JUICE-JAPAN WG 木星氷衛星探査計画 —JUICE-PEP/JNA 高速中性粒子計測装置 —

Development of low-energy energetic neutral atom analyzer to be onboard JUICE spacecraft

浅村和史(宇宙研) K.Asamura(ISAS) ニ穴喜文(スウェーデンIRF) Y.Futaana (IRF) 三好由純(名古屋大) Y. Miyoshi (Nagoya U.) 坂野井健(東北大) T.Sakanoi (Tohoku U.) 齋藤義文(宇宙研) Y. Saito (ISAS) PEP/JNA チーム PEP/JNA team

JUICE

Ganymede

• Launch (expected):

- 2022-2023
- Jupiter orbit insertion (expected): 2030-2031
- Scientific objective:
 - Investigation of Jovian icy satellite (Ganymede, Europa, Callisto) to understand the potential of an environment to support life.
 - Investigation of Jupiter system as an archetype for gas giants

Callisto

Europa

PEP (Particle Environment Package)

Name		Energy range	Unit to be installed
JEI	Ion / electron energy analyzer	1eV/q – 25keV/q	ZU
JoEE	High energy electron energy analyzer	10keV – 1MeV	ZU
JDC	Ion energy mass analyzer	1eV/q – 25keV/q	NU
NIM	Thermal neutral / ion mass analyzer	thermal	NU
JNA	ENA energy mass analyzer (low-energy)	10eV – 3300eV	NU
JENI	ENA / ion mass analyzer (high- energy)	3keV – 300 keV	EU
NILI: Nodio Llo	:+		

NU: Nadia Unit

ZU: Zenith Unit

EU: Energetic particle Unit

Scientific objectives of PEP/JNA

PEP/JNA (Particle Environment Package / Jovian Neutral Analyzer) will perform a direct measurement of:

- Back-scattered particle
- Sputtered particle

coming from satellite surface.

- Neutral particles draw ballistic trajectories because of no effects due to electric / magnetic fields.
- Remote-imaging will be possible and it provides us large-scale characteristics of plasma particles precipitating from Ganymede's magnetosphere toward the satellite surface.

It will provide us:

Understanding of plasma structure of Ganymede magnetosphere

 Understanding of a role of satellite for mass transport in Jovian magnetosphere

Processes of particle emission from the satellite surface

				Backscattering	of magnetosphe	eric ions	
	Sputtering by magnetospheric ions						
Vaporization (MIV)							
Photon/Electron stimulated desorption (PSD/ESD)							
Thermal desorption (TD)							
0.1e\	/	l 1eV	l0eV	100eV	lkeV	10keV	
				JNA energy range Energy			

Only backscattering / sputtering processes can generate high-energy uneutrals. by jAXA.

Structure of Ganymede 's magnetosphere

Source/loss/transport processes due to the satellite

 Ganymede has an intrinsic magnetic moment.

[Jia et al., 2008, modified]

- Ganymede's magnetosphere is generated in Jovian co-rotating plasmas. Its characteristics are different from those of terrestrial magnetosphere.
- Localized precipitation of plasma particles, which reflects magnetospheric structure (Loss of magnetospheric plasmas)
- Emission due to back-scattering / sputtering
- Exosphere / ionosphere / torus
- Ionization of neutrals (source of plasmas for the magnetosphere)

Precipitating region (numerical simulation)

Cusp

 Precipitation at low latitude which corresponds to magnetic reconnection above the leading hemisphere

Complemental point to in-situ plasma measurements

Measurement of L-ENAs

lon

- Remote imaging is possible. It reflects plasma distribution on magnetically connected region to the satellite surface which is inside FOV of the instrument.
- It is difficult to reproduce energy distribution, pitch-angle distribution etc. clearly.

Measurement of plasmas

In-situ observation in principle. Remote imaging is difficult.

Measurements of plasma structures with better resolution (resolution provided by the instrument) are possible.

Time evolution of large-scale plasma structure can be obtained by L-ENA imaging.

This document is provided by jAXA.

PEP/JNA measurement principle

This document is provided by jAXA.

PEP/JNA design

Target	Energetic neutral atoms
Energy range	10eV – 3300eV
Energy resolution	1 (ΔE/E)
Mass resolution	1, >16
Angular resolution	7x25 deg
FOV(total)	15x150 deg
Sensitivity	2x10 ⁻⁶ [cm ² str eV/eV /sector]
	(including efficiency)
Time resolution	15s (nominal)

Energy range: Energy resolution:

Angler resolution:

PEP/JENI can cover energies larger than 2000eV.
Back-scattering and sputtering particles will be able to be discriminated even if ΔE/E ~ 1 by analyzing obtained energy spectra.
Instrumental resolution of 30 deg corresponds to 6-8 deg on satellite surface (referred to center of Ganymede, JUICE is on 500km circular orbit)

JNA block-diagram

: ISAS/JAXA part

Background noise due to high-energy particles

Followings are countermeasures:

- Passive shield
- Anti-coincidence due to SSD
- Coincidence with time-of-flight method

```
C_{\text{false}} = C_{\text{START}} C_{\text{STOP}} \Delta t
```

```
In case of
```

- Ganymede orbiting phase
- AL equivalent shield thickness
 - = 20mm
- C_{START} = 4000cps (rejection due to anti-coincidence is included.)

```
Сsтор = 7000cps
```

```
C_{\text{false}} = 1.8 \text{cps} (\Delta t = 64 \text{ns})
```


Development of L-ENA instrument

Chandrayaan-1/SARA/CENA (Indian moon mission)

- Launched in 2008.
- Energy spectra of back-scattered particles from the moon surface is obtained. Scattered efficiency is 20% (Wieser et al., 2009)
- Scattering function for back-scattering is deduced (Schaufelberger et al., 2011).
- Magnetic anomaly on the moon surface affects precipitation of plasma partciles. (Wieser et al., 2010)

MMO/MPPE/ENA

- To be launched in 2015
- Development of the instrument is mostly completed.

JUICE/PEP/JNA

- Structure is mostly the same as the past instruments except for the following:
- On-board CPU
- SSDs for anti-coincidence

We do not know the instruments which have better performance than PEP/JNA, if we consider the instruments with similar weight.

Summary

- PEP/JNA will perform the direct measurements of the back-scattering / sputtering neutral particles coming from the satellite surface. It will provide:
 - Understanding of large-scale structure of Ganymede's magnetosphere
 - Understanding of a role of satellite for mass transport in Jovian magnetosphere
- Neutral particles draw ballistic trajectories because of no effects due to electric / magnetic fields. Remote-imaging will be possible and it provides us characteristics of plasma particles precipitating from Ganymede's magnetosphere toward the satellite surface.
- Measurements of L-ENAs are complementary to in-situ plasma measurements.
- 20mm of AL-equivalent shield thickness will be necessary. Optimization of shield structure is necessary.
- We do not know the instruments which have better performance than PEP/JNA, if we consider the instruments with similar weight.