MIRIS: 韓国初の宇宙赤外線望遠鏡

T. Matsumoto^{1,3}, H. Matsuhara³, S. Matsuura³, K. Tsumura³, W. Han^{2,4}, D.-H. Lee², W.-S. Jeong^{2,4}, Y. Park², B. Moon², S.-J. Park², J. Pyo², I.-J. Kim², W.-K. Park², D. Lee^{2,4}, K. Park², U. Nam², J.-H. Park², K.-I. Seon^{2,4}, K. Ahn⁵, J. Cho⁶, H. M. Lee⁷, MIRIS Team^{1,2,3,4,5,6,7}

- ¹ Institute of Astronomy & Astrophysics, Academia Sinica, Taiwan, ² Korea Astronomy and Space Science Institute, Korea,
 - ³ Institute of Space and Astronautical Science, JAXA, Japan, ⁴ University of Science & Technology, Korea,

⁵ Chosun University, Korea, ⁶ Chungnam National University, Korea, ⁷ Seoul National University, Korea

1. Introduction

- The main payload of STSAT-3, MIRIS (Multipurpose InfraRed Imaging System) is the first Korean Infrared mission (PI:W. Han)
- The space observation camera with 8cm telescope aperture has a wide field of view $(3.67^{\circ} \times 3.67^{\circ})$, the wavelength coverage from 0.9 to 2 μ m and the angular resolution of 51.6".
- The main objectives of MIRIS are Cosmic Near-Infrared Background (CIB) observation and Pa α survey of Galactic plane.
- ISAS made a contribution on optical, mechanical and thermal design (国際共同ミッション推進経費)

STSAT-3 was successfully launched on Nov. 21, 2013 from Yasny launching site, Russia.

3. Cosmic Near-Infrared Background

Nature of Excess sky brightness and fluctuation in Near-Infrared

- ✓ Subtraction of Zodiacal Light: Revision of **ZL model**
- ✓ Measurement of large-scale (degree scale) fluctuation of CIB
- Measurement of an absolute CIB level
- ✓ MIRIS will delineate the origin of excess brightness and fluctuation

pop.III origin? Other exotic source?

		•	IRTS/NIRS		Totani et al. 2001
[· · · · · · · · · · · · · · · · · · ·	-	DIRBE/COBE	0	Madau & Pozzetti 2000
	·>>		Wright and Rees 2000		Fazio et al. 2004
	FPC/SPICA coverage		Cambrecy et al. 2001		model by Totani et al. 2001

MIRIS is working well as expected!

1.5

wavelength [µm]

2.0

2.5

mmmmmm

1.0

Cross sectional view of MIRIS

Flight Model of MIRIS

Origin of Warm Ionized Medium (WIM)

- \checkmark Comparison between Pa α and H α observations

AKARI and Spitzer detected large fluctuation of the sky that can not be explained by known foreground sources. MIRIS can detect fluctuation at large angular scale up to ~5 degree.

Observation of CIB

- ✓ Low background region
- ✓ North Ecliptic Pole (NEP) (primary): 10° x 10°
- ✓ Secondary Targets: SEP, NGP (North Galactic Pole) or SGP

IRTS, COBE detcted large excess sky brightness that can not be explained by known foreground sources

Smoothed image of infrared excess emission in **NEP Monitor field observed by AKARI. Angular** diameter is 10 arcmin and wavelength band is **2.4, 3.2 and 4.1\mum from left to right.** (Matsumoto et al. 2010)

✓ Dust scattering around HII region and dust clouds

All-sky H α map (Finkbeiner, D.P. 2003)

- \checkmark 6' (FWHM) resolution
- ✓ Composite of the Virginia Tech Spectral line Survey (VTSS) in the northern & the southern H-Alpha Sky Survey Atlas (SHASSA)

Monte-Carlo Simulation

- ✓ Less significant dust scattering
- ✓ Uniform dust distribution; E(B-V) = 0.1
- ✓ Point source or Spherical HII region

Interstellar Turbulence

- ✓ Find the physical properties of interstellar turbulence
- \checkmark Measure the structure function

Expected Sensitivity

- ✓ Sensitivity = $6.6e^{-21}$ W/m²/arcsec² @ 2,400 frames with 1 sec integration (3 σ)
- \checkmark Targeted resolution = 1' 2'

4. Observation Plan

Operation

- Observation of NEP or SEP for CIB ($10^{\circ} \times 10^{\circ}$)
- Observations in night-side regions: Pa α Survey of Galactic Plane (360° x 6°)
- ✓ 1 Field of view: 3.67° x 3.67°
- Calibration: **Monitoring** of the selected region of both **NEP** and SEP

Observation Phase

Operation Made	PV Phase	1 st Phase	2 nd Phase	3 rd Phase
	3 months	1 month	12 months	8 months
Space Observation	(1 month)			User Observations
- Pa α Survey	4 orbits/day		6 orbits/day	
- CIB	4 orbits/day	10 orbits/day		
- Calibration	2 orbits/day		2 orbits/day	

Japan side can propose observation programs in 3rd Phase.

(Applying image filter to remove artifacts & depending the pointing stability)

Possible Observing Targets

- ✓ Warm ionized medium
- ✓ Faint extended HII regions
- \checkmark Dust clouds

✓ ...

 \checkmark Extended H α sources

Orion Nebula Rosetta Nebula

Blue: I, Green: H **Red:** $Pa\alpha$ band

Space Science Symposium, ISAS/JAXA, Japan, 9-10 January 2014