MELOS: Japan's Mars Exploration Plan

Takehiko Satoh
(Japan Aerospace Exploration Agency)

“Landing Sites” Workshop (20 Jan 2011 @ ESTEC)
What's happened to “Akatsuki” Venus Mission

- VOI attempted on 7 Dec 2010 but failed...
- Likely cause is “clogged” check valve in the fuel line (CV-F)
 - It prevented smooth flow of fuel, resulting in “less fuel than oxidizer” condition (O/F > 1).
 - The excess fuel acts as “coolant” for the thruster throat & nozzle. This does not work if the fuel is less than the oxidizer.
 - Without enough cooling, a damage has occurred to the thruster, and the spacecraft went to “Safe Hold”.

The spacecraft (including mission instruments) seems to be in good condition, and we will re-challenge VOI 6 years later.
Our Hope to “Mars” Missions

- We'd better plan “step by step” missions.
- MELOS-1 will be an “orbiter primary” mission with an EDL experiment that is a precursor of MELOS-2 lander.
- MELOS-2 will be an “lander primary” mission.

<table>
<thead>
<tr>
<th>Launch</th>
<th>Arrival</th>
<th>Mass to Mars Orbit (H-IIA202)</th>
<th>Mass to Mars Orbit (H-IIA204)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 2019</td>
<td>Feb 2022</td>
<td>1.4t</td>
<td>2.4t</td>
</tr>
<tr>
<td>Jul 2020</td>
<td>Feb 2021</td>
<td>1.2t</td>
<td>2.1t</td>
</tr>
<tr>
<td>Nov 2021</td>
<td>Jan 2024</td>
<td>1.3t</td>
<td>2.2t</td>
</tr>
<tr>
<td>Sep 2022</td>
<td>Aug 2023</td>
<td>1.1t</td>
<td>2.0t</td>
</tr>
</tbody>
</table>
Understanding the Martian System

- Interior + surface + atmosphere + surrounding space
 - To understand the evolution and to answer the fundamental question “Why (and how) is Mars different from the Earth?”, missions designed to study inter-relations between these are needed.
 - Both “orbiting” science and “landing” science are important.

Keyword:
Why is Mars “red”?

Orbiter (A): Meteorology
Orbiter (B): Aeronomy

Lander (A): Surface
Lander (B): Biology
Lander (C): Interior
Lander (D): Sample Return for MELOS-1 EDL and for MELOS-2
Orbiter (A): Martian Meteorology

- Comparative Meteorology (Earth vs Venus vs Mars)
 - Similarity: rotation period, tilt of the pole
 - Tenuous CO₂ atmosphere vs suspended dust (heat source)
 - Large seasonal variation (eccentricity) vs relatively small thermal inertia
 - Episodic “global” dust storm
 - Underground water (ice) reservoir
- Transportation/Relocation of Water & Dust
 - Never been studied in detail
 - Limitation of “local-time fixed” orbit
 - Need to characterize “global” transportation
 - Especially in the lower-most atmosphere
 - 3-D structure of temperature, composition, isotopic ratio, etc.
Resolve composition (C, N, O, and others) in escaping atmosphere. Estimate total escaping flux of the water and CO2 and understand how solar activity affects the escape.

With “two-orbiter” configuration,
- Simultaneous “global” and “local” measurements (including the solar wind parameters that would control the escape), and
- Parameter analyses to determine escape rates and most significant physical processes will be possible.

Proposed Payload

"Escaping Atmosphere" Orbiter:
- Ion analyzers (mass, energy, velocity), Neutral-gas mass analyser, Langmure probe, Magnetometer, Electric-field & Plasma-wave package, Potential control

"Remote Sensing" Orbiter:
- Global imager for “escaping atmosphere”, UV absorption cell, Solar-wind monitor, Solar-radiation monitor

Japan's Mars Exploration Plan

“Landing Sites” Workshop (20 Jan 2011 @ ESTEC)
Lander (A): Surface Environment

• **Goal:** Understand climate changes of 100s My scale and chemical coupling with thermochemical evolution of the solid planet.

• **Objectives:**
 (a) Discover initial melt through composition analysis of basaltic flow to infer composition of the mantle.
 (b) Understand ancient climate by investigating sedimentary rocks.

• **Method:** Geological survey over a great distance with a well-equipped rover.

• **Candidate sites for survey (landing):**
 (a) Ejecta of a young crater (~10 km dia.) in basaltic region.
 (b) Nili Fossae, or ancient coast line.

• **Model Payload:**
 3-D camera with variable LCF, Macro spectroscopic camera, XRFD, LIBS, K-Ar Dating, Magnetometer, Radar sensing, Electro-magnetic field, Meteorology package
Lander (B): Astrobiology

- Most likely place for Martian life?
 - Surface soil near the methane vent
 - Terrestrial life may survive at a few cm below Martian surface.
 - Martian environment ~4 Gy ago similar to Earth.
 - The birth of life can be in very short time.
 - Martian methane detected recently.
 - Bacteria that utilize methane & iron oxide discovered.

- Method?
 - With fluorochrome and a microscope
 - Dye protein, membrane, catalyst, etc.
 - Target sensitivity: 10 cells / 1 g of soil.
 (compared to 10^4 cells / 1 g in Earth desert)
 - Conclude “no life on Mars” if no detection.
 - Possibly detect organic materials related to chemical evolution before life.

Antarctic soil after dying
Lander (C): Interior Structure

(Depth)

- Heat flow
- Electromagnetic (>2 stations)

Rotation
(better to have multiple stations)
(precession, nutation)

Mars-quake
(better achievement with multiple stations)
(quiakes, free oscillations)

Possible collaboration with ESA’s network mission

Preliminary Reference Interior Structure Model on Mars (PRISM²)

Information

Japan's Mars Exploration Plan

“Landing Sites” Workshop (20 Jan 2011 @ ESTEC)
Capture and return the dust & atmospheric samples by performing aero-flyby.

- “Global average” information from such sample is significant to:
 - Orbiter sciences (meteorology, atmospheric escape),
 - Biological study

- Benefit from state-of-the-art analyses in the laboratory
 - High-sensitivity & high-precision analyses that would not be possible with *in-situ* equipment
Technology Development: Surface Exploration with 100-kg Class Rover

Robotics for geological & biological survey
- Rover (mobility, obstacles, durability against dust)
- Manipulator (function, portability, etc.)

- Under development by a team of people from JAXA and from many universities
Technology Development: Aerodynamic Control

- **Aerobraking**
 - HITEN (Engineering Demonstration Mission):
 Multiple swingbys between the Moon and the Earth + Aerobraking experiments at the Earth

- **Atmospheric Entry/Landing**
 - HAYABUSA sample-return capsule
 - SELENE-2 Lunar Lander (under development)

- **Aero-assisted Control**
 - Pin-point landing, non-landing sample return (LANDER D)
International Challenges to Mars

- Launches in all possible windows
 - Sample return in late 2020’s
 - NASA+ESA 2016, 18
 - 2011: Curiosity (MSL) (USA)
 - 2013: MAVEN (USA)
 - 2011: Phobos-Grunt (Russia) + YH-1 (China)
 - Indian Mars mission (2018?)
 - Japan: NOZOMI (launch in 1998)

- Failure before arrival at Mars
 - Then, we had HAYABUSA, KAGUYA, and AKATUKI
 - 2014: BepiColombo Mercury mission with ESA
 - SPRINT-A/EXCEED (Earth-orbiting EUV telescope)
 - Plans of lunar, asteroidal, planetary missions
 - We challenge Mars, the planet like the Earth, with MELOS!