南極高地における遠赤外線干渉計について Far-Infrared Interferometry from Antarctic Plateaus

Hiroshi Matsuo^a, Izumi Ohta^b, Makoto Hattori^c, Taro Matsuo^a, Yuan Luo^c, Qi-Jun Yao^d, Sheng-Cai Shi^d

^a National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan

^b Kinki University, Higashi-Osaka, Osaka, Japan

^c Tohoku University, Sendai, Miyagi, Japan

^d Purple Mountain Observatory, Nanjing, Jiang-Su, China

Abstract

Antarctic Plateaus, such as Dome F and Dome A, provide us with environments similar to space.

Far-infrared windows open at high and cold sites at the most remote place on earth.

• Far-infrared interferometry in space is required for future space astronomy, but we can start experiments in Antarctic Plateaus.

Atmosp	heric Windows		
Dome_A_winter_75um			

Requirements for Terahertz Astronomy

THz Gap of Angular Resolution

27arcmin

Subaru Suprime-Cam

What is similar to space environments?

- Difficult place to reach
- Low temperature, less than -80 C
- Remote observation is required
- Limited power supply
- Compact system design
- Simple assembly
- Strong vibrations and shocks during transportation

Undergoing activities Dome F by Japanese group Dome A by Chinese group Dome C by France/Italy group

Possible Design and Performance of Far-Infrared Interferometer

in Antarctic Plateaus

	Direct detectors	Heterodyne
Aperture diameter	1 m	1 m
Element number	4	10
Baseline	50 m	50 m
Wavelength	200 µm	200 µm
NEP/h or T _{sys}	$10^{-15} \text{ W/Hz}^{0.5}$	500 K
Bandwidth	10 GHz	10 GHz
Focal plane array	1000	1
Synthesized beam	1 "	1 "
Field of view	0.25 deg^2	0.5 arcmin ²
NEFD	15 mJy (1σ, 12h)	10 mJy (1σ, 12h)

Another Possibility with Photon Counting Interferometry

Development Plans with MuFT

How coherent are THz-photons?

 $\text{NEP}_{\text{direct}} = \sqrt{2P \cdot (hv + kT_B)} [W/\sqrt{\text{Hz}}]$

- It is like VLBI
 - Separate telescope, recording separately.
 - Photon statistics for correlation analysis
 - When, $T_B \ge hv/k = 160 \text{ K} @3.4 \text{ THz}$

Can we observe Earth like planets ?

- Earth-like planet at 1.3 pc from solar system
- 2 μ Jy or 4 × 10⁻²⁰ W/m² at 2THz.
- 10⁻¹⁸ W from the planet with 6 m telescope, comparable to background noise in 1 Hz BW.
- 300 kHz background and 1 kHz planet photon rates.
- Photons from planets are countable and coherent !

- Design of optical arrangements for Antarctic interferometer.
- Development of interferometer and 2D arrays.

Configuration and Optical System Design

- Imaging experiments in lab.
- Field experiments in Atacama or in Tibet.
- Deployment in Antarctic Plateaus.

Development Plans with Photon Counting Interferometer Basic study and demonstration of technology. • Development of detectors and data acquisition systems. Imaging experiments in lab.

• Development of Antarctic interferometer, as in above.