国際共同木星圏探査ミッション ソーラー電力セールを用いた 木星オービター システム検討について

高島健、藤本正樹、船瀬龍(ISAS/JAXA) 佐々木晶(国立天文台) 笠羽康正(東北大) 国際共同木星探査検討WG

ソーラー電力セイルを用いた木星系探査

- トロヤ群小惑星探査機と木星探査機の融合
 - -<u>利点</u>:木星系としての日本独自の技法による大 探査。木星衛星にとどまらない太陽系創世への アプローチ。オービターは分離まで守られている 状態のため、木星軌道環境のみを考えればよい
 - <u>欠点</u>: 探査衛星サイズが現在の検討では、厳し い制限となっている 通信、ペイロード等への影 響はかなり大きい

制約条件のもとで

- 厳しい制約条件の下で、サイエンス・探査として成立するターゲットは何かを議論する。
 - 多くの観測機器で多くのデータから議論をするような大きなテーマは楽しいが、、
 - 一方で、制約の下でもブレイクスルーとなるサイ エンステーマはある、むしろ、、
 - -制約があるからこそ、研ぎ澄ましたサイエンス& 観測計画とともに新しい技術が生み出される可 能性がある

トロヤ群小惑星探査機と木星探査周回機

(この中に入るサイズに現状ではしなければならない)

木星周回機のインターフェース条件

- ・トロヤ群小惑星探査機内部に入る構造
 - サイズ制約 木星探査衛星直径 1500mmΦ以下
 - - 重量制約 200-300kg以下

 - 熱環境 衛星内部機器とほぼ等価
 - 衛星内部機器とほぼ等価 周囲温度で -30~60°C程度
 - 振動·衝撃環境 TBD
 - 分離までは、ほぼ冬眠状態/観測は難しい
- 木星周回軌道
 - 周回軌道投入は、木星周回機自身で
 - 分離後にSAP展開

Entry Targeting around Apo-Jove costs about 44 m/sec.

20 days prior to entry, orbiter avoids entry with 91 m/sec delta-V.

Total Jovian orbiter delta-V is 680 m/sec.

木星周回機検討案 例

- 周回軌道:2Rj~300Rj
- 観測機器重量:10kg 20W 程度
- スピン安定(スロースピン)、スピン軸太陽・地球指向
- 化学推進系(木星軌道近傍までは、母船による電気推進投入
- 2年以上の観測

Items	Mass[kg]	Power[W]	the the
Payload Instrument	10.0	20.0	
TT&C (XTX 16bps、KaTX 1kbps)	18.0	72~114	
Data Handling,	6.0	18.0	DMC/DR
Attitude & Reaction Control SAS,SSC,ND,Mono-Hydrazine	18.0	7.0	
Electrical Power	15.0	12.0	6. 67.5
Thermal Control	15.0	30.0	(Assumption)
Structure & Integration	30.0	0.0	
Solar Array Paddle	70.0		250W at 5AU
Dry Total	182.0	206.0	Fuel 85kg

Kaバンド通信 薄膜軽量太陽電池 低温燃料 燃料電池 耐放射線技術 など多くの開発事項あり

どの技術も木星探査に限らず 深宇宙探査に必要な技術

WET:約267kg

観測ターゲット

- ペイロード重量が10kg以下であることより、搭載可能機器としては2-3機器程度である
- どんな技術革新があっても、"その場観測"で木 星磁気圏現象を理解するには観測機器数が不 十分
- 1機器程度で木星磁気圏の謎に迫ることはできないか?これまでに無い観測はできないか?

一つの案が、「X-Rayイメージング観測」

木星磁気圏における未解決問題

(1)Rotationally driven activities

-M-I coupling process

-reconnection and convection, SW response
-particle injections in the inner m'sphere

②Strong particle acceleration

-polar aurora: main oval, QP phenomena (polar cap), satellite footprint

-radiation belt

3 Jupiter-satellite binary system -Jup-lo: torus dynamics

(e.g., heating & transport process)

-Jup-Ganymede: m'spherem'sphere interaction

木村さん@ISAS 木星研究会資料より

- Much higher time & spatial resolutions than those at Earth
- Sufficient data volume for statistics
- "missing wavelength" in JUNO mission 木村さん@ISAS 木星研究会資料より

X-Rayイメージ機器の例

Mass resolution law

- 10kg程度の重量でX線観測が可能か?
- MEMS技術によるX線ミラーの超小型化&超軽量化
- 検出器性能向上によるエネルギー分解能の向上
- ・ 幸いにして木星環境は"寒い" → Passive冷却で重量低減

江副さん@首都大 木星研究会資料より

今後の課題 ~スピンか3軸か~

- これまで、衛星システムとしてはスピン安定を
 ベースとした設計を実施してきた
- イメージング観測の場合、3軸制御の方が当然、撮像時間の面からは有利である
- 一方で、3軸制御衛星の場合には現在搭載
 予定のない制御機器が必要であり、今後、イメージング精度&撮像時間と衛星システムリ
 ソースとのトレードオフが必要である。