微小デブリ衝突に対する アラミド繊維織布の貫通限界

○東出 真澄, 小野瀬 直美, 仁田 工美, 松本 晴久, 長谷川 直 (JAXA), 松澤 遼, 竹場 敦史, 片山 雅英 (CTC)

higaside@chofu.jaxa.jp

1. はじめに

低高度軌道は衛星打ち上げ頻度が高いため,ス ペースデブリの密度が高い. ESA の開発したデブ リ環境モデル MASTER2009¹⁾で, 低高度軌道のデブ リ数を計算した結果を図1 に示す、横軸はデブリ の直径で、縦軸は低高度軌道上に配置した 3km 角 の体積を5年間で通過するデブリの累積個数を表 す. つまり,低高度軌道で3km角の構体を持つ衛 星を 5 年間運用した時に衝突するデブリの個数を 表している. デブリ直径が 0.25 mm の時に累積個 数が1を超えるので、本ケースの場合は直径 0.25 mmのデブリが運用期間中に1個衝突する可能性が あることがわかる. デブリの平均衝突速度は 10 km/s にも達するため、微小デブリでも衛星に十分 致命的な損傷を与えることが可能である. JAXA で は人工衛星のデブリ防護設計の考え方やその実行 手順について、基準書やマニュアルを整備してい る²⁾. 衛星の運用やミッションの成否に関する重要 コンポーネントは構体内部に配置することが望ま しいが,進展部やハーネス等,宇宙空間に曝露せ ざるを得ないコンポーネントも存在する. これら にはデブリ防護シールドを設置する必要がある. 国際宇宙ステーションではデブリ防護シールドと してアルミ合金板が用いられてきた³⁾.しかし,ア ルミバンパを人工衛星に適用する場合、進展部や

ハーネス等の複雑形状への適用に限界がある.形 状に柔軟性の高いデブリバンパが求められている. 布状のバンパは複雑形状でも設置が容易であり進 展部への応用も期待できることから、著者らは高 強度繊維織布に着目して性能評価試験を実施して きた4). 高強度繊維織布は防弾チョッキ等に利用さ れており、衝突速度 100 m/sec 以下の低速衝突試験 データが今までに蓄積されてきている⁵⁻⁹⁾. デブリ 衝突に対しても高強度繊維織布は有用性が高いこ とが知られており,国際宇宙ステーションに搭載 されている Staffed Whipple Bumper Shield には Kevlar や Nextel が利用されている³⁾. しかし高強 度繊維織布単体の超高速衝突データは不十分で, 特に微小デブリ衝突に対する貫通限界データは公 表されていない.従って本研究の目的は、高強度 繊維織布の微小デブリ衝突に対する貫通限界を調 べることである. アラミド維織布 (Kevlar, DuPont 社)の貫通限界について,実験と数値解析の結果 を報告する.

2. 衝突試験条件

試験した Kevlar を表1に示す.全ての織布は平 織りで、1 inch 当たりの縦糸と横糸の本数が表1 の織物密度で表わされている.織物密度の数字が 大きいほど、目の細かい織布であることを示す. Kevlar は標準タイプの繊維(K29)と高弾性率タイ プの繊維(K49)の2種類を比較した.両者とも繊 維単体の引張強度は約3,000 MPa だが、弾性率は

表1 試験した Kevlar 織布

ID	Fiber	Thickness (mm)	Areal density (g/m ³)	Fabric density (bundle/inch)
T710	K29	0.43	319	24x24
T120	K49	0.08	58	34x34
T328	K49	0.33	217	17x17

K29 が 71 GPa, K49 が 112 GPa である.3 種類の織 布を厚さ 5~10 mm 程度に積層して供試体を製作 し,飛翔体を衝突させて貫入限界厚さを算出する. 積層した織布は,図2に示すようにアルミ合金板 に密着させた状態で上下端を固定して試験チャン バ内に設置した. 超高速衝突試験は ISAS/JAXA の 二段式軽ガス銃で実施した. デブリ環境モデルか ら計算すると、低高度軌道に存在する微小デブリ の材質はアルミナが多く、宇宙機とデブリとの平 均衝突速度は約10 km/sec になる¹⁾. しかし固体粒 子を10km/secで安定射出できる装置は存在しない. 従って本研究では、アルミナより密度の高い鉄を 飛翔体材料に選んだ.鋼球を6 km/sec で衝突させ るとアルミナ球を同速度で衝突させた場合よりも 衝撃圧が上昇するので、これを利用して低高度軌 道でのデブリ損傷に近付ける.飛翔体直径は 0.15, 0.3, 0.5 mm と変化させた. サボに飛翔体を複数個 装填する散弾方式も用いて,数10点のデータを一 度の射出試験で取得した.

3. 衝突試験結果

一度の射出試験で得られる平均データ数(平均 飛翔体衝突数)は,直径 0.15 mm の飛翔体を用い た場合は 48.2 個,直径 0.3 mm の場合は 11.2 個,

図2 織布の支持方法⁴⁾

図3 試験後のT710 ($d_p = 0.3 \text{ mm}, v_p = 5.90 \text{ km/s}$)

直径 0.5 mm の場合は 5.7 個であった. 直径 0.3 mm の飛翔体が衝突した T710 を図 3 に示す. 1 層目は 衝突点で繊維破断が観察されたが大きな変形は見 られなかった. 9 層目では破砕された飛翔体破片が 回収され,織布の変形が生じていた.本研究では, 織布の貫通限界を飛翔体が貫通しない厚さと定義 する. 従って,破片が貫通した層+1 層を貫通限界 とし,織布 1 層の厚さから貫通限界厚さを算出し た. 貫通限界厚さと飛翔体著軽との関係を図 4 に 示す. 高弾性タイプの K49 原糸で作られた織布の 方が,標準タイプ K29 よりも貫通限界厚さが小さ くなる傾向が見られた.また,薄いシートを多く 積層した方が貫通限界厚さは小さくなった.

4. 数值解析条件

通常タイプ原糸の織布 (T710) について数値解 析を行った. 解析コードは AUTODYN-2D で, 軸 対称, Lagrange 法で計算した. Kevlar に対する衝 突解析の先行研究⁶⁻⁹⁾を参考にして以下を仮定した.

- ・ 織布は面内等方材料とし、織り方は無視
- ・ 面外方向の弾性率は面内方向の 1/100
- 横弾性係数は面内弾性率の 1/100
- ・ ポアソン効果は無視

材料モデルは、状態方程式に Orthotropic,構成則に Elastic を用いた.密度には1層当たりの面密度を1 層の厚さで除した値を使用し,層毎にパーツ化し た.破断ひずみを 0.15~0.30 まで変化させて解析 を実施し、実験結果と比較して破壊則を決定した.

図5 破断ひずみの決定 $(d_p = 0.3 \text{ mm}, v_p = 6 \text{ km/s})$

解析結果を図 5 に示す. 直径 0.3 mm の鋼球を 20 層積層した Kevlar に衝突させた. 実験で得られた 貫通限界と結果が一致する,破断ひずみ 0.15 を採 用した.

5. 数值解析結果

以上の条件を用いて、アルミナ球の衝突に対す る Kevlar 織布の貫通限界を求めた. 飛翔体直径を $0.01 \sim 2 \text{ mm}$, 衝突速度を $1.5 \sim 15.0 \text{ km/s}$ の範囲で変 化させ、1、5、10 ply に積層した Kevlar 織布の貫通 限界を調べた. 非貫通のデータから貫入深さ p を 求めたグラフを図 6 に示す. 横軸は衝突速度 v_p を Kevlar 繊維の音速 c で無次元化した値の 2/3 乗値で, 縦軸は貫入深さ p を飛翔体直径 d_p で無次元化した 値である. Kevlar も金属の一枚板と同様に、貫入 深さが速度の 2/3 に比例することがわかった. 図 6 から以下の関係を得た.

$$p / d_p = 8.25 (v_p / c)^{2/3}$$
 (1)

貫入深さp を Kevlar の貫通限界厚さ t_c と仮定して 貫通限界曲線を得た.解析結果との比較結果を図7 に示す. 5 km/s 以上では貫通限界曲線と解析結果 は良い一致を示した.本解析では飛翔体の材質は 変化させていないので,式(1)はクレータ貫入深さ が飛翔体持つ運動エネルギに比例することを表し ている.5 km/s の低速度域では運動エネルギより も運動量の影響が破壊に対して支配的になるため, 式(1)では表現できていないと考えられる.

6. まとめ

Kevlar 織布の微小デブリ衝突耐性を調べるため 衝突試験と数値解析を実施した結果,以下の事が わかった.

- 原糸の弾性率が高い方がデブリバンパとして の性能が高いことがわかった.
- 同じ原糸で作られた織布の場合,薄い織布を 数多く積層させると防御効果が高くなる.
- 数値解析結果で求めた貫入深さを貫通限界厚 さと仮定して貫通限界曲線を取得した.5km/s 以上の高速度領域では,貫通非貫通の判定は 良い一致を示した.

謝辞

本研究の実施にあたり JAXA デブリ防護設計標 準WG委員の皆様にご助言いただきました.ここ に感謝の意を表します.

参考文献

- 1) ESA MASTER: http://www.master-model.de
- JAXA デブリ防護標準 WG, 微小デブリ衝突耐 性評価標準, JAXA 宇宙機設計標準, JERG-2-144, 2012.
- Christiansen, E.L., Meteoroid/Debris Shielding, NASA TP, 210788, 2003.
- 東出ら, Kevlar と Beta Cloth の微小デブリ衝突 における貫通限界, 平成23 年度スペースプラ ズマ研究会, 2012.
- Duan, Y., et al., Effects of friction on the ballistic performance of a high-strength fabric structure, *Proc. International Conference on Impact Loading of Lightweight Structure*, 2005.

- Yen, C-F, et al., A comparison between experiment and numerical simulation of fabric ballistic impact, *Proc. 23rd International Symposium on Ballistics*, 2007.
- Zang, Z.M., et al., Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor, *Composite, Part B 39*, pp.476-489, 2008.
- Nilakantan, G., et al., Novel multi-scale modeling of woven fabric composites for use in impact studies, 10th International LS-DYNA User Conference, 2008.
- Pereira, J.M., Elevated temperature ballistic impact testing of PBO and Kevlar fabrics for application in supersonic jet engine fan containment systems, *NASA TM-107532*, 1997.