スペースチェンバー設置型インピーダンス・プローブの改良

若林 誠[1]、 工藤 啓[2]、 遠藤 研[3]、 熊本 篤志[3]
[1] 新居浜工業高等専門学校 電気情報工学科,[2] 新居浜工業高等専門学校専攻科 電子工学専攻
[3] 東北大学大学院理学研究科 地球物理学専攻

1. はじめに

インピーダンス・プローブは、宇宙空間の電子密度 を高精度で計測する装置であり、Oya[1966]による開発 以降、多くの観測ロケットや科学衛星に搭載された実 績がある(Oya et al., [1979], Uemoto et al.,[2010]等)。宇 宙航空研究開発機構・宇宙科学研究所の大型スペース チェンバーにおいても、プラズマ生成を伴った各種実 験の際、チェンバー内部の電子密度を計測するための インピーダンス・プローブを使用することが可能であ るが、現状では少数の研究グループにしか活用されて いない。この理由として、測定のセットアップに手間 がかかる事が考えられ、改善が検討されている。

本研究では、スペースチェンバー設置型インピーダ ンス・プローブに FPGA を用いることにより、現状よ り更にシンプルな装置に発展させ、装置の利便性およ び稼働率を向上させる事を目的とする。ここではその 進捗状況と、2012 年 9 月に実施した測定実験の結果に ついて述べる。

2. インピーダンス・プローブの原理とチェンバー設置 型の概要

プラズマ中に浸した導体棒に高周波電界を印加する と、等価的にLC共振回路として扱う事ができ、特定の 周波数で共振を起こすことが知られている。導体棒に 印加する周波数を掃引すると、図1に示すような周波 数特性となり、周波数の低い方・高い方での共振はそ れぞれ Sheath Resonance (SHR)及び、Upper Hybrid Resonance (UHR)として観測される。インピーダンス・ プローブは周辺プラズマのUHR周波数を決定すること により、式(1)から電子密度を得ることができる。

図1. プラズマ中に浸した導体棒の周波数特性

$$N_e = 1.24 \times 10^4 \left(f_{UHR}^2 - f_c^2 \right) \quad [cm^{-3}] \tag{1}$$

f_{UHR}: UHR 周波数[MHz]
 f_c: 電子サイクロトロン周波数[MHz]

図2に、インピーダンス・プローブにおける回路の概略を示すが、図中の左側にある Direct Digital Synthesizer (DDS)から高周波電界が印加され、図の右側にある差動アンプから出力される信号の振幅を検波する。DDSから入力する高周波電界の周波数を掃引してゆくと、差動アンプの出力振幅が極小となる周波数を決定することができ、これによって周辺プラズマの UHR 周波数が把握できる。

図2. インピーダンス・プローブの概略図

ここで、正確な UHR 周波数を計測するためには、回路 内部に発生する浮遊容量の影響が無視できないため、 図 2 に示されるコンデンサのブリッジ回路を使うこと で、その影響をキャンセルする工夫がなされている。

インピーダンス・プローブの利用は、宇宙空間プラ ズマに限定したものではなく、実験室におけるプラズ マにも使用することができる。例えば、宇宙科学研究 所の大型スペースチェンバーでは、プラズマ生成を伴 う各種実験の際、チェンバー内部の電子密度を計測で きるようにするため、インピーダンス・プローブが設 置されている。図3にその外観を示すが、この装置は ブリッジ回路およびセンサー部だけがチェンバー内部 にあり、そこにチェンバー外の発振器から高周波電界 を印加している。また、ブリッジ回路の出力信号もチ ェンバー外部に伝送され、オシロスコープに入力され る。これら発振器とオシロスコープは、LabVIEWで構 成されたソフトウェアで同期制御されており、パソコ ンの画面上でプローブ周辺の電子密度を把握すること が可能である。チェンバー内部にはブリッジ回路とセ ンサーのみ配置されるので小型・軽量であり、可動ア ームに取り付けが可能(図3)である。更に、センサー は球型とロッド型の2種類から選択が可能である。

図 3. スペースチェンバー設置型インピーダンス・プローブ の外観(球プローブ使用時)

スペースチェンバー設置型をセットアップする上で は、チェンバーの内外において BNC 同軸ケーブルを 2 本(ブリッジへの入力信号用、およびブリッジからの 出力信号用)と、D-sub (9pin) コネクタを1本(回路へ の電源供給)接続する必要があり、それぞれフランジ に設けられたコネクタを介して接続される。特に BNC 同軸ケーブルのコネクタは、フランジ上に円形に配置 されており、内外での接続を即座に把握しにくい。接 続は導通チェックを行うことで確認できるものの、チ ェンバー内外での導通チェックは 1 名では困難な場合 がある。そこで本研究では、より利便性を高めたシン プルな装置とすることを検討している。

3. FPGA を用いた改良案

スペースチェンバー設置型インピーダンス・プロー ブを、よりシンプルな装置に改良するため、FPGA を用 いた回路構成に変更することが考えられている。図 4(a) に、これまで用いられてきたインピーダンス・プロー ブの配線図を示すが、前章でも触れたように BNC 同軸 ケーブルを 2 本と、D-sub (9pin)コネクタ付き導線を 1 本、チェンバー内外で接続する必要がある。FPGA を用 いることにより、D-sub (9pin)コネクタを1本接続する だけでセットアップが完了することになる(この状況 を図 4(b)に示す)。

図 4(a) 従来のスペースチェンバー設置型インピーダンス・プ ローブにおける配線図

図 4(b) FPGA による改良を施した場合の配線図

この図 4(b)の構成は、元々チェンバー外部にあった 発振器を FPGA 内部に DDS として構成し、ブリッジ回 路からの出力信号も FPGA 内で処理した後にチェンバ ー外に出力する。従って、回路内部で行う処理が増加 するため、回路自体も大型化すると推測されるが、回 路内部に作り込む部分はほとんど FPGA 内部に収めら れるため、現在の小型・軽量を維持したままでの改良 が可能となる見込みである。

本研究で目指す、具体的な回路構成を図 5(a)に示す。 この図では、ほぼブリッジ回路と FPGA、A/D コンバー タ、D/A コンバータのみで構成されることになるが、 ここではその第一段階として、FPGA 内部に DDS を構 成し、その動作を確認することを考えた(図 5(a)では赤 色で示されている)。具体的には、ブリッジ回路以降の 部分は従来用いていたインピーダンス・プローブの試 験用回路を転用し、FPGAから高周波電界を印加して、 プラズマ中で計測できるかどうかを確かめることにした(図 5(b))。

図 5(a) FPGA を用いたインピーダンス・プローブのブロッ ク図(今回検証する部分を赤で示している)

図 5(b) 今回の実験で使用する回路のブロック図

4. 実験用回路の概要

図6に、今回の実験で用いた回路の外観を示す。FPGA はXilinx 社製の Spartan-3A DSP であるが、ここではク ロック信号発生回路や電源、不揮発性メモリ等と一体 となった組み込みボード(Humandata 社製 XCM-016-3400A)を使用し、DA コンバータは12bit分 解能である AD9762 を2個用いている。組み込みボー ド及び DA コンバータはユニバーサル基板(ZKB-054) に実装され、この基板から+3.3V の電源が供給される。 クロックは FPGA と DA コンバータで共通とし、組み 込みボードに予め実装されている 50MHz 発振器の信号 を利用した。

図6 実験用回路の外観図

FPGA から DA コンバータを通じて、sin 波が出力されるが、波形を平滑化するためのフィルターと、増幅

するためのオペアンプを用いた回路も実装されている (図6左上)。

FPGA 内部には、Xilinx 社の ISE Design Suite 12 によ る VHDL 言語を用いて DDS を構成するが、ここでは 300kHz~10MHz の周波数を1 秒間で掃引するよう設計 し、分解能は 12bit とした。クロックは 50MHz であり、 周波数分解能は 12.2kHz となる。

5. 2012 年 9 月の測定実験

製作した回路を用いて、プラズマ中での測定試験を 実施した。チェンバー内における配置を図7に示す。 FPGA 搭載型は、長さ1mのアルミパイプをセンサーと して用いた。データを比較するため、従来型のインピ ーダンス・プローブでも同時に測定を行った。従来型 の方は可動アームに固定され、FPGA 搭載型のセンサー との距離を変更(実際には50~140cmの間)しながら 計測することを可能な状況とした。尚、チェンバー内 は真空引きを行った後にAr ガスを導入し、1.5×10²Pa でプラズマ生成を開始した。磁場は地球磁場、もしく は0T(磁場制御装置を利用)の2通りの条件下で測定 を行った。

図7 チェンバー内の配置(手前が FPGA 搭載型)

FPGA 搭載型および従来型の双方で、複数のデータを 得ることができた。この測定で得られた最大電子密度 は 3.2×10⁵ cm⁻³ である。チェンバー内部のプラズマ密度 は一様ではないため、それぞれの装置から同時に得ら れる電子密度には相違がある。そこで、データの整合 性を確認するため、過去に測定したチェンバー内の電 子密度分布を利用した。過去に測定したデータは、可 動アームにインピーダンス・プローブを固定し、位置 を変更しながら測定していったものである。FPGA 搭載 型で得られた電子密度がこのデータと重なるようにプ ラズマ源を調整し、そこから 50~140cm 後方にある従 来型のインピーダンス・プローブで、どのような測定 値が得られるか確認した。

その結果、プラズマ源からの距離が 3~3.5m 程度の 距離ではよく一致するものの、3m より近い距離になる と次第に密度が低くなってゆく傾向が見受けられた。

図 8. 今回のデータと過去に得られた密度分布の比較 (■:過去に得られたデータ ◇:球プローブで得られたデ ータ(FPGA 搭載型を ON) Δ:球プローブで得られたデー タ(FPGA 搭載型を OFF))

この解釈として、FPGA 搭載型がプラズマ源から約 2mの距離にあるため、その影響を受けている可能性が 考えられた。そこで、FPGA 搭載型を OFF にした状態 でも計測してみたが、先と同様に密度が低くなってゆ く傾向が確認された。恐らく FPGA 搭載型の ON、OFF には関係なく、FPGA 搭載型がそこに設置されているこ とによって、電子密度分布が影響を受けているのでは ないかと推測される。

6. 結論と今後の予定

本研究においては、スペースチェンバー設置型イン ピーダンス・プローブに FPGA を用いた改良を施し、 よりシンプルな装置に発展させることを試みた。具体 的には、FPGA 内に DDS を実装し、そこから出力され る高周波信号を用いて、プラズマ中における観測実験 を行った。所期のデータを得ることができたが、従来 型と FPGA 搭載型の間では、特に互いの距離が近い場 合においては、電子密度の相違が顕著となる傾向が見 て取れた。

今回は、試験用のアナログ回路を転用して実験を行ったが、今後はアナログ回路部分の機能も FPGA 内に 実装した上で、測定試験を実施したい。

参考文献

Oya, H., Study on boundary value problems of magneto-active plasma and

their applications to space observation, PhD. thesis, Kyoto University, 1966.

- Oya, H., T. Takahashi, and A. Morioka, Electron density distribution and particle precipitation in south Atlantic anomaly: Report on gyro-plasma probe observation installed on TAIYO, *J. Geomag. Geoelectr.*, **31**, S95, 1979.
- Uemoto, J., T. Ono, T. Yamada, T. Suzuki, M.-Y. Yamamoto, S. Watanabe, A. Kumamoto, and M. Iizima, "Impact of lithium releases on ionospheric electron density observed by impedance probe during WIND campaign", *Earth Planets Space*, **62**, 589, 2010
- 若林 誠, 小野 高幸, 鈴木 朋憲, "インピーダンス・プローブを用い た大型スペースチェンバー内の電子密度分布", 平成18年度スペ ース・プラズマ研究会講演集, p72-75.