次期ソーラーセイル膜材開発の課題	 ・ IKAROSのほぼ完璧な宇宙展開成功により20mクラスの薄膜構造物の製造ー収納ー展開技術は第一関門を越え、その信頼性確保に向けた技術開発が始まる時を迎えている。 ・一方、IKAROSで培ったこれらの技術・もの作りは次期大型薄膜構造物・次期セイル開発に確実に反映させることが重要である。
(宇宙科学研究所) 宮内雅彦、遠藤達也、横田力男、セイルWG (日大院理工)安藤あゆみ、風間健一	である。これらは宇宙太陽光発電基地を始めとする近未来 の宇宙大規模軟構造実現のステップとしても、きわめて重要 な技術開発目標である。これらの目標達成に向けて当面の 課題を以下に抽出し具体策を検討する。
KAROS膜開発における成果 IKAROS II I I I I I I I I I I I I I I I I I	次期セイル膜開発の課題
 宇宙環境耐久性に優れた熱融着・熱可塑性ポリイミ ドのISASによる新規開発(ISAS-TPI) ジン ISAS-TPIの薄膜化とAI蒸着膜の開発 ジン 宇宙環境使用に実績のあるAPICAL-AH薄膜のシリ コーン樹脂接着剤による張り合わせ技術の開発 ジン ポリイミド薄膜の強度評価技術の開発 ジン 宇宙環境評価の地上検証技術の試行 ジン 分子設計による新規ポリイミド開発の実証 ジン 	 RIP-STOP(裂け防止)技術 膜強度の向上 接着剤フリーの膜開発 多様な膜厚フィルムの製造(2µm~) 光学特性の制御(UV耐久性、無色化) 表面コーティング技術(軽沸点溶媒可溶ポリイミドの分子設計) 耐熱ポリイミド接着剤の開発
- KAROSの膜材配置 1000000000000000000000000000000000000	使用する膜材の詳細
臓材1:㈱カネカ製APICAL 7.5AH 臓材2:ISAS-TPI(7um)	IKAROSセイル膜面には、下記の2種類の膜材を用いた。
5.44 m 3.20 m	単材1 単材2 材料 税カネカ製 APICAL-7.5AH ポリイミド薄膜 ISAS開発 熱励者可能 ポリイミド薄膜 人学業造式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
13.50 m	long / for a

154.28 (**展面の**88.9%)

7.5 1.643

アルミニウム 80

面積 (m²)

厚さ (mm)

🔳 (kg)

<u>薬着種</u> 蒸着厚み(nm)

Membrane 1

Membrane 2

13.56 m

19.35(<mark>漢面の</mark>11.1%)

7.5-9.0

0.206

アルミニウム 80

#:173.63

H:1.849

5.表面コーティング技術(軽沸点溶媒可溶ボリイミドの分子設計) ISAS-TPIは高沸点溶剤・NMP、DMAcに20%以上も溶解する。 薄膜太陽電池表面への直接塗布・コートにはTHFのような経沸点溶剤溶解が必須。 その上、熱融者条件の緩和は直接的膜表面へのラミネートには望まいい。 宇宙大型軟構造物への適応範囲を拡げる

