US proposed instrument(s)

- **BLISS for SPICA**: Sensitive Far-IR Spectroscopy Reveals the Cosmic History of Galaxies and Organic Elements
 - PI: Charles(Matt) Bradford (Caltech/JPL)
 - **µ-Spec**: A Revolutionary Far Infrared Spectroscopic Capability for SPICA
 - PI: Samuel(Harvey) Moseley (NASA/GSFC)

- **WISPIR**: Wide-field Imaging SPectrograph for the InfraRed
 - Co-PI: Lee Mundy (University of Maryland) and Dominic Benford (NASA/GSFC)
 - FIR/sub-mm spectrometers with dispersion elements
 - Superconducting detectors with ultra-high sensitivity

- Sep 2010: Final study reports of Galaxies and Organic Elements
- Never participation to SPICA.
- High sensitivity of **BLISS** is owing to high sensitivity of superconducting TES bolometer and new technology of wave-guide grating spectrometer.

BLISS overview

- BLISS (The Background Limited Infrared Submillimeter Spectrograph)
 - Sensitive Far-IR Spectroscopy Reveals the Cosmic History of Galaxies and Organic Elements
 - BLISS is a 38-433 µm grating spectrometer (R=700)
 - Fills gap between JWST / SPICA-MIR and ALMA with comparable sensitivity.
 - The BLISS grating architecture provides maximum sensitivity.
 - BLISS-SPICA is the only way to study a meaningful sample of the tens of thousands of high-redshift galaxies and protoplanetary systems now being discovered with Herschel and other imaging systems.
 - BLISS is compact, low mass, and has simple interfaces.
 - Only moving part is a chopping mirror.
 - Cold mass less than 30 kg, size 45x40x40 cm, bolts to 4.5 K instrument bench and recools heat to SPICA 1.7 K cold finger.
 - BLISS uses TES bolometer arrays with a now-standard SQUID multiplexer.
 - Systems issues proven in several scientific instruments.
 - Clear path to achieving the uniquely sensitive bolometers required for BLISS.

WISPIR overview

- WISPIR: Wide-field Imaging Spectrometer for the InfraRed
 - Objectives: high-z galaxies
 - & molecular lines in local universe
 - Imaging FT spectrometer
 - 35-210µm (3 bands), R=1000-6000
 - GSFC TES bolometer & SQUID MUX
 - NEP=4x10^{-20} W/Hz
 - 50mK/300mK tandem cooler (ASTRO-H)
 - High sensitivity with slit-trap prism
 - Improvement of SAFARI

Scientific objectives

- **BLISS**: Sensitive Far-IR Spectroscopy Reveals the Cosmic History of Galaxies and Organic Elements
 - μ-Spec: A Revolutionary Far Infrared Spectroscopic Capability for SPICA
 - PI: Charles(Matt) Bradford (Caltech/JPL)
 - SOLWIFS/PI: Charles(Matt) Bradford (Caltech/JPL)

μ-Spec overview

- **μ-Spec**: A revolutionary Far Infrared Spectroscopic Capability for SPICA
 - Objectives: similar to BLISS
 - Very high redshift objects (out to z=20)
 - H2O, O3 molecular lines in ISM
 - Ultra-high sensitivity & high resolution with compact system
 - Novel technologies
 - λ = 250–700µm
 - Micro-strip delay-line spectrometer (R=1500)
 - MKD (Microwave Kinetic Inductance), several times higher sensitivity than TES
 - Ultra compact spectrometer module fabricated on a ~100mm2 Si-wafer
 - 50mK ADR / 300mK He tandem cooler system (ASTRO-H)

μ-Spec technology

- **New technologies**
 - MW(RI) microstrip delay-line spectrometer
 - RF filter bank
 - MKDs, NEP=4x10^{-20} W/Hz
 - HEMT amplifier, 3-GHz readout

- **μ-Spec technology specifications**
 - Line sensitivity (5σ, 1h) = 1x10^{-20} Wm^{-2}
 - Resolving power (R/Δλ) = 1500
 - Spectral coverage: 250-700 um
 - Number of beams: 177 TBD, Diffraction ltd.
 - Detector format: 4000
 - Detector sensitivity: 1x10^{-20} W/Hz
 - Detector technology: MKD
 - Readout: Microwave HEMT
 - Spectrometer: Delay line spectrometer
 - Cooler: ~300mK TBD