This study discusses a lunar/planetary spacecraft landing mechanism using energy conversion. A part of the authors has already proposed Base-Extension Separation landing Mechanism (BESM) and its effectiveness was confirmed in one-dimensional simulations and experiments. This study shows two-dimensional response analysis using BESM. The effectiveness of BESM for falling to slopes is verified.

Background

Explorations of the lunar attract attention

To realize soft landing on severe regions for example slopes or steps.

Previous methods and their problems

- Airbag Pit
- Honeycomb Crash
- Sky Crane

Base-Extension Separation landing Mechanism (BESM)

Components of BESM

1. Falling
2. Landing
3. Spring is stretched and velocity of the base is reduced.
4. When the springs reach stroke length, locking-devise is unlocked.
5. Extension is launched. Base lands softly.

BESM can realize

- Low rebound
- Reuse
- Passive landing

Simulation results

![Simulation results graph](image)

- BESM can prevent from tipping for falling to 30° slope.
- BESM can prevent from tipping under all conditions.
- Acceleration becomes high under small ground angle conditions.
- Energy reduction becomes large under large ground angle conditions.

Models for simulation

- Model for the base
- Model for the gear

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
</tr>
</thead>
</table>

References

[5] 佐伯 直亮(名大)

[6] 原 進(名大)

[7] 渡辺 翼(名大)

[8] 大槻 真嗣(JAXA)

Note: This document is provided by JAXA.