液体を用いたスペースデブリシールドの CFRP 構成の検討

高橋秀明^[1] 柴田邦也^[1] 新井和吉^[1] 長谷川直^[2]

[1]法政大学 [2]ISAS/JAXA

1. 緒論

人類の宇宙開拓の進展と共に,軌道上には人工衛星から欠 落したボルトや塗料,使用済みの人工衛星などのスペースデ ブリが増加しており,その周回速度は約7.8km/sと非常に高 速度なために,宇宙構造物と衝突した場合は多大な損害を及 ぼす危険性がある¹⁾.現在,国際宇宙ステーション(ISS)には スペースデブリ衝突の防御用シールドとして,主にホイップ ルシールドとスタッフィングホイップルシールドが設置さ れている.ホイップルシールドの基本構造は,アルミニウム (Al)合金の宇宙構造物外壁(与圧壁)の外側に,約 110mm~ 120mmの間隔をあけて Al 合金のバンパがあり, 衝突デブリ をこのバンパで粉砕し、その後方の空間で拡散させて与圧壁 ヘ与えるダメージを軽減するものである.また,スタッフィ ングホイップルシールドは,ホイップルシールドのバンパと 与圧壁の中間に多層強化材を組み込むことで防御性能を向 上させたものである²⁾.このシールドにより約1cm以下のデ ブリは防御可能である.また,約10cm以上のデブリについ ては地上からの観測が可能なため軌道を予測し回避するこ とができる.しかし,大きさ約 1cm~10cm のデブリは地上 観測が困難な上に,現在のシールドではデブリ衝突から宇宙 構造物を保護できない可能性がある.さらに,将来の宇宙構 造物では,シールドの性能向上に加え,打ち上げによる輸送 経費の削減のために軽量化が課題となっている.

著者らはこれまで,シールドの軽量化を目的に高分子材料 やシリコーンゲルを用い,その防御性能の検討を行ってきた ³⁾.さらに,スペースデブリシールドの防御性能を向上させ, かつ軽量化を図ったシールドを開発することを目的に,シー ルド構成のうち,与圧壁を2重層構造とし,その層間に液体 層を入れ,液体層の慣性抵抗によるデブリ破片の減速効果を 利用したシールドを試作し,衝突実験および数値シミュレー ションによって,その性能評価を行ってきた⁴⁾.

本研究では,液体層を用いたシールドにおいて,軽量化を 目的に,Al 合金の一部あるいは全てを,Al 合金よりも軽量 で高比強度の炭素繊維強化プラスチック(CFRP)に変更した シールドを試作し,その防御性能に及ぼす CFRP 構成の影響 について検討を行った.

2.試作したシールド

2.1 液体層を用いたシールド⁴⁾

液体層を用いたシールドにおいて,2重与圧壁層の層間に

注入する液体層には, ISS 内に搭載されている飲料水などの 液体や使用済みの廃液などを想定している.そのため,打ち 上げの際には液体の重量はシールドの重量分としては付加 されず,さらには,貯液槽としても兼用できるため,船内の スペースを拡大することも可能となる.

既存のホイップルシールドと液体を利用したシールドの 概略図を Fig.1 に示す.Type A はホイップルシールドを 模擬したもので,前面を A6061-T6 (t =1mm)のバンパとし, 114mm の空間をあけて,後面に与圧壁を模擬した A2024-T3 (t =5mm)を設置した.Type A は Type A のバンパの後 方 93mm の位置に,もう一枚の与圧壁(A6061-T6,t =1mm) を付加して 2 重構造与圧壁とし,その与圧壁間の 20mm の空 間に液体層を設置したものである.本研究での液体には市水 を使用した.重力下での実験を行うため,水にある程度の形 状保持能力を持たせるよう,吸水性ポリマー(アクリル酸重 合体部分ナトリウム塩架橋物)に混合し,ゲル状としたもの を使用した.水と吸収性ポリマーの重量比は,100:1 とした.

2.2 液体および CFRP を用いたシールド

シールドの軽量化を図るため,上記の Type A, Type A において, Al 合金の一部あるいは全てを, Al 合金よ りも軽量で高比強度の炭素繊維強化エポキシ樹脂複合材料 (CFRP)に変更したシールドを試作した.各々のシールドの 構成を Table 1 に示す .CFRP の板厚は AI 合金と同一とし, Bおよび Type B ,C は ,Type A のバンパ, Type 前面与圧壁のみおよびバンパと前面与圧壁の両者をそれぞ れ CFRP に変更し,後面与圧壁は AI 合金のままとしたもの である.また,Type CおよびType Dは, Type Aおよび Type AのAI 合金をすべて CFRP に変更したも のである.さらに,Type E は Type C の後面与圧壁 部分を CFRP(t=1mm)と Al 合金(t=4mm)を密着させた構造 のシールドとした.これは,スペースデブリが衝突後に,シ ールドを交換する必要があり,後面与圧壁の AI 合金以外の 交換を容易にしたものである.

本研究に使用した CFRP(T700S/#2500)は, 密度が 1555kg/m³ であり,一般的な AI 合金の密度約 2700kg/m³よりも約 42% 軽量である. CFRP の積層構成は直交異方積層として,バン パおよび前面与圧壁(t=1mm)は〔(0/90)₂〕₅の 8ply,後面与 圧壁(t=5mm)は〔90/(0/90)₁₀〕₅の 42ply とした.各シールド の面密度を Table 1 に示す.Type Aの面密度は 16.55kg/m² であるのに対し, Type B および C は 15.41kg/m² および 9.36kg/m² である.また Type A~E の面密度はそれぞれ 19.25kg/m², 18.11kg/m², 16.97kg/m², 10.92kg/m², 15.76 kg/m²

TT 1 1 1	G	c	11.	1 * 1 1
Table 1	Constitution	of space	debris	shield

Shield	Bumper (1mm)	Front pressured wall (1mm)	Water (20mm)	Rear pressured wall (5mm)	Areal density (kg/m²)
Type I – A	A A6061-T6 —		-	A2024-T3	16.55
Туре I – В	CFRP — —		A2024-T3	15.41	
Type I – C	CFRP	-	-	CFRP	9.36
Туре ∏ - А	A6061-T6	A6061-T6	Water	A2024-T3	19.25
Type II - B	A6061-T6	CFRP	Water	A2024-T3	18.11
Type II - C	CFRP	CFRP	Water	A2024-T3	16.97
Type II – D	CFRP	CFRP	Water	CFRP	10.92
Type II – E	CFRP	CFRP	Water	CFRP(1mm)+ A2024-T3(4mm)	15.76

である.なお,液体層は,与圧壁内の液体を移送することを 想定して,面密度には加算していない.

3. 高速衝突実験

スペースデブリ衝突を模擬した超高速衝突実験には, ISAS/JAXA 所有の二段式軽ガスガンを用い、飛翔体は円柱型 PC(質量 0.64g, 直径 7.0mm, 長さ 14.0mm, スカート部直径 7.15mm)とした. 衝突速度範囲は 5.3~5.9km/s, 衝突角度は 90°の垂直衝突とした.シールドの寸法は,400mm×400mm の正方形とし,四隅を支柱にボルトで固定した.なお,最前 面のバンパの損傷は飛翔体衝突点近傍のみとなり,バンパに ある程度の大きさがあれば,後方の与圧壁等の損傷に与える 影響に変化はないことから,一部の実験ではバンパ寸法を 160mm×160mmとした.

4.結果および考察

Table 2 と Fig.2 に, 飛翔体の衝突速度と実験後の各シール ドの構成素材の損傷形態,損傷寸法および写真を示す.液体 層のない Type A~C は与圧壁が貫通する結果となった. 一方,液体層を入れた Type A~E は与圧壁が非貫通とな り,これにより液体層を挿入することで,耐デブリ防御性能

が大幅に向上している.これは,バンパを貫通し発生したデ ブリクラウドが,前面与圧壁を貫通して液体層に侵入した際, 液体の慣性抵抗によりデブリクラウドの速度が減少したた めと考えられる.損傷形態の特徴的なこととして, Type A~E の前面与圧壁は衝突方向と反対方向に花弁状に変形し ていた.これはデブリクラウドが液体層に進入した際,発生 した熱エネルギによって一部の液体に気化が生じ体積が膨 張し,その際のエネルギは後面与圧壁よりも薄い前面与圧壁 に作用するため,飛翔体衝突方向と反対方向に損傷が生じた ものと推測される.

バンパを Al 合金で構成した Type A と CFRP で構成し た Type Bの後面与圧壁を比較すると.Type B の後面 与圧壁の方が,デブリクラウドの破片の衝突による損傷が少 ない.これは,バンパが Al 合金の場合には,密度の高い Al 合金のデブリクラウドが発生するのに対し, CFRP の場合に は, CFRPを構成しているマトリックス樹脂が,衝突の際に 熱エネルギによってガス化し,後面与圧壁には,主に微細で Al 合金よりも密度が小さい炭素繊維が衝突したためと推測 される.

ついで, Al 合金と液体層で構成した Type A は後面与 圧壁に 3.8mm のへこみがあったのに対し,バンパと前面与 圧壁を CFRP で構成した Type Cでは後面与圧壁のへこみ が 0.9mm と小さくなっており,全て CFRP で構成した Type

Dでは後面与圧壁の CFRP に外見上の損傷は見られなか った.以上のことから,シールドの材料をAI合金からCFRP にすることで,デブリ防御性能を向上させ,且つ軽量化され ることが確認された.しかし, CFRPは,外部からの衝撃を 受けた場合,外観には損傷が確認できなくても,層間剥離な どの内部損傷が発生する可能性がある.そこで,三次元超音 波探傷試験装置(Matrixeye, ㈱東芝)を用いて Type С Dの CFRP 後面与圧壁の内部損傷の測定を行っ とType た.その結果を Fig.3 に示す. Type C の後面与圧壁(a) は貫通している中央部を中心に縦約 143mm×横約 125mm の範囲で内部損傷が見られた. Type D の後面与圧壁(b) では、炭素繊維の繊維方向(直交方向)に縦に最大約295mm, 横に最大約330mmの内部損傷が広がっており,外観上の損 傷は見られなかったものの内部には広い範囲で損傷してい ることが確認された.液体層があり貫通していない Type

Dの方が損傷面積が大きいのは,与圧壁間にある液体層の 影響によって衝撃が広い範囲に分散されたためと考えられ

Results of hyper-velocity impact test Table 2

Shield	Impact velocity (km/s)	Bumper (mm)	Front pressured wall (mm)	Space or water	Rear pressured wall (mm)	Rear pressured wall Penetrate / No penetrate
Type I – A	5.38	A6061-T6 Hole(φ 11.2)	-	-	A2024-T3 Hole(φ 16.3)	Penetrate
Type I - B	5.40	CFRP Hole(sq9.8x9.9)	-	-	A2024-T3 Hole(φ 19.0)	Penetrate
Type I – C	5.42	CFRP Hole(sq8.7x9.2)	-	-	CFRP Hole(¢ 20.3)	Penetrate
Type II – A	5.45	A6061-T6 Hole(φ 11.3)	A6061-T6 Hole(¢ 164.6)	Water	A2024-T3 Dent(H3.8)	No penetrate
Туре II – В	5.84	A6061-T6 Hole(φ 11.6)	CFRP Hole(\$\phi 43.0)	Water	A2024-T3 Dent(H1.2)	No penetrate
Туре Ⅱ - С	5.55	CFRP Hole(sq9.6x8.6)	CFRP Hole(¢ 37.4)	Water	A2024-T3 Dent(H0.9)	No penetrate
Type II - D	5.52	CFRP Hole(sq9.1x9.6)	CFRP Hole(\$\phi 35.9)	Water	CFRP No damage	No penetrate
Type II – E	5.35	CFRP Hole(sq9.4x9.1)	CFRP Hole(¢ 33.0)	Water	CFRP Surface damage (sq70x50) A2024-T3 Dent (H0.7)	No penetrate

Type		Bumper		ront pressured	Rear pressured	
турс		Jumper		wall	wall	
A	270 280 290 300 110 220 314			-	59 = 10 = 300 = 10 = 10	
В	270 280 290 300 310 220 330 International International In			-		
С	770 280 291 300 310 320 33			-	52 m m m 300 m m m m 33	
A	10 280 230 300 310 225 34 manufalana ang ang ang ang ang ang ang ang ang				10 m m m m 300 m m m m 35	
В				20 - 200 - 20 - 2	0 m m m m 300 m m m m 33	
С	0 280 290 300 310 320 3		X		0 m m m m 300 m m m m 35	
D	280 290 300 310 920 939				≈ /a aa aa300 m m m m as	
Е						
Bumper		Front pressured wall		Rear pressured wall	Rear pressured wall	
0 280 299 300 310 320 3				· - 219 - · · · ·	250 xx xx xx xx 300 xx x	

Fig.2 Photograph of each shield

る.しかしながら,後面与圧壁は圧力容器であり,損傷が発生した場合,使用期間中にその補修や交換は困難なため,後面与圧壁としては CFRP よりも AI 合金の方が望ましいと思われる.

さらに、Type Eの後面与圧壁の CFRP(1mm)は中央部を 中心に縦に約70mm,横に約50mmの範囲の表面にクレータ 等の損傷跡が見られたが、裏面に損傷などは無く非貫通であ った.その後方に設置した AI 合金の後面与圧壁(4mm)の表面 には0.7mmのへこみがあったが、クレータ等の損傷は見ら

(b) Type D Fig.3 Result of ultrasonic test of pressured wall (CFRP)

れなかった.これらのことから, CFRPの後面与圧壁までは デブリクラウドを防御できており,デブリの衝突によってシ ールドが損傷しても, AI合金の後面与圧壁よりも前方のシー ルドを交換することによって修復が可能である.

5.結論

液体を用いたシールドにおいて,構成材のAI合金の一部あ るいは全てをCFRPに変更したシールドを試作し,その防御 性能について検討を行った結果,防御性能が向上し,かつ軽 量化を行うことが可能であることがわかった.しかし,後面 与圧壁にCFRPを用いた場合には,層間剥離等の内部損傷が 見られ,後面与圧壁にはAI合金の方が望ましいことがわかっ た.

参考文献

- 1)八坂哲雄,宇宙のゴミ問題-スペースデブリ-,(1997), p.58,裳華房
- 2)茂原正道,宇宙を活かす,(1999),pp.114-115,オーム社出 版局
- 3)小山修人,新井和吉,長谷川直:高分子材料を積層した試 作デブリシールドの耐衝撃性能,平成18年度衝撃波シン ポジウム講演論文集,pp.105-108,2007
- 4)高橋秀明,新井和吉,小川靖博,長谷川直:液体を利用したスペースデブリシールドの開発,平成21年度スペース・プラズマ研究会,3(CD-ROM),2010