あかつきのための自動雲移動ベクトル導出システム

小鄉原一智(ISAS/JAXA),神山徹(東大理),山本博基(京大理) 佐藤尚毅(東京学芸大)、高木征弘(東大理)今村剛(ISAS/JAXA)

1. はじめに

あかつきに搭載された4つのカメラによって 複数高度における雲画像(輝度値データ)を 得ることができる。また、あかつきの周回軌道 角速度は、多くの部分でスーパーローテーショ ンとほぼ同期するように決定されているので、 スーパーローテーションに重なっている多くの 波動を検出することが期待される。さらに、雲 追跡によって輝度値データから水平風速の3次 元分布が求められる。このような輝度値や風速 のデータを解析することにより、長らく議論さ れてきたスーパーローテーションの維持機構や 子午面循環の有無などに対して、決定的な情報 が得られると期待される。本発表では、気象研 究を想定したあかつきデータの形式、アーカイ ブについて説明する。また、雲移動ベクトルを 自動的に導出するパイプライン処理システム を、Vensu Express/Venus Monitoring Camera (VEx/VMC)の画像を用いて検証した結果も報 告する。

2. 高次データプロダクト

もともと惑星探査データは撮像された画像 (pixel×pixel)として配布されるのが一般的で ある。しかし、あかつきでは気象の研究を想定 して、経度緯度座標に変換された格子点データ として公開する。物理量は各フィルターの輝度 値とそれらを使って雲追跡で求められた水平風 であり、ファイル形式は NetCDF 形式である。 金星-あかつき間距離がおよそ 60000 km の時、 衛星直下点における解像度は約12 km/pixel で あり、0.11°に対応する。そこで、輝度値データ の解像度を、JRA-25のちょうど10倍の解像度 である 0.125°x0.125° に設定する。この輝度値 データを用いて作成される風速データの解像度 は3°x3°である。また、各格子点における太陽 天頂角、衛星天頂角、地方時などのジオメトリ 情報の経度緯度分布も付与される予定である。 このようなジオメトリ情報の作成は、放射計算 や雲物理の研究のためはもちろん、地球の気象 研究に慣れたユーザが、地球とは大きく異なる 金星大気のデータ解析で混乱しないようにする ためでもある。

以下のようなデータカテゴリを準備する。

L3a 1ファイル1時間ステップの輝度値の緯度 経度分布

- L3b L3a を 1 軌道分 (基本的に 2 時間間隔で約 10 回) まとめたもの
- L3c L3aもしくはL3bから雲追跡を用いて求め た雲移動ベクトル

L3a/L3b は [4] に基づいて、衛星の姿 勢誤差を修正したあと SPICE Toolkit (http://naif.jpl.nasa.gov/naif/toolkit.html)を 用いて得られる。L3cを作成する際には、L3a もしくはL3bに太陽天頂角補正とパスフィル ターを施したものを用いる。これは、惑星規模 の雲模様の濃淡(太陽天頂角に依存するもの を含む)を追跡しないようにするためである。

3. 雲追跡

L3cを作成するための雲追跡に用いるアルゴ リズムは、基本的に [5] や [2] で用いられたも のに基づいている。雲追跡処理は、基本的に 2時間間隔の2枚の画像間の相互相関を計算 する方法で自動的に行われる [1]。第一画像の ターゲットエリアと第2画像のサーチエリアは $60 \text{ grids} \times 60 \text{ grids} (7.5^{\circ} \times 7.5^{\circ}) \succeq 240 \text{ grids} \times 10^{\circ}$ 180 grids ($30^{\circ} \times 22.5^{\circ}$) として、ターゲットエ リアとの相互相関係数が最大となるような領域 をサーエリア内で探索し、その領域とターゲッ トエリアとの位置の差を選択された雲ターゲッ トの変位ベクトルとする。このようにして求め た変位ベクトルから、各フィルターの波長に対 応する高度における水平風が求められる。ター ゲットエリアを緯度経度両方向に 30 grids ずつ ずらしていくことで、3.75°×3.75°の解像度の 風速分布が得られる。これは多くの金星大気大 循環モデルの解像度と同じ程度である。

自動的に雲追跡を行い風速分布を作成して いく場合、誤ベクトル(周囲の風速ベクトル と比べて大きく逸脱したもの)が避けられな い。本研究では先行研究[5,3]と比べて大きな ターゲットエリアをとっているため、誤ベクト ルの発生は先行研究に比べれば避けられる。し かし、良質のデータセットを確実に作成するた め、[6]によって提案された Relaxation labeling を用いて、誤ベクトルを修正する。ターゲット エリアとの相互相関係数が最大となるような領 域をサーエリア内で探索する際、相関係数曲面 は離散化されている。したがって、1格子に相 当する距離の整数倍を各成分に持つ変位ベクト ルしか得られない。時間間隔が2時間であるこ とを考えれば、低緯度における変位ベクトルの 1格子の誤差は、風速では1.6 m s⁻¹の誤差とな り、擾乱の振幅が小さい場合や南北風を求めた い場合は無視できない。そこで、離散化されて いる相関局面における最大値を与える格子と、 その周囲の8格子の合計9格子に対して楕円放 物面補間を行い、サブグリッドスケールの相関 係数最大値の位置を求める。そうすることで、 変位ベクトルの各成分は連続的になり、精度の 向上が望める。

4. アルゴリズムの基本性能

今回開発したデータ処理システムの性能を 検証するため、以下では2種類のテストを行 う。ひとつは、緯度経度分布に変換されたある 雲画像 (image A) と、それを単に数ピクセル 平行移動した画像 (image B) を用いて雲追跡を 行い、正しく変位ベクトルを求められるかどう かを検証するテスト(test 1)である。もう一つ は、image Aとimage Bにノイズを付加した もの(image C)を用いて雲追跡を行い、正しく 変位ベクトルを求められるかを検証するテスト (test 2) である。今回は、image A として Figure 1 を緯度経度展開したもの用いた。test 2 にお いて、image B から image C を作成する際のノ イズは輝度値に対して1%の標準偏差を有する 正規分布として与える。いずれのimageも太陽 天頂角補正とハイパスフィルターを施してから 雲追跡を行う。Figure 2a と b は、image B と して image A と全く同じものを用いた場合の test 1 と 2 の結果であり、雲追跡によって求め ららた東西方向と南北方向の変位量のヒストグ ラムを示している。test 1 では、両方向とも平 均値はおよそ0であり標準偏差も十分小さいの で、良い精度で変位量を求められている。test 2でも、ノイズによって標準偏差が大きくなっ ているが、両方向とも十分な精度を有してい る。Figure 2cとdは、image Bとしてimage A を西に 60.5 grids、南に 5.5 grids 平行移動した ものを用いた場合のtest1と2の結果である。 Figure 2a と b と同様に、test 1 と 2 において、 雲の特徴の変位ベクトルを正しく求めることが できている。これは前節で述べられたように、 相関曲面の最大値の位置をサブグリッドスケー ルで求めたからこその結果である。このような 雲追跡の高精度は、筋状構造の多い中緯度にお いても、低緯度と同様に達成されている。

以上のように、我々が開発した雲追跡システ ムはアルゴリズムレベルでは十分な精度を有し

Fig. 1. 本研究で用いたサンプル画像。軌道0240 において、2006/12/17 01:37:45 に VEx/VMC に よって取得された画像である。

ていることが示された。今後は、実際の連続画 像を用いて、雲追跡がどのような場合に成功し、 どのような場合に失敗するのかを入念に調査し なければならない。その結果に応じて、雲追跡 システムを最適化する必要がある。また、雲追 跡を行う時間間隔(2枚の画像の時間間隔)は どれくらいがよいのかも検討する必要がある。

5. 最後に

あかつきのデータアーカイブは特に気象分 野の研究を行うにあたって利便性が高くなるよ うに計画されている。できるだけ、既存の再解 析データと同じようにアクセスし解析できる ようにしたいと考えている。処理に用いられる ソースプログラムも公開予定であるので、興味 のあるユーザは自分で経度緯度座標への返還 や雲追跡を行うことも可能である。格子点デー タでの風速や輝度値データの公開は、惑星探査 データとしてはおそらく初の試みである。これ まで惑星大気のデータにふれたことのない人々 が、あかつきのデータ公開によって惑星気象研 究に興味を抱いてくれればこの上ない喜びで ある。

参考文献

- Evans, A. N., 2000, IEEE T. Geosci. Remote., 38, 1064.
- [2] JMA, 1980, The GMS Users' Guide, Issuue 1, Meteorological Satellite Center, Tokyo

Fig. 2. image A と image B を用いて雲追跡を 行い、求められた変位と格子点数の関係を示すヒ ストグラム。(a) と (b) image B として image A と全く同じ分布を用いた場合の、それぞれ東西方 向の変位と南北方向の変位。(c) と (d) image B として image A を西に 60.5 grids、南に 5.5 grids 平行移動したものを用いた場合の、それぞれ東 西方向の変位と南北方向の変位。すべてのパネ ルにおいて、実線は test 1、点線は test 2 の結果 を示している。

- [3] Moissl et al., 2009, J. Geophys. Res., 114, E00B31, doi:10.1029/2008JE003117.
- [4] Ogohara et al., 2011, Icarus, Submitted.
- [5] Rossow et al., 1990, J. Atmos. Sci., 47, 2053.
- [6] Wu, Q. X., 1995, IEEE T. Pattern Anal., 17, 843.