でその広がりは顕著であった。この原因は、電子線による励起が厳密には電子双極子的な励起ではなく、高い回転準位においては電子双極子的な励起における遷移確率 (Hömli London Factor) よりも高い確率で励起されることに起因していると考えられてきた (Hernandez et al.[1982])。

しかし、解析を進めるとところ、これは 1N(0,0) バンドの R-branch 側には 1N(1,1) バンドが存在するためで、1N(1,1) バンドを含めた理論スペクトルを求めるとき実験スペクトルと顕著に一致することがわかった。Kawashima et al.[1999] による観測スペクトルにおいても、高度 105km のスペクトルで明らかに 1N(1,1) バンドが確認された(図29)。このような 1N(1,1) バンドを考慮していない理論スペクトルとのフィッティングを行なったため、回転温度が高く推定されたと考えられる。
図 30 に $1N(0,0)$ バンド $1N(1,1)$ バンドの理論スペクトルと 2 つのスペクトルを合わせたものを示す。

図 29 ロケット観測による高度 105km の $1N(0,0)$ バンドの観測スペクトル (Kawashima et al. [1999])

図 30 $1N(0,0)$ バンドと $1N(1,1)$ バンドの再現 (後節で求めた装置関数を用いた)

6.5 2P バンドの効果を取り除いたフィッティング

前述したように観測目的とするバンドは一つ増えて、$1N(0,0)(1,1)$ バンド群と $1N(0,1)(1,2)$ バンド群となる。$1N(0,0)(1,1)$ バンドのほうが、$1N(0,1)(1,2)$ バンドより強度が強いため、スペクトルをより正確に再現している。これを利用して、$1N(0,0)(1,1)$ バンドより回転温度を求めて、その回転温度を仮定して $1N(0,1)(1,2)$ バンドより振動温度を求めることにする。
$1N(0,0)(1,1)$ バンドより回転温度を求める際には、フィッティングを 386.00 ～ 393.00nm までで
行なった。これは、1N(0,0) バンドの P-branch 側のすそに 2P(2,5) バンドが重なってスペクトルが広がっているためで、フィッティングを行う上で波長区間を短くすることで 2P(2,5) バンドの効果を取り除いた。回転・振動温度の変化によって理論スペクトルが変わるのは、1N(0,0)(1,1) バンドの重なる領域、または 1N(0,0) バンドの R-branch 側であり、1N(0,0) のバンドピーク 391.4nm 以上では理論スペクトルはほとんど変化しない。ゆえに、フィッティングを行う上での区間の最大波長を短波長側に移動しても、391.4nm より長波長側であれば適当であると考える。
さらに、1N(0,1)(1,2) バンドには2P(1,5) バンドが含まれているため測定スペクトルには理論スペクトルにないふくらみがあり、回転温度・振動温度でフィッティングをかけると回転・振動温度が高く推定される可能性がある。この 2P(1,5) バンドの効果を取り除くために (1)422.00 ～ 426.00nm と 427.44 ～ 428.50nm、(2)422.00 ～ 428.50nm の 2 種類の波長区間でフィッティングを行なった（図 31）。結果はフィッティングエラーは (2) のほうが小さいが振動温度が高く推定された（表 4）。
ゆえに室内実験において妥当であると考えられる振動温度 300[K] を推定した (1) の波長区間を用いて、今後はフィッティングを行うことにする。

![Graph](image)

図 31 フィッティングを行なった区間

表 4 フィッティングにかかる波長区間を変えた結果

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>422.00 ～ 426.00</td>
<td>(1)</td>
<td>0.00510</td>
<td>300</td>
<td>330</td>
</tr>
<tr>
<td>427.44 ～ 428.50</td>
<td>(2)</td>
<td>0.00079</td>
<td>400</td>
<td>330</td>
</tr>
</tbody>
</table>
6.6 装置関数の導出

前章において、Gauss 型の装置関数を用いて理論スペクトルプロファイルを再現した。この理論スペクトルと (0,1)(1,2) バンドの実験スペクトルは比較的よくフィッティングするが、(0,0) バンドはフィッティングせず誤差も大きいので、Gauss 型の装置関数は理論スペクトルを再現するのに適當といえない。そこで、水銀スペクトルを用いて装置関数を求める。

図 32 に水銀ランプ 404.66nm の輝線拡大図を示す。404.66nm のスペクトルから 407.78nm をピークとするスペクトルを取り除いて装置関数 A を求めた。取り除く方法として、まず 407.78nm をピークとするスペクトルと 404.66nm をピークとするスペクトルは形が同じであると仮定し、ピークの比を求めた。次に 404.66nm より短波長側のスペクトルにこの比を掛け合わせることで 407.78nm のスペクトルのピークより短波長側を再現した（図 32 線 3）。再現したスペクトルを 407.78nm をピークとするスペクトルから差し引くことで装置関数 A を導出した（図 32 線 2）。この装置関数 A
を用いて理論スペクトルを再現し、測定スペクトルとフィッティングを行なった（図33）。この結果は、全体として実験スペクトルの形とフィットしてはいるが、スペクトルのピークが測定スペクトルより太くなるなど完全に合っているわけではない。これは、水銀ランプの光が平面上に一様に広がっているのに対し、電子線より射出された電子ビームは円錐形に広がり一様ではないためと考えられる。より正確な温度を求めるためには、測定スペクトルを完全に再現できるような理論スペクトルを作ることが重要である。そのため、先ほど求めた装置間数Aを基に以下の方法で測定スペクトルに合致するより適当な装置間数Bを求めた。このとき、理論スペクトルは回転温度Tr=300[K],Tv=300[K]と仮定し、合わせる測定スペクトルは実験において强度の最も強い$2 \times 10^{-4} [\text{Torr}]$のときのものを使用した。

図34 装置間数Aを均一に拡大（線2）、縮小（線1）させて求めた理論スペクトルと測定スペクトル

図35 装置間数AとB
まず、装置関数Aのピークを中心に波長方向へ均一に拡大・縮小させた装置関数で理論スペクトルを作成してみた。この結果より、ピーク付近は縮小、すそ付近は拡大させた装置関数のフィッティングが合うとわかった（図34）。次に、次に均一ではなくすそ付近が1.2～2.6倍、ピーク付近が0.55～0.95倍となる線形変換を装置関数Aにほどこした。結果、装置関数を用いて理論スペクトルを求めフィッティングを行い、フィッティングエラーの最小となったものを装置関数Bとした（図35）。装置関数Bはピークが0.56倍、すそが2.03倍となる線形変換を行なったものである。図33と図36を比べると明らかに装置関数Bを用いたほうが、測定スペクトルとよくフィッティングしていることがわかる。さらに、この装置関数Bを用いて1N(0,0)(1,2)バンドの理論スペクトルを再現し（図37）、フィッティングを行なったところフィッティングエラーは装置関数Aよりも小さくなった（表5）。よって、この装置関数Bは妥当であることを確認した。今後は、この装置関数Bを用いた理論スペクトルと測定スペクトルでフィッティングを行なう。

図36 装置関数Bを用いた1N(0,0)(1,1)バンドの理論スペクトル（実線）と測定スペクトル（破線）

図37 装置関数Bを用いた1N(0,0)(1,2)バンドの理論スペクトル（実線）と測定スペクトル（破線）
表 5 装置関数 A, B によるフィッティングの結果

<table>
<thead>
<tr>
<th>バンド</th>
<th>装置関数</th>
<th>Fitting Error</th>
<th>振動温度 [K]</th>
<th>回転温度 [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) (1,1)</td>
<td>A</td>
<td>0.003492</td>
<td>900</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.001085</td>
<td>900</td>
<td>310</td>
</tr>
<tr>
<td>(0,1) (1,2)</td>
<td>A</td>
<td>0.004257</td>
<td>100</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.001457</td>
<td>300</td>
<td>330</td>
</tr>
</tbody>
</table>

7. 室内実験による較正

ロケット搭載用測定器を宇宙科学研究所の大型スペースチェンバーに設置し、電磁波を真空引きした後に N2 ガスを導入してビーム照射実験を行い、真空中での測定器の動作確認を行った。測定高度に対応した真空環境 (1.2 × 10^{-5} ~ 2.0 × 10^{-4} Torr) の中でビーム照射とスペクトル取得に成功した。チェンバー内部の圧力は電磁真空計を用いて同時測定した。図 38 に真空度 2.0 × 10^{-4} Torr（高度 100km に相当）での電子ビーム放射の様子を示す。青い光は電磁励起した N2 + の励起起時における放射であり、電子ビームの放射方向と一致する。

図 38 スペースチェンバーでのビーム放射の様子

絶対較正したデータより 1N(0, 0) [391.4 nm] と 1N(0, 1) [427.8 nm] のスペクトルピーク強度比を求めた。この強度比は Einstein 係数の比 A(v' = 0, v'' = 0) / A(v' = 0, v'' = 1) と一致しなくてはならない。測定データより求めた比は 3.13、理論計算での比 3.07(Gilmore, Laheer and Espy [1992]) とはほぼ一致したので、測定したスペクトルは正しいと言える。2%程度の誤差は、測定においてバンドピークを正確に測定できていないために生じたものと考える。

また、室内実験で得たデータの解析において、スペクトルデータ数を増やすことににより測定スペクトルはなめらかになり、理論スペクトルに近い形で再現できる。しかし、実際のロケット観測のデータ解析においては、用いるスペクトルデータ数で高度分解能が決まるため、ここではロケット観測を想定した解析を行なった。ロケット搭載用測定器の分光器は 1 つのスペクトルを得るのに
かかる露光時間が227.7msであり、高度100km付近ではロケットの速度が1km/secであるため、
4個分のスペクトルデータで高度約1km分解能データを得ることになる。観測スペクトルの解析では、
高度分解能を4km程度するとするために、それに相当する16個分のスペクトルデータを用いて解析する。

7.1 数密度の補正

異なる真空度で測定したスペクトルデータにより、数密度の補正を行なった。(21)式より、同じ
振動・回転温度におけるスペクトルのピーク強度はN_2数密度に比例すると推測される。
実験で得た測定スペクトルに絶対感度補正を行なったスペクトルピーク値[kR/nm]を様々な数
密度に対して示す(図39)(図40)。数密度はチャンバーに付属している電離真空計のデータを用い

図39 1N(0,0)のband headの強度と数密度の関係。点線は実験結果のフィッティングカーブ
(式27)、太線は(式31)式より求めた理論カーブ

図40 1N(0,1)のband headの強度と数密度の関係。点線は実験結果のフィッティングカーブ
(式28)、太線は(式31)式より求めた理論カーブ
で、温度300Kの理想気体状態方程式より導出した。その結果、ピーク値は数密度に対してほぼ比例することを確認した。また図中の点線はそれぞれの数密度に対するスペクトルデータから最小二乗法で求めた。

\[I' \ [kR/nm] = (5.1 \times 10^{-11})N_0 - 11.2 \quad [(0,0) \text{ band peak}] \tag{27} \]

\[I' \ [kR/nm] = (1.5 \times 10^{-11})N_0 - 2.5 \quad [(0,1) \text{ band peak}] \tag{28} \]

\[N_0 \ [1/cm^2] \] は \(N_2 \) の数密度であり、I' はスペクトルのバンドピークで単位は [kR/nm] である。この(27)(28)式では、数密度が0/cm^2のとき \(y \) 切片の値が0でないためピーク値も0とならない。この原因は用いた真密度がチェンバーを真空引きした後に \(N_2 \) ガスを導入したものであり、導入前の背景真密度を差し引いていないためと考えた。これを考慮して計算した結果は次のようになった。

\[I' \ [kR/nm] = (5.0 \times 10^{-11})N_0 - 3.5 \quad [(0,0) \text{ band peak}] \tag{29} \]

\[I' \ [kR/nm] = (1.4 \times 10^{-11})N_0 - 0.2 \quad [(0,1) \text{ band peak}] \tag{30} \]

この式の第一項に対する \(y \) 切片の影響は、1N(0,0)バンドにおいては、I' のピークが高密度 (8.6 \times 10^{12} /cm^3) において0.8%の減少、低密度 (1.0 \times 10^{12} /cm^3) では7.0%減少する程度で小さい。また、\(y \) 切片は (27)(28) 式に比べて (29)(30) 式のほうが小さくなったため、(29)(30)式のほうが数密度の実験値と一致したと言える。

一方、理論的に数密度を求める方法を試みる。 (21) 式を 1N(0,0) バンドに関して修正する。

\[N_{\nu_2=0}^{\nu_2=0} \ [\text{photon/cm^3} \cdot \text{s}] = \frac{\sigma_1 N(0,0)i}{\bar{S}_{\text{beam}}} N_0 \] \tag{31} \]

ここで、\(N_{\nu_2=0}^{\nu_2=0} \ [\text{photon/cm^3} \cdot \text{s}] \) は 1N(0,0) バンドの体積放射率、i [mA] は電子ビーム電流値、\(\bar{S}_{\text{beam}} [\text{cm}^2] \) は測定領域中の電子ビームの平均断面積、\(\sigma_1 N(0,0) \) は 1N(0,0) バンドの放射断面積である。それぞれ、ビーム電流値iはアノードから流出する電流より12mAと仮定、\(\bar{S}_{\text{beam}} \) は図より電子ビームの直径から算出、1keVの電子に対する \(\sigma_1 N(0,0) \) は、6.23 \times 10^{-18} \text{ cm}^2 である (Borst [1970])。

さらに (31) 式に \(G(\text{geometry factor}) \) を掛けることで、対物レンズに入射する単位時間当たりの光子の個数を決定できる。

\[I \ [\text{photon/s}] = G N_{\nu_2=0}^{\nu_2=0} \quad (G = \frac{1}{4\pi} A \Omega L) \] \tag{32} \]

ここで A[cm^2] は対物レンズの面積、\(\Omega[\text{sterad}] \) は分光器の視野領域の立体角、L [cm] は分光器の視野領域と電子ビームとの重なった領域の幅である。L [cm] は図38より20cmと決定した。その結果、G は 6.51 \times 10^{-4} \text{ cm}^2 となった。 (32) 式においてIの単位を [kR/nm] に変換した \(I' \) と (32) 式より、測定スペクトルのピーク値より求められる数密度は (33) 式のようになる。

\[N_0 = \frac{I'}{G} \quad \left(I' = \frac{I'}{4.86 \times 10^{-11}} \quad [(0,0)\text{band peak}] \right) \tag{33} \]

また、(0,1) バンドのスペクトルピーク値と、放射断面積 \(\sigma_{1N(0,1)} \) を用いて同様に数密度を求めた。この場合、\(\sigma_{1N(0,1)} \) は、Einstein 係数の比 A(0,0)/A(0,1)=3.07より \(\sigma_{1N(0,0)} \) を用いて求める。結果、\(\sigma_{1N(0,0)} \) は 1.7 \times 10^{-18} \text{ cm}^{-2} となり、(34) 式が導かれる。

\[N_0 = \frac{I'}{G} = \frac{I'}{1.33 \times 10^{-11}} \quad [(0,1)\text{band peak}] \tag{34} \]
同じ真空間における1N(0,0)バンドと1N(0,1)バンドのピーク値の誤差は、1N(0,0)バンドほうが小さいため、1N(0,0)バンドのスペクトルピーク値から数密度をもとめるほうが正確である。また、実験より求めたフィッティングカーブ（29）式と理論カーブ（33）式を比較すると、8.0 × 10^{-2} / cm^3 の数密度でバンドピーク値は（29）式で 396.5 kR/nm、（33）式で 388.8 kR/nm となり、その差は 7.7 kR/nm で 2%程度と小さい。そのため、（29）式は理論的にも保証されたと言える。

ゆえに、ロケット観測においてスペクトル強度より N_2 数密度を求める際には、(0,0)バンドピークより求めた（29）式を用いることが妥当であると考える。

7.2 回転温度の校正

スペースチャンバー内の実験において、同じ測定条件下で得た 16 個のスペクトルデータ（高度 4km に相当）と理論スペクトルでフィッティングを行なった。

最初に 1N(0,0)(1,1) バンドについて、振動温度を 300K と仮定し、回転温度を関数とした理論スペクトルと強度方向に変化させた測定スペクトルでフィッティングを行い、回転温度の散らばり具合を調べた。図 41 にフィッティングエラーに対する回転温度を示す。この結果より回転温度の平均と標準偏差を求めると、低真空度 2.5 × 10^{-4} Torr（高度 100km）では 310.6 ± 7.7K、高真空 2.0 × 10^{-5} Torr（高度 120km）では 270.6 ± 35.8K となった。Kawashima et al. [1999] が前回のロケット観測で使用した測定器を用いて室内実験を行なったところ、低真空度 2 × 10^{-4} Torr では 265.7 ± 8.4K 高真空 2 × 10^{-5} Torr では 247.5 ± 41.2K となった。室内実験においては、回転温度と室温は同じであると考えられる。ゆえに、測定器の改良と解析手法の改良により、室温 300K により近い回転温度の推定ができ、また誤差も小さくなったため回転温度の精度は向上したといえる。

![回転温度の校正](image)

図 41 1N(0,0)(1,1) バンドより算出した回転温度のばらつきと平均の回転温度 310[K](破線)。
真空度は 2.5 × 10^{-4}[Torr] である。

また、1N(0,1)(1,2) バンドにおける回転温度の散らばり具合も同様に調べた。図 42 にフィッティングエラーに対する回転温度を示す。回転温度は 335.6 ± 14.1K となり、同真空度における 1N(0,0)(1,1) バンドより求めた回転温度に比べて誤差が約 2 倍になっている。これは、1N(0,1)(1,2) バンドの強度が小さいため S/N の比が小さくなることが原因であると考える。また、平均の回転温度が 25K 程度高く推定されるのは、1N(0,1)(1,2) バンド中の 2P バンドを完全に取り除けていない
図 42 1N(0,1)(1,2) バンドより算出した回転温度のばらつきと平均の回転温度 335[K](破線)、真空度は 2.5×10^{-4}[Torr] である。

ことが原因と考えられる。

さらに、異なる真空度での測定データを用いて、数密度に対する回転温度の平均値と誤差を求めた。その結果、1N(0,0)(1,1) と 1N(0,1)(1,2) の両バンドにおいて数密度が低いほど誤差が大きくなることがわかった（図 43）。これは、数密度が減少すると、電子ビームで電離させてできる N_2^+ の数密度が減少し、分光器の検出光子数が減ることが原因と考えられる。つまり、測定されるスペクトルの強度は確率的な現象であるため、検出される光子数を N_p とすると、統計的な $\sqrt{N_p}$ のゆらぎを持つため、数密度が減少することで相対的な誤差 $\sqrt{N_p}/N_p = 1/\sqrt{N_p}$ が大きくなったと推測される。

図 43 数密度に対する回転温度。赤線：1N(0,0)(1,1) バンドより算出、青破線：1N(0,1)(1,2) バンドより算出
7.3 振動温度の較正

振動温度の算出には，1\(\text{N}(0,1)(1,2) \) バンドのスペクトルを用いた。回転温度を 300K と仮定して，振動温度の散布を求める（図 44）。シェルナー内で，\(N_2 \) を振動励起させる過程はないとすると，振動温度は室温の 300K と予測できる。しかし，2.5 \(\times \) 10\(^{-4} \) Torr では，振動温度は 575 ± 282K となった。

そこでまず，振動温度・回転温度を関数とした理論スペクトルと，1\(\text{N}(0,0)(1,1) \) と 1\(\text{N}(0,1)(1,2) \) の両バンドの強度方向を変化させた測定スペクトルでフィッティングを行い，フィッティングエラー

図 44 \(\text{N}(0,1)(1,2) \) バンドより算出した振動温度のばらつきと平均の振動温度575[K](破線)。
真空度は 2.5 \(\times \) 10\(^{-4} \)[Torr] である。

図 45 1\(\text{N}(0,0)(1,1) \) バンドより求めた振動温度と回転温度に対するフィッティングエラーの分布。
\(\times \) はフィッティングエラーの最小値，\(T_r 900[K] \)，\(T_r 300[K] \)
図46 1N(0,1)(1,2)バンドより求めた振動温度と回転温度に対するフィッティングエラーの分布。
×はフィッティングエラーの最小値、Tv 300[K]、Tr 330[K]

図47 1N(0,1)(1,2)バンドより算出した数密度に対する振動温度
が最小となる、振動・回転温度と強度方向の変化率を求めた。次に、この強度変化率を固定した測定スペクトルと、振動温度・回転温度を関数とした理論スペクトルでフィッティングを行なった。
図45と図46に真空度2.5×10^{-4}Torrでのフィッティングエラーの等高線図を示す。これより、振動温度の変化によるフィッティングエラーの変化はほとんどないとわかる。これは、測定法で述べたようにそれぞれのバンドピーク比は振動温度が約500K以下では変化しないことと一致する。つまり、500K以下の低い振動温度では正確に算出できないとわかった。また、図45と図46を比べると、1N(0,0)(1,1)バンドでは振動温度が約1400Kまでフィッティングエラーにあまり変化がない
のに対し 1N(0,1)(1,2) バンドでは振動温度が約 700K からフィッティングエラーに変化が現れる。これは、1N(0,1)(1,2) バンドピークの比が 1N(0,0)(1,1) バンドピークの比に比べて約 1/3 倍と小さいため、1N(0,1)(1,2) バンドのほうが振動温度によるスペクトルの変化が大きいことによる。ゆえに、振動温度は 1N(0,1)(1,2) バンドを用いて算出するほうが妥当である。

また、数密度に対する振動温度の平均と誤差を求める（図 47）。振動温度も回転温度と同様の原因から数密度が低くなるほど誤差が大きくなっていることがわかる。

7.4 まとめ

以上の結果より、ロケット搭載用測定器の解析と性能について以下ことがわかった。

1. 数密度はバンドピークより再現でき、1N(0,0) バンドピークを用いて算出することが妥当だと考えられる。
2. 回転温度は 1N(0,0)(1,1) バンドを用いて算出することが最適であり、誤差は低高度 (100km) では約 10K、高高度 (120km) では約 40K と見積もられる。
3. 振動温度は 1N(0,1)(1,2) バンドより求めるのが妥当であるが、500K 以上でないと正確な温度とはいえないと考えられる。

8. 結 論

S-310-24 号機の観測結果を踏まえて、1 1N(1,1) バンドを再現した理論スペクトルをシミュレーションする、測定スペクトルの強度方向を変数としてフィッティングを行う、2P バンドの効果がある波長域を取り除いたフィッティングを行う、さらに測定スペクトルを含む装置関数を求めるなどの新しい解析手法を検討した。

S-310-30 号機に搭載するフライトモデルの測定器を用いて、宇宙科学研究所の大型スペースチャンバーで観測高度に対応した真空度において観測実験を行なった。得られたデータに対して、改良した解析手法を用いて振動温度・回転温度・数密度を算出した。その結果、真空度 2.5 × 10⁻⁴ Torr において 1N(0,0)(1,1) バンドより求めた回転温度は 310.6 ± 7.7 K、1N(0,1)(1,2) バンドより求めた振動温度は 575 ± 282 K また、1N(0,0)(1,1) バンドより求めた数密度は 8.31 ± 0.028 × 10¹² cm⁻³ となった。前回の測定器よりも精度が充分で妥当な測定結果が得られたため、考案した解析手法の有効性であると考える。

今後は、新しい解析手法を用いて、S-310-30 号機による観測データを解析することで、信頼性の高い結果が得られることを期待する。

9. 参考文献

