2014/1/9-10 第14回宇宙科学シンポジウム

電離圏観測ロケット近傍の ウェイクに起因するプラズマ波動

Plasma wave turbulence due to the wake of an ionospheric sounding rocket

遠藤研、熊本篤志、小野高幸、加藤雄人 東北大学大学院理学研究科

Ken Endo, Atsushi Kumamoto, Takayuki Ono, Yuto Katoh Tohoku University

This document is provided by jAXA.

1. Introduction <u>1-1 Sounding Rocket and Plasma Wake</u>

Fig. 1 Electron density profile over Japan in IRI-2007 Model. [Bilitza and Reinisch, 2008] Fig. 2 Schematic picture of the wake. (based on Stone(1981) and Yamamoto(2000))

Table 1 Plasma parameters in the lower ionosphere calculated from IRI-2007 model. [Bilitza and Reinisch, 2008]

	Electron	lon	
Thermal Velocity	70 \sim 160 km/s	$300{\sim}700$ m/s	
Larmor Radius	1~3 cm	2~4 m	

1. Introduction <u>1-2. Plasma Waves around a Wake</u>

<u>Moon</u>

Langmuir wave
 Whistler-mode wave etc.

[e.g., Sibeck et al., 2012]

Artificial Satellite

• Lower hybrid wave [Keller et al., 1997]

Ionospheric Sounding Rocket

• UHR-mode wave (SS-520-1 rocket experiment) [Yamamoto, Ph. D thesis, 2000]

However, the observed wave frequencies are **not clearly coincident** with the UHR-mode dispersion.

S-520-26 Rocket Experiment in 2012

A kind of the observed waves has similar character in wave frequency.

We suggested they could be short-wavelength electrostatic waves including ESCH waves and UHR-mode waves.

[Endo, Masternithesis; i2012] by JAXA.

3

1. Introduction **1-3.** Purpose of this Presentation

Big goal of this study

To reveal generation mechanisms of plasma waves caused by the interaction between the ionosphere and a non-magnetized body.

more accurate understandings of in-situ data general physics of interaction between plasma and bodies

Current stage of this study

We now analyze the plasma wave data in the S-520-26 rocket experiment in detail to investigate the characteristics.

Purpose of this presentation

We show **spin-phase dependence of the plasma wave data** and discuss difference in wave activities and unstable regions around a moving rocket.

2. Experiment & Result 2-1 Overview of the S-520-26 Rocket Experiment

<u>Purpose</u>

- (1) Establishment of the neutral wind measurement method with using Li gas
- (2) Investigation of the momentum transfer process between the ionospheric plasma and the neutral atmosphere

Location Uchinoura in Kagoshima Prefecture

Fig. 3 Li cloud observed from Uchinoura. (ISAS/JAXA Website)

Time of Launch 2012/1/12 5:51 JST

Fig. 5. S-520-26 Rocket.

2. Experiment & Result 2-2 Instruments

,--- Tohoku University Group ---、
 PWM ; Plasma Wave Monitor
 NEI ; Number density of Electrons
 by Impedance probe

Other Groups

MGF ; MaGnetic Field sensor (Tokai Univ.)

SAS ; Sun Attitude Sensor (Tokai Univ.)

FLP ; Fast Langmuir Probe (ISAS/JAXA) EFD ; Electric Field Detector

(Toyama Prefecture Univ.) IRM ; Imaging and Rapid-scanning ion Mass spectrometer (Clemson Univ.)

2. Experiment & Result 2-3 Specs of NEI/PWM

Angular Resolution

Spin Frequency: 0.87 Hz (private communication, Dr. Takahashi and Mr. Sugai)

Frequency Range

coverage of the UHR frequency

	Mode	Frequency		Δf	Dynamic Range
PWM	PWM-L	300 Hz \sim 20.0	kHz	50 Hz	-111 \sim -8 dBm
	PWM-H	20.0 kHz \sim 7.02	2 MHz 🖌	20 kHz	-109 \sim -12 dBm
		$7.02\sim22.02$ M	ЛНz	300 kHz	-95 \sim -17 dBm
	Mode	Swept Frequency	L	Δf	Electron Density
NEI	Ascent	$0.1{\sim}$ 13.0 MHz	$10 \sim 10$	100 kHz	$10^3 \sim 2 \times 10^6$ /cc
	Descent	$0.1{\sim}$ 24.8 MHz	$10\sim 10$	200 kHz	$10^3 \sim 7 \times 10^6 / cc$

2. Experiment & Result 2-4 Results of PWM measurement $(f_{ce} = 1.0 - 1.3 \text{ MHz})$ _L Apex sunlit area [dBm] Group-A waves -50 2.5 -60 2 f/f_{ce} 1.5 -70 1 -80 0.5 -90 [s] 350 400 450 100 200 250 300 Time [s] 150 226 271 294 296 276 234 170 [km] 160 Alt. [km] Fig. 6 Dynamic spectrum of plasma waves (X+60 - X+460 s)Group-C Warbiesocumen 5. fronted boit & Group-B waves (-0.6fce)

3. Spin-phase Dependence <u>3-1 Attitude Analysis</u>

We analyze **the rocket attitude** by using the data from MGF and SAS during from 179 sec to 462 sec and deduce **spin-phase angle**.

Fig. 7 Schematic side and top view of a moving rocket.

A phase angle equal to zero means that PWM antenna A is in ram and antenna B is in a shaded region.

3. Spin-phase Dependence <u>3-2 Spin-phase dependence of the plasma waves</u>

The intensities in φ and φ+180° are different. → The antenna was not likely to work as a dipole antenna due to some hardware trouble.

3. Spin-phase Dependence <u>3-3 Difference in Wave Activity</u>

Assumption (b)

Only the antenna B receiving

Wave sources lie the upstream .

11 This document is provided by jAXA.

4. Summary and Future Work <u>4-1 Summary and Future Work</u>

<u>Summary</u>

- In order to investigate plasma disturbance around ionospheric rockets, we analyze the plasma wave data in the S-520-26 rocket experiment in detail.
- We reveal spin-phase dependence of the plasma wave data.
- Asymmetry of the spin-phase dependence indicates inhomogeneous distribution of wave activity as well as asymmetric sensitivity of the two antennas.
- The clear asymmetry might show the plasma waves do not propagate very long distance and the PWM has observed waves generated near the antenna.

Future Work

- Discussion about time variation of the spin-phase dependence of the wave data.
- Vlasov-Maxwell simulation for discussing plasma instability around a rocket.
 (→What are key parameters to generate plasma waves?)

4-2 Future Work – Vlasov-Poisson Simulation

1. One-dimension model

References

- Bilitza, D. and B. W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res., 42(4), 599-609, doi:10.1016/j.asr.2007.07.048.
- Finlay, C. C., S. Maus, C. D. Beggan, T. N. Bondar, A. Chambodut, T. A. Chernova, A. Chuillat, V. P. Golovkov, B. Hamilton, M. Hamoudi, R. Holme, G. Hulot, W. Kuang, B. Langlais, V. Lesur, F. J. Lowes, H. Lühr, S. Macmillan, M. Mandea, S. McLean, C. Manoj, M. Menvielle, I. Michaelis, N. Olsen, J. Rauberg, M. Rother, T. J. Sabaka, A. Tangborn, L. Tøffner-Clausen, E. Thébault, A. W. P. Thomson, I. Wardinski, Z. Wei, and T. I. Zvereva (2010), International Geomagnetic Reference Field: the eleventh generation, *Geophysical Journal International*, **183**, 3, 1216-1230, doi: 10.1111/j.1365-246X.2010.04804.x.
- Keller, A.E., D.A. Gurnett, W.S. Kurth, Y. Yuan, and A. Bhattacharjee (1997), Lower hybrid waves generated in the wake of the Galileo spacecraft, *Planet. Space Sci.*, 45, 2, 201-219, doi:10.1016/S0032-0633(96)00074-8.
- Sibeck, D.G., V. Angelopoulos, D.A. Brain, G.T. Delory, J.P. Eastwood, W.M. Farrell, R.E. Grimm, J.S. Halekas, H. Hasegawa, P. Hellinger, K.K. Khurana, R.J. Lillis, M. Øieroset, T.-D. Phan, J. Raeder, C.T. Russell, D. Schriver, J.A. Slavin, P.M. Travnicek, and J.M. Weygand (2011), ARTEMIS Science Objectives, *Space Sci. Rev.*, 165, 59-91, doi : 10.1007/s11214-011-9777-9
- Singh, N., U. Samir, K. H. Wright, Jr., and N.H. Stone (1987), A possible explanation of the electron temperature enhancement in the wake of a satellite, *J. Geophys. Res.*, 92(A6), 6100-6106
- Stix, T. H. (1962), The theory of plasma waves, McGraw-Hill Book Co., New York.
- Stone, N. H. (1981), The aerodynamics of bodies in a rarefied ionized gas with applications to spacecraft environmental dynamics, NASA Tech. Paper 1933
- Suzuki, T. (2010), On the impedance probe measurements in space plasmas, Ph. D. thesis, Tohoku University
- Yamamoto, M.-Y. (2000), Study on the wake structure and associated plasma wave turbulence observed by using sounding rocket experiments, PhD. Thesis, Tohoku University
- http://www.jaxa.jp